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Understanding pesticide-induced tipping in plant-pollinator networks across geographical scales:
Prioritizing richness and modularity over nestedness
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Mutually beneficial interactions between plants and pollinators are crucial for biodiversity, ecosystem stability,
and crop production. A threat to a mutualistic network is the occurrence of a tipping point at which the species
abundances collapse to a near zero level. In modern agriculture, there is widespread use of pesticides. What
are the effects of extensive pesticide use on mutualistic networks? We develop a plant-pollinator-pesticide
model and study its dynamics using 123 mutualistic networks across the globe. We demonstrate that pesticide
exposure can lead to a tipping point. Furthermore, while the network characteristics such as richness and
modularity exhibit a strong association with pesticide-induced tipping, nestedness shows a weak association. A
surprising finding is that the mutualistic networks in the African continent are less pesticide tolerant than those
in Europe. We articulate and test a pragmatic intervention strategy through targeted management of pesticide
levels within specific plant species to delay or avert the tipping point. Our study provides quantitative insights
into the phenomenon of pesticide-induced tipping for safeguarding mutualistic networks that are fundamental to
agriculture and ecosystems.
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I. INTRODUCTION22

A mutualistic network arises from interactions between23

two classes of species that mutually benefit each other,24

playing a fundamental role in supporting terrestrial biodiver-25

sity [1] and ensuring human food security [2,3]. A mutualistic26

network can have a complex bipartite structure and the27

pollinator-plant interactions can be highly nonlinear [4–15],28

yet the permissible states or attractors of the system can29

be quite simple: only stable steady states. A typical situa-30

tion is where two stable steady states coexist in the phase31

space: one corresponding to a survival state with healthy32

abundance levels of all pollinator and plant species and an-33

other associated with extinction of the pollinator species, each34

with its own basin of attraction. As a control or bifurcation35

parameter changes (e.g., increases), an inverse saddle-node36

bifurcation occurs at which the survival steady states dis-37

appear, leaving the extinction state as the only attractor in38

the system—the generic dynamical mechanism leading to a39

tipping point [11,16–26]. It is the simplicity of the asymptotic40

dynamical states of complex nonlinear mutualistic networks41

in spite of their high dimensionality, i.e., stable steady states42

or fixed-point attractors, which justifies the use of dimen-43

sional reduction for understanding the generic tipping-point44

dynamics. For example, it was demonstrated that a high-45

dimensional mutualistic network can effectively be reduced46

to a two-dimensional system with the “mean-field” plant and47
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pollinator abundances as the two dynamical variables, which 48

makes a geometric analysis of the tipping-point transition and 49

its accurate prediction feasible [11]. Previously, strategies to 50

manage or mitigate a tipping point were also investigated 51

[9,13,27–29]. Complex networks in natural and engineering 52

systems can undergo a tipping point from normal function- 53

ing to a catastrophic state as a parameter changes through a 54

critical point [7,11–13,24,27,29–53]. Ecological networks are 55

particularly vulnerable to tipping as their parameters may be 56

drifting towards a critical point due to the impact of global 57

climate change and other human influences [7,48,54]. A class 58

of ecological networks fundamental to agriculture and biodi- 59

versity is mutualistic pollinator-plant networks [4–14]. 60

From the point of view of network dynamics, the role of the 61

structure of a mutualistic network in the coexistence of plant 62

and pollinator species and tipping is a pertinent issue. A pre- 63

vious study identified network nestedness as a key structural 64

factor underlying the network dynamics [55]. In particular, it 65

was found that mutualistic networks tend to exhibit a high 66

level of nestedness, which, in turn, fosters species competition 67

and leads to greater species diversity within the community. 68

In another influential work [7], an association was established 69

between the drivers of pollinator decline and the emergence 70

of a tipping point that leads to a sudden and simultaneous 71

collapse of the pollinator populations. These works high- 72

lighted the importance of connectance and/or nestedness in 73

promoting the survival of pollinator populations in challeng- 74

ing ecological landscapes. In a more general sense, identifying 75

the potential drivers influencing ecological systems is im- 76

portant [25]. It has been recognized that, beyond the natural 77

drivers associated with species’ physiological parameters and 78
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noise, the role of human-induced anthropogenic drivers are79

crucial. For complex mutualistic networks, depending on80

the structural properties of the network, such as nestedness,81

connectance, richness, and modularity, climate warming can82

serve as a pivotal driver in the early occurrence of a tipping83

point.84

Among the various human influences, the widespread85

use, overuse, and even abuse of pesticides in the past ar-86

guably would have a negative impact on these mutualistic87

networks, but such impacts have not been well understood88

at a quantitative level. Pesticide usage can be detrimental89

to plant-pollinator mutualistic networks because, practically,90

it may be the most common reason that such a network91

can experience a tipping point [56–59]. The adverse effects92

of pesticides on plant-pollinator networks are predominantly93

direct and immediate, which can alter and significantly ad-94

vance the tipping point of the original network in the absence95

of pesticide use. In general, pollinators’ movements are96

not limited to cultivated plants or domestic crops alone;97

they also forage for wild plants. Intensified agriculture and98

increased agrochemical use expose pollinators to toxic sub-99

stances, including commonly used pesticides [59], fungicides,100

herbicides [60], and heavy-metal contamination from soil101

fertilizers [61]. Pollinators face multiple exposure routes,102

such as ingesting contaminated pollen and nectar or encoun-103

tering contaminated nesting sites [62,63]. The accumulated104

pesticides have various adverse effects, including reduced105

growth [64] and increased mortality rates in pollinators and106

their larvae [65,66]. Pesticide accumulation impairs critical107

biological behaviors, including memory, navigation, foraging,108

and feeding [59,67,68]. Delayed larval and pupal development109

leads to decreased overlap between seasonal flowering plants110

and pollinator activity [69]. These factors weaken the plant-111

pollinator mutualism by altering visitation rates and can be112

considered sublethal effects. Moreover, chemical pesticide ex-113

posure compounds the impact of other stressors on pollinator114

populations, such as habitat loss and exposure to pathogens115

and diseases [70,71].116

The pesticide body burden of pollinators directly linked117

to the pesticide exposure from the plants they visit, resulting118

in various lethal and sublethal effects that elevate mortality119

and weaken mutualistic interaction strength, which can ul-120

timately accelerating community collapse through a tipping121

point. Thus, managing pesticide levels in key plants within122

the network could help mitigate these adverse outcomes and123

support overall community persistence.124

Drawing from our available data on real-world125

plant-pollinator networks, our study endeavors to tackle126

multiple objectives. In particular, will the large-scale use of127

pesticides eventually lead to a tipping point of mutualistic128

networks at which the pollinator species become extinct on129

a relatively short timescale? Are pollinator-plant mutualistic130

networks from different parts of the world equally vulnerable131

to pesticide-induced tipping and whether this root cause132

remains consistent across different geographical scales,133

spanning continents, and hemispheres? Can pragmatic but134

effective control or mitigation strategies be devised to prevent135

or delay the pesticide-induced tipping if it is inevitable?136

The purpose of this paper is to address these questions by137

incorporating the effects of pesticides in mutualistic network138

models and analyzing a large number of empirical networks 139

from different continents of the world. 140

II. METHODS 141

A. Dataset 142

We studied 123 real mutualistic networks from four con- 143

tinents: Africa, Europe, and North and South America [72]. 144

(Asia and Oceania have too few networks available, so they 145

are excluded from our study.) Here we present the detailed 146

results for four specific networks: A© (SA = 61, SP = 17 and 147

the number of links L = 146) from Hicking, Norfolk, UK; 148

B©(SA = 38, SP = 11, and L = 106) from Tenerife, Canary 149

Islands; C© (SA = 44, SP = 13, and L = 143) from North 150

Carolina, USA; and D© (SA = 42, SP = 8, and L = 79) from 151

Hestehaven, Denmark. In the database, the IDs of the four 152

networks are 6, 8, 25, and 38, respectively. The primary reason 153

for this selection bias is to maintain parity with previous 154

works [13,48]. However, it is worth noting that these networks 155

are also chosen due to their significant size and higher nested- 156

ness values. 157

B. Multidimensional plant-pollinator-pesticide 158

model and its two-dimensional reduction 159

An ecologically realistic mathematical model is em- 160

ployed to study these mutualistic communities, encompassing 161

intrinsic growth, intra- and interspecific competition, and mu- 162

tualistic interactions between plants and pollinators. Let Pi 163

and Ai be the abundance of the ith plant and pollinators, 164

respectively. Following Ref. [55], the equations for the rate 165

of change of Pi and Ai are given by: 166

dPi

dt
= Pi

⎛
⎝αP

i −
SP∑
j=1

βP
i jPj +

SA∑
j=1

mP
i j

⎞
⎠ + uP

dAi

dt
= Ai

⎛
⎝αA

i −
SA∑
j=1

βA
i jA j +

SP∑
j=1

mA
i j

⎞
⎠ − κAAi + uA, (1)

where SP and SA are the plant and pollinator richness in 167

the community. Description of the other parameters are the 168

following: αP and αA are the intrinsic growth rate of plant and 169

pollinators, respectively, in the absence of competition and 170

mutualism. The degree of the mutualism can be categorize in 171

two ways, obligate and facultative, depending the sign of α. 172

If the population persists in the absence of mutualism, then it 173

is called facultative mutualism and α is positive in this case. 174

Conversely, α is negative for the case of obligate mutualism, 175

where species cannot persists in the absence of mutualism. 176

We assumed a common value α as the intrinsic growth rate 177

of all species for the sake of simplicity. βP,A
i j represents 178

the intra- (for i = j) and interspecific (for i �= j) competi- 179

tion between plant or pollinators. Usually βii � βi j and so 180

we assumed βii = 1 and βi j = 0 for all plant and pollina- 181

tors. mP
i j (=

γ P
i j A j

1+h
∑SA

j=1 γ P
i j A j

) is the per-capita mutualistic benefit 182

received by plant i from the pollinator j and similarly 183

mA
i j (=

γ A
i j Pj

1+h
∑SP

j=1 γ A
i j Pj

) is the per-capita mutualistic benefit re- 184

ceived by pollinator i from the plant j. The parameters γ P
i j and 185
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FIG. 1. A visual depiction of our model system, showcasing a
mutualistic network featuring three plant species and five pollinators.
The width of the connecting lines in the illustration reflects the inten-
sity of mutualistic interactions. Shown are the pesticide body burdens
of both plants and pollinators using circles attached to each species.
As an illustrative instance, consider second pollinator, which engages
in interactions with the first and third plant species (emphasized
with a bold color). Consequently, the pesticide body burden of the
second pollinator is influenced by the combined pesticide burdens of
the first and third plants, as well as the strength of their mutualistic
relationships.

γ A
i j are the strength of mutualistic interactions, which takes186

the following form: γ P,A
i j = δi j

γ

dρ
i

. Here δi j’s are the elements187

of the adjacency matrix of the network, δi j = 1 if plant i and188

pollinator j is connected and δi j = 0 otherwise; γ is the nor-189

malized mutualistic strength and di is the degree if the ith plant190

or pollinators. Here the parameter ρ determines the trade-off191

between mutualistic strength and the degree of the species192

and hence is associates mutualism with the network topol-193

ogy. ρ = 0 means the mutualistic strengths are independent194

of the network structure. In contrast, ρ = 1 means there is a195

full trade-off; gain from the mutualism of a species from the196

interacting species is split by the number of interactions and197

weakened the mutualism between each interacting species.198

Between the two extreme cases, we took ρ = 0.5 following199

previous studies [8,13,48]. h is the half saturation constant,200

as the mutualistic benefit will saturate with the abundance of201

the interactive partners, and the Holling type response was202

first introduced in Ref. [73] in mutualistic network model. κA
i203

is the decline rate of the pollinators due to the external ef-204

fects, and we took κA
i = κA for simplicity. Finally, uP (uA) are205

the constant immigration rates of plant (pollinators), which206

takes typically small value and thus have a little effect on207

the dynamics.208

We finally incorporate the effect of pesticide through209

species body burden in order to construct our plant-pollinator-210

pesticide (PPP) model [see Supplemental Material (SM) (SM211

Note 1) [74] for details]. The pesticide body burden of plants212

is directly related to the applied pesticide amount, while213

that of pollinators depends on their per-capita interaction214

with the plants and the pesticide burden of those plants215

(see Fig. 1). The decay rate of pollinators, the strengths216

of plant-pollinator mutualistic interactions, and the plant217

growth rate are all functions of their respective pesticide body218

burdens [Supplemental Material [74] (SM Note 2)]. With all219

these considerations, our final PPP model becomes 220

dPi

dt
= Pi

⎛
⎝α̂P

i −
SP∑
j=1

βP
i jPj +

∑SA
j=1 γ̂ P

i j A j

1 + h
∑SA

j=1 γ̂ P
i j A j

⎞
⎠ + uP

dAi

dt
= Ai

⎛
⎝αA

i −
SA∑
j=1

βA
i jA j +

∑SP
j=1 γ̂ A

i j Pj

1 + h
∑SP

j=1 γ̂ A
i j Pj

⎞
⎠

− κ̂AAi + uA. (2)

221

Two-dimensional reduced model 222

Our two-dimensional (2D) reduced model, following the 223

approach in Ref. [11], is given by 224

dP̄

dt
= P̄

(
α̂P − βP̄ + γ̂ PĀ

1 + hγ̂ PĀ

)
+ uP

dĀ

dt
= Ā

(
αA − βĀ + γ̂ AP̄

1 + hγ̂ AP

)
− κ̂AĀ + uA, (3)

where P̄ and Ā are the average plant and pollinator abun- 225

dance, respectively. The derivation and the description of the 226

other terms are detailed in the Supplemental Material [74] 227

[Eqs. (S7)–(S12) and Supplementary Note 3]. 228

The steady-state solution can be obtained by equating 229

the derivatives to zero [Eq. (S14) and Supplementary Note 230

3 [74]]. Initially we obtained a quadratic equation in A 231

[Eq. (S15), Supplementary Note 3 [74]] by assuming P as 232

a constant and got the pollinator equilibrium as a function 233

of P, with certain restrictions [Eq. (S18) and Supplemen- 234

tary Note 3 [74]]. Using this pollinator equilibrium in plant 235

steady-state equation, we obtain a quadratic in P [Eq. (S20) 236

and Supplementary Note 3 [74]]. Note that both the quadratic 237

equations are inter-related. In the subsequent section, we ex- 238

plore whether the tipping point estimates derived from the 239

reduced 2D model align closely with the tipping behavior of 240

the exact high-dimensional model across 123 real networks. 241

III. RESULTS 242

A. Tipping of the PPP model: Full and reduced 2D setup 243

The proposed model reduces to the existing mutu- 244

alistic plant-pollinator framework used in previous stud- 245

ies [7,9,11,13,24] in the absence of the pesticide (notationally, 246

C = 0). Trivially, the prediction of tipping points under zero 247

pesticide level (hereafter PL) coincides with those obtained 248

in previous studies when we demonstrate the figure based 249

on the one parameter bifurcation diagram with respect to 250

mutualistic strength (γ ), for the four prototype networks 251

A©– D© as mentioned in Sec. II A. For example, see Fig. 1 252

as depicted in Ref. [13] and the first panel of Fig. 2 253

in the present study are pretty similar. We refer to the 254

threshold γ below which the system collapses as minimum 255

gamma for coexistence (MGC). The magnitude of the tip- 256

ping points changing under the application of pesticide in 257

three different levels viz., none (C = 0), medium (C = 0.5), 258

and high (C = 1). This phenomenon is presented in three 259
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FIG. 2. Equilibrium abundance of both plants and pollinators within a network in relation to mutualistic strength. The three rows correspond
to different levels of pesticide exposure: none (C = 0), moderate (C = 0.5), and high (C = 1), while each column represents one of the four
specific networks mentioned in Sec. II A. The orange line signifies a collapse, while the blue line represents recovery. The community’s
abundance gradually decreases with decreasing γ , eventually reaching a tipping point where the community collapses. Notably, the threshold
level of γ at which the community collapses (MGC) increases with pesticide levels (C). Here αA = αP = −0.3, μA = μB = 0.0001, h = 0.2,
κA = 0.1, ρ = 0.5, σ κ = 0.1, σ γ A = 0.5, σ γ P = 0.1, ζ = 0.1, and σαP = 1.

different panels of Fig. 2. The figure clearly articulates that the260

networks need more mutualistic strength (γ ) to delay the tip-261

ping. For example, in the absence of pesticide (C = 0), MGCs262

are approximately around γ = 0.75 for the four networks. For263

C = 0.5 and 1, MGC rises to 1 and 1.5, respectively.264

This phenomenon motivates us to understand the intricate265

dynamics of the system on a deeper level. It is not sufficient266

to study the system equilibrium for only zero, moderate, and267

high levels of pesticide. To overcome this, we study the be-268

havior of the equilibrium density with pesticide level as a269

potential driver for a wide range of values of C (Fig. 3).270

Initially, the equilibrium abundance of all plant and pollina-271

tor species in each community decreases gradually with the272

pesticide level (C). Further, with a gradual increase of C, the273

system experiences a catastrophic transition from the stable274

coexistence state to community collapse, which is denoted275

by the orange lines in Fig. 3. The pesticide tipping threshold276

(MPT) significantly reduces when γ decreases. This implies277

that networks with low γ are more vulnerable to pesticide278

application.279

A natural question arises as to whether the system recov-280

ery starts when pesticide level reaches just below the critical281

threshold. To answer this query, we developed blue lines in282

each panel of Fig. 3. A small reduction of C can lead the283

system to a recovery state when γ is high. However, the sys-284

tem recovery threshold is significantly lesser than the tipping285

threshold of community collapse when γ decreases, for all286

123 networks. The system cannot exhibit a recovery state287

unless we push to reduce C to a substantial amount in com-288

parison to the threshold C level of collapse. This phenomenon289

is known as hysteresis.290

We ultimately computed the MPTs for all 123 real net- 291

works, employing both the full network model and the 292

simplified 2D model [as described in Eq. (3)]. The MPT val- 293

ues derived from the 2D reduced model exhibit a remarkably 294

strong alignment with those obtained from the full network 295

system. This association is readily apparent in the scatter 296

plot comparing the two datasets (refer to Fig. S1, SM Note 297

3 [74]). This finding provides compelling evidence that our 298

intricate, high-dimensional plant-pollinator-pesticide system 299

can be accurately approximated using a 2D mean-field model, 300

based on network topological properties. 301

In the aforementioned section, we identified that MPT 302

largely varies across 123 networks with varying γ (see Fig. 4). 303

The mean and variances for low, moderate, and high γ s are 304

depicted in the figure. Variances are substantially large un- 305

der all three levels of γ but the magnitude remains almost 306

invariant. 307

B. Forging a connection: Network architecture attributes 308

and pesticide-induced tipping points 309

In the crude and simplest way of understanding the re- 310

lationship between MPTs and network properties, we must 311

assume the linear association assessed using the Pearson cor- 312

relation coefficient, whose significance level needs to be tested 313

through a standard statistical hypothesis tool. Let us assume 314

the MPT values of 123 networks as the dependent variable 315

(say, y). We have four independent variables, namely network 316

richness (x1), connectance (x2), nestedness (x3), and modu- 317

larity (x4). We consider four sets of 123 paired observations, 318

viz., (y, x1), (y, x2), (y, x3), (y, x4), and evaluate the Pearson 319
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FIG. 3. Equilibrium abundance of both plants and pollinators within a network as it relates to varying pesticide levels (C). The three rows
correspond to different levels of mutualistic strength (γ ), and each column represents one of the four specific networks mentioned in Sec. II A.
The orange line signifies a collapse, while the blue line represents recovery. The community’s abundance gradually decreases with increasing
C, eventually reaching a tipping point where the community collapses. Notably, the threshold level of pesticide (C) at which the community
collapses, referred to as MPT, diminishes and size of the hysteresis loop increases as mutualistic strength (γ ) weakens. Parameter values are
same as in Fig. 2.

correlation coefficients based on the four sets of paired ob-320

servations. The correlation coefficients are, respectively, 0.73,321

−0.38, 0.03, and −0.57, for high mutualistic strength (γ =322

2). Both correlation and regression coefficients are significant323

for the three pairs (MTP, richness), (MPT, connectance), and324

(MPT, modularity) but insignificant for the pair (MTP, nested-325

ness). Note that for the other two level of MS, the correlation326

and their significance is almost same. The estimated regres-327

sion coefficients and the associated p values for the statistical328

test are explicitly displayed in Fig. 5.329

Climate is a pivotal factor influencing the structure of330

plant-pollinator networks, mediating the roles of various pol-331

linator species [75–77]. While it is commonly understood332

FIG. 4. MPT for all 123 empirical networks for three levels of
mutualistic strength (γ ). The mean and variance of the MPTs are
mentioned on the above of each dataset. MPT decreases with de-
creasing γ , as evidenced by a significant decrease in the mean.

that climatic variations are primarily regulated in temperate 333

zones, there is ample evidence suggesting substantial climatic 334

diversity within the same temperate zones. For instance, the 335

climatic conditions in Africa and South America, both situ- 336

ated within temperate zones, exhibit significant differences. 337

It is prudent to visually analyze the initial impression of 338

the global distribution of MPT, as depicted in Fig. 6. On 339

visual inspection, the prevalence of green shading in the upper 340

hemisphere appears more pronounced compared to the lower 341

hemisphere. On closer examination, significant variations be- 342

tween continents become apparent. The African continent is 343

distinguished by its abundance of blueish circles, whereas 344

Europe exhibits a prevalence of green-shaded circles. This 345

suggests that African networks face a higher risk of tipping, 346

while European networks are at a lower risk. Conversely, 347

North and South America are characterized by a mixture of 348

blue and green circles, indicating a moderate MPT risk level. 349

However, to ensure robust analysis, these visual observations 350

warrant statistical validation. 351

Initially, we assess the normality of each of the four 352

network variables (richness, connectance, nestedness, and 353

modularity), as well as MPTs, employing the Shapiro-Wilk 354

test (SM Note 4A [74]). The null hypothesis for the Shapiro- 355

Wilk test posits that the sample originates from a normal 356

distribution, while the alternative hypothesis suggests other- 357

wise. When the p values from this test fall below the threshold 358

of 0.05, it signifies that the sample does not conform to a 359

normal distribution with a 95% confidence level. Our ex- 360

amination of four network properties and the MPTs reveals 361

multiple instances of non-normality, with specific p values 362

provided in the Supplemental Material [74] (see Table S1, 363

SM Note 4A). Consequently, we deduce that our data do 364
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FIG. 5. Pearson correlation coefficients of the MPT across all 123 networks. Each row represents a different level of γ . Four columns
correspond to various network properties, and each column illustrates the correlation between MPT and a specific network topological
characteristic. Each subfigure contains both the correlation value and the regression equation, including their respective p values (values less
than 0.05 implies statistical significance). Importantly, richness exhibits a positive association with MPT, while connectance and modularity
demonstrate an opposite trend, supported by statistically significant correlations. In contrast, nestedness displays an insignificant correlation
with the MPT. The regression is also statistically insignificant and represented by dotted lines.

not adhere to a normal distribution, leading us to employ365

nonparametric tests for comparing means.366

In the subsequent step, we employ the Kruskal-Wallis367

test to examine whether there are statistically significant dif-368

ferences in the means of the five variables across the four369

continents. The results indicate that for all five variables, the370

p values are less than 0.05 (details provided in SM Note371

4B, Table S2 [74]), signifying a notable distinction in means372

among the continents. Following this, we conduct pairwise373

comparisons between the continents using the nonparametric374

Wilcoxon’s rank-sum test, yielding a ranking of means for the375

five variables across the four continents (refer to the Table S3,376

in SM Note 4C [74]).377

Specifically, we observe that network richness is378

significantly lower in Africa and notably higher in379

South America, while Europe and North America fall in380

FIG. 6. The MPT values for 123 networks are mapped across
different geographical locations. Circle size represents the number
of overlapping networks at each location, while color indicates the
average MPT value for that specific location.

intermediate positions. Conversely, when considering network 381

connectance, the order is reversed, with South America 382

showing lower values and North America exhibiting higher 383

ones, while Europe and Africa occupy intermediate positions. 384

As for network nestedness, South American networks exhibit 385

lower values, whereas North American networks display 386

higher values; Europe and Africa maintain intermediate 387

standings. In terms of modularity, networks in North America 388

and Europe have significantly lower values compared to 389

those in Africa and South America. Furthermore, we find 390

that African continental networks exhibit a lower tolerance 391

to pesticides, as indicated by a lower tipping threshold. In 392

contrast, European continental networks demonstrate a sub- 393

stantially higher threshold for pesticide tolerance. North and 394

South America occupy intermediate positions in this regard. 395

The analysis aimed at assessing the proximity among con- 396

tinents can be effectively visualized through the application 397

of linear discriminant analysis, as detailed in Ref. [78]. The 398

biplot representing the first and second linear discriminant is 399

provided below (refer to Fig. 7). On examination of the figure, 400

it becomes evident that the four continents exhibit distinct 401

separations attributed to substantial disparities in MPTs and 402

network richness, which is denoted by T and R, respectively, 403

in the figure. Notably, a pronounced differentiation between 404

Africa and Europe is readily apparent, aligning with our re- 405

search findings. Therefore, it becomes relevant to examine the 406

interplay of MPTs and network characteristics across different 407

continents. 408

We have categorized a total of 123 networks across four 409

continents, as outlined in Sec. II A. For each continent, we 410

have computed the Pearson correlation coefficient between 411

MPTs and each of the network properties. Additionally, we 412

have fitted regression lines for all the paired variables. The 413
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FIG. 7. Biplot of the discriminant analysis of the data set consist-
ing of the tipping threshold with the network properties.

detailed results, including p values, can be found in the414

Supplemental Material [74] (Note 4D). In summary, we can415

conclude that, surprisingly, the association of tipping point416

and connectance is weak for all the continents except Africa,417

with insignificant p values. Modularity has a strong negative418

correlation with MPTs, with significant p values. In contrast,419

the correlation of MPTs and nestedness is insignificant for all420

the continents, which remains invariant under continent-wise421

classification. Last, richness demonstrates a strong positive422

correlation with MPTs, substantiated by significant p values,423

although the correlation is positive but insignificant in the case424

of South America (see Table S4, SM Note 4D [74]). We will425

discuss the explanation of these summary in Sec. IV.426

Furthermore, we have conducted a linear regression anal-427

ysis to formulate a statistical model for predicting tipping428

thresholds across all continents, except South America, where429

we used nonparametric regression, since normality does not430

holds for MPT values. The regression coefficients, along with431

their corresponding p values, are provided in the Table S5432

displayed in SM Note 4D [74]. It is noteworthy that de-433

spite an insignificant correlation between richness and tipping434

thresholds in South America, richness emerges as a significant435

covariate in regression equation. Additionally, the correlation436

between nestedness and MPTs is insignificant across the con-437

tinents, but surprisingly, nestedness appears as a significant438

contributory variable in the final regression equation under the439

stepwise scheme for all the continents except North America.440

Some possible reasons behind these anomalies are the irregu-441

larity and scarcity of data points across the continents.442

Hence, we are confronted with the dilemma of whether443

to persist with our data analysis at the continent level or,444

alternatively, shift our research focus to the hemisphere level445

in order to mitigate the data sparsity issue. We contend that the446

scarcity of data is a more pressing concern when compared to447

the endeavor of evaluating the performance of the regression448

setup across distinct climatic zones associated with the four449

continents. In the subsequent phase of our analysis, we will450

pivot our attention to the hemisphere level by aggregating data451

from individual continents.452

C. Connection revisit: At hemisphere level 453

We conduct comparison tests for the mean network proper- 454

ties and tipping thresholds across hemispheres (Table S6, SM 455

Note 4E [74]). Similarly to our earlier findings (Table S1, SM 456

Note 4A [74]), we once again identify non-normality in the 457

data. Consequently, we employ the nonparametric Wilcoxon 458

rank-sum test for these comparisons (Table S7, SM Note 459

4E [74]). The results from these tests indicate that networks 460

situated in the upper hemisphere are characterized by higher 461

species richness, sparser connections, and lower modularity 462

compared to their counterparts in the lower hemisphere. How- 463

ever, nestedness did not differ between groups. Notably, the 464

threshold pesticide level for networks in the lower hemisphere 465

is lower in comparison to those in the upper hemisphere. 466

We have conducted multiple linear regression analyses 467

for both hemispheres, and the results are presented in the 468

supplementary material (Table S9, SM Note 4E [74]). These 469

regression analyses reveal that each of the four network char- 470

acteristics significantly influences the pesticide threshold in 471

both hemispheres, with the exception of nestedness in the 472

upper hemisphere. Of particular importance is the finding 473

that modularity emerges as the most influential factor in 474

both hemispheres. This underscores its pivotal role in shap- 475

ing the response of plant-pollinator communities to pesticide 476

exposure. Our regression models offer a valuable tool for pre- 477

dicting the tipping threshold values for new networks based on 478

their specific structural properties. It is crucial to highlight that 479

the regression formula varies depending on the hemisphere to 480

which the network belongs. This enables us to estimate the 481

tipping threshold for each network by applying the appro- 482

priate regression formula, facilitating a ranking of networks 483

based on their predicted threshold values. This ranking allows 484

us to prioritize interventions for plant-pollinator communities, 485

focusing our attention on those in most urgent need. 486

IV. SIGNIFICANCE OF RESULTS 487

A. Do species-rich plant-pollinator networks have greater 488

tolerance to pesticides? 489

Species richness exhibits a strong positive correlation with 490

the MPT (first column in Fig. 5, Table S4 in SM Note 4D, 491

Table S8 in SM Note 4E [74]). In simpler terms, within a 492

more diverse network, both plants and pollinators demonstrate 493

greater resilience when exposed to pesticides. In species- 494

rich communities, both pollinators and plants benefit from 495

greater food source diversity and increased pollination oppor- 496

tunities, respectively. So in such mutualistic plant-pollinator 497

communities, higher species richness is more likely to en- 498

hance the positive interactions between plant and pollinator 499

species, potentially disrupting the chain of cascading ex- 500

tinctions and thus increasing the community’s ability to 501

withstand pesticide exposure. These findings align with previ- 502

ous research [73,79,80], which have consistently shown that 503

diversity is positively associated with the persistence and re- 504

silience of mutualistic communities. 505

B. Modularity and MPT association: A negative alliance 506

Modularity demonstrates a significant negative correlation 507

with the system’s persistence under pesticide (fourth column 508
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in Fig. 5, Table S4 in SM Note 4D, Table S8 in SM Note509

4E [74]). Interactions between plants and pollinators become510

confined within modules which hinders the stabilizing mech-511

anism of mutualistic communities: specialists to generalists512

interaction. In a highly modular network, the connections are513

primarily facilitated by a few crucial pollinator species, which514

function as either hubs (highly interconnected species within515

their respective modules) or connectors (species bridging516

different modules). These highly connected pollinator517

species tend to accumulate higher pesticide body burdens.518

Consequently, as the abundance of these key pollinators519

declines, the interconnections between modules begin to520

deteriorate, thus triggering the extinction cascade [81]. Our521

findings align with prior research that consistently reports a522

negative correlation between modularity and the persistence523

and resilience of mutualistic communities [79]. However,524

it is worth noting that modularity may have a beneficial525

effect on the stability of a food web network, especially in526

contaminated environments [82], which contrasts with the527

trends we observed in mutualistic communities.528

C. Why connectance and MPTs are negatively correlated?529

Local stability and degree of localization (metrices of530

stability; ability of a system to absorb perturbations) neg-531

atively depends on the connectence of a mutualistic com-532

munity [83,84]. Also extinction cascades, the tendency of533

secondary extinction of a mutualistic network increases with534

connectence [85]. Overall connectence has negative im-535

pact on the stability of a mutualistic community (but see536

Refs. [73,79,80]). Our results is synergistic with the previ-537

ous findings, as the MPT has negative correlation with the538

connectence (second column in Fig. 5). Specifically, when539

pollinators are connected to more plants in a densely inter-540

connected community, their pesticide body burden increases.541

Consequently, this leads to an elevation in pollinator decay542

and a reduction in mutualistic strength, ultimately pushing the543

community closer to a tipping point.544

D. Higher nestedness may not be beneficial: Offering545

a nontrivial conclusion546

Nestedness, the anomalous property of a mutualistic net-547

work [4], can generally boost the ability of the system to548

persists, especially in extreme circumstances [79]. Species549

in a nested networks are cohesively connected to a central550

core of interaction, where generalists and specialists both551

interacts with generalists and specialist-specialist interactions552

are rare. Nestedness creates a positive feedback loop between553

the interacting species and increase the diversity by reducing554

the interspecific competition [55]. Community response to555

cascading extinction of pollinators is minimized for nested556

structure [54]. Nestedness has a positive effect on community557

persistence, resilience and structural stability (Refs. [8,73,79],558

but see Refs. [83,86]). However, results from our study in-559

dicates that nestedness has no effect in pesticide tolerance560

of a plant-pollinator network (third column in Fig. 5, Table561

S4 in SM Note 4D, Table S8 in SM Note 4E [74]). Within562

a highly nested network, the generalist pollinator, serving as563

the linchpin of the community, accumulates a substantial pes-564

ticide body burden. Consequently, the detrimental impact of 565

nestedness, manifesting as increased pesticide body burdens 566

of such crucial generalist pollinators, counteracts the positive 567

effects associated with nestedness, which are typically char- 568

acterized by a central core of interactions. Results from our 569

study agrees with the recent findings of Ref. [80] where nest- 570

edness is shown to have no statistically significant effect on 571

the resilience of a plant-pollinator community in the presence 572

of external disturbances. 573

E. MPT is low for Africa and high for Europe 574

The threshold pesticide level is low for African networks, 575

while it is high for European networks (Table S3, SM Note 4C 576

[74], also see Fig. 6). This difference arises from the fact that 577

African continental networks have lower richness but higher 578

connectance and modularity. As the threshold pesticide level 579

is positively correlated with richness and negatively correlated 580

with connectance and modularity, the pesticide threshold be- 581

comes low for this continent. In contrast, European networks 582

display moderate richness and connectance, but low modu- 583

larity, resulting in a higher tolerance level to pesticides. In 584

our data set, mutualistic networks from the temperate and 585

Mediterranean regions (Europe and North America) tend to 586

be species-rich, while networks from the African and South 587

American continents mainly belong to the tropical zone, 588

resulting in lower species richness [87]. These regional differ- 589

ences in species richness and connectance contribute to sig- 590

nificant variations in pesticide threshold within these regions. 591

F. MPT is low in lower hemisphere 592

The pesticide threshold significantly differs between the 593

two hemispheres (Table S7, SM Note 4E [74]). Networks 594

in the lower hemispheres possess low richness but high 595

connectance and modularity, leading to a lower pesticide 596

threshold compared to the upper hemisphere. 597

V. INTERVENTION STRATEGY 598

FOR DELAYING TIPPING POINT 599

In this section, we developed an ecologically viable strat- 600

egy for effectively managing critical transitions within a 601

mutualistic community. The management of critical transi- 602

tions or tipping points generally means strategies aimed at 603

delaying global extinction or transforming it into a more grad- 604

ual process. A biologically feasible intervention strategy by 605

selecting an influential pollinator species and then controlling 606

its abundance or fixing its decay rate was proposed [13]. 607

Implementing this straightforward yet efficient intervention 608

strategy can effectively alleviate the sudden collapse of a 609

plant-pollinator community. Nevertheless, providing a feasi- 610

ble practical implementation framework for this strategy in 611

real-world contexts poses a significant challenge. In our case, 612

community tipping is primarily triggered by pesticide usage. 613

Therefore, we put forth an intervention strategy focused on 614

the prudent management of pesticides in plant cultivation. 615

A recent field study conducted [88], which underscores the 616

substantial positive impact of reducing pesticide usage on 617

crop production. We have developed our intervention strat- 618

egy, which involves systematically selecting a “targeted plant” 619

004400-8



UNDERSTANDING PESTICIDE-INDUCED TIPPING IN … PHYSICAL REVIEW E 00, 004400 (2024)

FIG. 8. Four network representations denoted as A© to D©, with red nodes representing plants and green nodes representing pollinators. The
circle sizes of each node correspond to their degrees. The plant highlighted by a yellow circle is the highest degree plant, designated as the
target plant. In the second and third columns, the equilibrium abundance of these four specific networks at varying mutualistic strengths (γ ),
both without and with intervention, are illustrated. Intervening with the targeted plant has the potential to reduce the minimum mutualistic
strength for coexistence (MGC). Here C = 1; other parameters are same as in Fig. 2.

from the community and implementing measures to regulate620

its pesticide levels. The subsequent steps of our strategy are621

detailed below.622

A. Selection of the target plant species623

In our study, we designate the target plant species based624

on its centrality, a extensively explored concept employed625

to quantify the significance of nodes within a network.626

Although various centrality measures exist, our attention627

is directed toward centrality metrics tailored for bipartite628

networks, as a plant-pollinator mutualistic community can be629

represented as a bipartite network. Two frequently employed630

centrality metrics for bipartite networks encompass degree631

centrality [89,90], which tallies the number of connections632

associated with a node, and eigenvector centrality, computed633

using the elements of the eigenvectors corresponding to the634

largest eigenvalue [91], where a node’s centrality is elevated635

if it is linked to other nodes exhibiting high centrality.636

We opt for degree centrality due to its straightforward yet637

potent concept. In the context of plant-pollinator networks,638

it quantifies the number of interactions a species (either639

plant or pollinator) has with other species. Degree centrality640

is straightforward to compute, requiring only the count641

of connections for each node. A higher degree indicates642

a species that interacts with many others, suggesting its643

potential significance in the network. Plants with high degree644

centrality can be considered as hubs that play crucial roles in645

maintaining network persistence. Since community tipping in646

our case is primarily triggered by pesticide use, maintaining647

pesticide levels in the hub plant (the plant with the highest648

degree centrality) should significantly influence community649

tipping. This is because the hub plant, being connected to the 650

highest number of pollinators, can increase the pesticide body 651

burden across a larger portion of the pollinator community. 652

However, it is worth noting that the alternative centrality 653

measure consistently identifies the same nodes (plants) in the 654

majority of the empirical networks we examined. 655

Once the target plant has been identified, reduction in pes- 656

ticide application in this particular plant species serves as a 657

highly effective intervention strategy. The extent of pesticide 658

load reduction is contingent on the specific pests and crop pro- 659

duction of the communities. To showcased the efficacy of this 660

approach, we provide an example by considering a specific 661

reduction level, such as a 50% decrease. First we illustrate 662

the results for the networks A©– D©. We plot the equilibrium 663

abundance with respect to average mutualistic strength (γ ) 664

without and with intervention strategy (see Fig. 8). Our results 665

indicates that intervention strategy significantly decreases the 666

extinction threshold of the community (i.e., MGC) with de- 667

creasing mutualistic strength. For instance, the network A©, 668

C© cannot survive with average mutualistic strength γ = 1.1. 669

But when intervention acts, the coexistence is restored, though 670

some of the species may go to extinction before the whole 671

community collapse, but the global extinction is delayed (see 672

Fig. S2 in SM Note 5 [74], for the time series plots). Sim- 673

ilar results holds for networks B© and D©, for γ = 1.2 and 674

1.3, respectively. However extinction of few species may be 675

regarded as a precursor of the critical transition in this case. 676

Recovery threshold from the extinction state with increasing γ 677

is also shifted due to the intervention, which means that com- 678

munity recovers from the extinction state for a slight increase 679

in mutualistic strength when intervention is used. In order to 680
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FIG. 9. Tipping thresholds of mutualistic strength (γ ) below
which community collapses (referred to as MGCs) for all 123 net-
works both with and without intervention. The mean and variances
for both data sets are shown. Remarkably, implementing the sug-
gested intervention on the targeted plant effectively reduces the
MGC, as evidenced by a significantly lower mean MGC in the
intervention scenario compared to the nonintervention case.

provide a comprehensive view of our findings, we generate a681

plot of the MGC for all 123 empirical networks, comparing682

the results without and with intervention (see Fig. 9). It is683

evident that the intervention significantly reduces the MGC684

across all real networks, demonstrating the substantial poten-685

tial of our proposed strategy to delay the tipping point.686

VI. DISCUSSION687

Plant-pollinator interactions are crucial for biodiversity688

and crop productivity [92,93], but excessive pesticide use689

in intensive agriculture threatens pollinators, surpassing the690

long-term factors like climate change and habitat loss in the691

current era of anthropogenic changes [59,60]. Pollinators692

can accumulate pesticides through multiple pathways during693

their interactions with flowers [63]. This exposure to toxic694

substances can lead to various lethal and sublethal effects,695

such as a weakening of the strength of mutualistic interactions696

and an elevation in mortality rates [62,64–66,68,94]. These697

consequences can trigger a rapid and irreversible transition698

from a stable state of coexistence to the extinction, commonly699

referred to as a tipping point [7,9,29,31,36]. By formulating700

a PPP model and using 123 real empirical plant-pollinator701

networks collected from a database as prototype networks, we702

investigated the effect of pesticide on the tipping phenomenon703

of a pollination network.704

Our study reveals a clear decrease in the abundance of705

both plants and pollinators as pesticide levels increase, leading706

to a tipping point where the community experiences a sud-707

den collapse. Importantly, the system cannot recover unless708

pesticide levels are substantially reduced compared to the709

threshold at which the collapse occurred, leading to a hystere-710

sis loop [95–97]. The collapse thresholds predicted by our 2D711

reduced model closely matched those obtained from the full712

network simulations for all 123 real-world networks, validat-713

ing its effectiveness in approximating the complex dynamics714

of high-dimensional plant-pollinator-pesticide systems. This 715

aligns with numerous previous studies [98–101] that have 716

successfully used dimensional reduction techniques to ana- 717

lyze complex network dynamics. As our real networks were 718

collected from diverse geographical regions across various 719

continents and climatic zones, there are notable differences 720

in their size and structure [87]. These variations directly 721

contribute to the variability in MPTs, which serves as a 722

representation of the threshold pesticide level at which a com- 723

munity undergoes collapses. We observed that a species-rich 724

plant-pollinator network, characterized by low modularity 725

and connectance, exhibits higher tolerance to pesticides. It is 726

worth noting that, in the presence of pesticides, nestedness 727

does not have any statistically significant impact on system 728

persistence and tipping. 729

We have observed that networks from the African continent 730

tend to have lower species richness but higher connectance 731

and modularity. Consequently, they exhibit a lower MPT. It is 732

also worth noting that pesticide use in Africa is comparatively 733

lower than in other continents [102]. In contrast, European 734

networks display a higher MPT due to their lower modular- 735

ity and greater species richness. North and South America 736

occupy an intermediate position in terms of MPT rankings. 737

However, pesticide use is high in all the three continents, 738

according to the aforementioned database, suggesting they 739

face a similar risk of tipping as Africa. Furthermore, the MPTs 740

are generally low for regions in the southern hemisphere, 741

primarily due to their lower species richness and higher 742

modularity. 743

We finally proposed an ecologically viable intervention 744

strategy aimed at sustaining plant-pollinator communities 745

amid global collapse, involving the management of pesticide 746

levels in a single pivotal plant species from the community, as 747

an effective intervention. The targeted plant is, specifically, 748

the highest degree plant, meaning the one with the most 749

interacting pollinators. Pollinators, from most specialist to 750

generalist status, are likely to interact with the highest degree 751

plant of the network. So reducing the pesticide level of the 752

most connected plant or hub of the community can effectively 753

decrease the pesticide body burden of the pollinators. This in 754

turn helps the community to sustain by delaying the tipping. 755

Furthermore, when intervention applies, extinction of some 756

species is seen before the system reaches to its tipping thresh- 757

old, which may be pointed out as the precursor of the whole 758

community collapse. 759

The limitations of our study are as follows. First, the 760

pesticides are applied to the crops and managed plants. How- 761

ever, we considered mainly wild plant-pollinator networks 762

(some of our considered networks contains managed plants, 763

as example, the networks with ID: M_PL_032 [103] and 764

M_PL_073 [104]) as prototype, due to the lack of availabil- 765

ity of the data. Nonetheless, our PPP model framework is 766

adaptable to various bipartite mutualistic networks, including 767

crop-pollination networks. We believe our findings can be 768

extrapolated to real crop-pollination networks, a hypothesis 769

that field ecologists can potentially verify. Additionally, we 770

did not incorporate pests as state variables into our PPP model. 771

The structure of plant-pest (herbivore) bipartite networks 772

can significantly influence plant-pollinator communities, as 773

demonstrated in Ref. [105], suggesting that a more realistic 774
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approach would involve considering the pesticide effect on775

a tripartite plant-pollinator-herbivore network. However, we776

simplified our assumptions by omitting pests. This decision777

was primarily influenced by the high complexity of our sys-778

tem and the scarcity of real plant-pollinator-pesticide tripartite779

network data. Nevertheless, it is important to note that we780

indirectly accounted for the pesticide-induced pest mortal-781

ity through its observable impact on increased plant growth.782

Moreover, within mutualistic ecological systems, it is feasible783

to identify species that can anticipate critical transitions early,784

and these are referred to as sensor species. This identification785

can be achieved solely by analyzing the network topology786

of plant-animal interactions, as demonstrated in Ref. [106].787

However, in the presence of pesticides, it becomes particu-788

larly intriguing to ascertain the set of sensor species involved789

in pesticide-mediated critical transitions. Addressing these790

limitations and exploring future directions will enable us to791

enhance the monitoring and understanding of plant-pollinator792

systems under pesticide influence.793

Data sets are available in the websites. All computer codes 794

are available from the authors on request. 795
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