An upper bound for the proper delay time in chaotic time-series analysis

Ying-Cheng Lai 1, David Lerner 2, Robert Hayden

Department of Mathematics, The University of Kansas, Lawrence, KS 66045, USA

Received 22 February 1996; revised manuscript received 12 April 1996; accepted for publication 8 May 1996
Communicated by A.P. Fordy

Abstract

We establish an upper bound for the proper delay time in chaotic time series analysis using delay-coordinate embeddings. The derivation is based on analyzing the effective scaling regime in the computation of the correlation dimension using the Grassberger–Procaccia algorithm. Numerical results agree with the theoretical prediction.

PACS: 05.45.+b

1 Also at Department of Physics and Astronomy, and Kansas Institute for Theoretical and Computational Science, The University of Kansas, Lawrence, KS 66045, USA. E-mail: lai@poincare.math.ukans.edu.

2 Also at Kansas Institute for Theoretical and Computational Science, The University of Kansas, Lawrence, KS 66045, USA. E-mail: lerner@poincare.math.ukans.edu.

...
be larger, but can still be considerably smaller than $2D_0 + 1$ [8]. The criterion for choosing the embedding dimension is therefore relatively clear.

The proper choice of the delay time τ, on the other hand, is to some extent still an open question. The basic idea is to choose τ so that the coordinates x_n and $x_{n+\tau}$ are independent of each other but not completely uncorrelated. If the time series is derived from a continuous dynamical system and τ is too small, x_n and $x_{n+\tau}$ are too correlated to serve as independent variables in the reconstructed phase space. If τ is too large, then for a chaotic time series, x_n and $x_{n+\tau}$ are effectively uncorrelated and hence the underlying deterministic dynamics may be lost. A series of previous works [9–14] addresses the choice of the proper delay time, and the criteria presented there work well in practice.

In this paper, we present both theoretical and numerical results establishing an upper bound for the proper delay time for a chaotic time series of finite length. By analyzing the effective scaling regime used to compute the correlation dimension using the GP algorithm, we derive an inequality relating the maximum allowed delay time to quantities such as the embedding dimension, the length of the time series, and the dynamical properties of the underlying chaotic set. Our main result is that for a given embedding dimension m, there exists a maximum allowed delay time τ_{max} beyond which the computation gives misleading results. As m increases, τ_{max} decreases substantially.

Our starting point is the GP algorithm which allows us to compute D_2 in terms of a correlation integral $C(\epsilon, \tau, m)$, defined as the probability that a pair of points chosen randomly with respect to the natural measure on the attractor is separated by a distance smaller than ϵ [5]. For a trajectory of length N in the embedding space, this integral can be approximated by

$$C_N(\epsilon, \tau, m) = \frac{2}{N(N-1)} \sum_{j=1}^{N} \sum_{i=j+1}^{N} \Theta(\epsilon - |x_i - x_j|).$$

(1)

Here, $\Theta(\cdot)$ is the Heaviside step function defined as $\Theta(x) = 0$ for $x \leq 0$ and $\Theta(x) = 1$ for $x > 0$, and $|\cdot|$ denotes the maximum norm of distance from x_i to x_j in the reconstructed phase space 3. For large N, $C_N(\epsilon, \tau, m) \approx C(\epsilon, \tau, m)$, and the correlation dimension D_2 is given by

$$D_2 = \lim_{\epsilon \to 0} \frac{\log C(\epsilon, \tau, m)}{\log \epsilon}.$$

(2)

In practice, D_2 is estimated by extracting the slope in the plot of $\log C_N(\epsilon, \tau, m)$ versus $\log \epsilon$ in an apparently linear scaling region. For a proper choice of τ, the computed D_2 at first increases with m and then stabilizes for sufficiently large values of m. This “plateau” value is then taken as an estimate of the attractor’s correlation dimension. The accuracy of the estimate is evidently determined by the size of the effective linear scaling region. For a given m, as the delay time τ changes, so does the size of the linear scaling region; this gives us a way to estimate τ_{max}.

Our purpose now is to establish conservative upper and lower bounds for $\log \epsilon_{\text{min}}$ and $\log \epsilon_{\text{max}}$. This will allow us to fix an upper limit for the delay time τ (for fixed embedding dimension m and number of data points N).

Inside the scaling region, the plots of $\log(C_N(\epsilon, \tau, m))$ against $\log \epsilon$ give a family of parallel lines with slope D_2 whose equations have been determined by Grassberger and Procaccia [16],

$$\log_2 C_N(\epsilon, \tau, m) = D_2 \log_2 \epsilon - m \tau K_2 \log_2 \epsilon. \quad (3)$$

Here K_2 is the order-2 entropy. Equivalently, if J is the number of distinct pairs of points on the trajectory less than ϵ units apart, then in the scaling region

$$J = \frac{N^2}{2} e^{D_2} e^{-m \tau K_2}.$$

Impose the modest requirement that $J > 1$ throughout the good scaling region, we obtain a constraint which, when solved for ϵ, establishes the lower bound of the region as

$$\frac{1 - 2 \log_2 N + \tau m K_2 \log e}{D_2} < \log_2 \epsilon_{\text{min}}(\tau, m).$$

(4)

Note that $\epsilon_{\text{min}}(\tau, m)$ is an increasing function of both its arguments.

3Historically, the possibility of estimating D_2 and other dynamical invariants (with maximum norm) from delay-coordinate embedding was proposed by Takens [3].
Next, we consider $\epsilon_{\text{max}}(\tau, m)$, which determines the upper end point of the linear scaling region. For large values of τ, each delay coordinate is essentially independent of the others. Consequently, at large distances ϵ, the behavior of $C_N(\epsilon, \tau, m)$ will be similar to that obtained from a sequence of random vectors in the m-dimensional embedding space. Thus, we expect the family of curves to have a straight line with slope m as its envelope. This behavior is indeed observed in numerical computations as shown in Fig. 1. The line given by Eq. (3) intersects the line of slope m through the origin at a value of ϵ which satisfies

$$D_2 \log_2 \epsilon - m\tau T K_2 \log_2 \epsilon = m \log_2 \epsilon.$$

Taking this for the upper bound of the scaling region gives

$$\log_2 \epsilon_{\text{max}} = \frac{-m\tau TK_2 \log_2 \epsilon}{m-D_2}.$$

Using Eqs. (4) and (5), and letting Δ represent the size of the linear scaling region, we find
\[\Delta = \log_2 \varepsilon_{\text{max}}(\tau, m) - \log_2 \varepsilon_{\text{min}}(\tau, m) \]
\[< - \frac{mK_2 \tau T \log_2 e}{m - D_2} + \frac{2 \log_2 N - 1 - m\tau K_2 \log_2 e}{D_2} \]

Note that \(\Delta \) depends on the quantities \(m \) and \(\tau \) through their product, which is consistent with the results of Albano et al. [17]. As a practical matter, in order to estimate \(D_2 \), the linear scaling region must span at least an order of magnitude in \(\varepsilon \). In terms of the base-2 logarithmic scale, we shall require \(\Delta \geq 4 \). Then, solving Eq. (6), for \(\tau \), we obtain the desired upper bound for the delay time

\[\tau_{\text{max}} < \frac{(2 \log_2 N - 1 - 4D_2)(m - D_2)}{m^2K_2\tau T \log_2 e}, \]

which is our main result.

To verify the accuracy of Eq. (7), we have undertaken a series of numerical experiments [18]. Here we just report the results obtained with the standard Hénon map \((x_{n+1}, y_{n+1}) = (1.4 - x_n^2 + 0.3y_n, x_n) \), which is believed to possess a chaotic attractor with one positive Lyapunov exponent estimated at \(\lambda_1 \approx 0.42 \). Since there is only one positive Lyapunov exponent, we have \(K_2 \approx \lambda_1 \) [16]. The correlation dimension of this attractor is \(D_2 \approx 1.95 \). Thus, for sufficiently long time series, an embedding dimension of \(m = 2 \) should suffice to extract the correct value of \(D_2 \).

To generate such a series, we take a random initial condition, iterate it 2000 times to get rid of the initial transient, and then record the next 28000 values of \(x_n \). The correlation integral \(C_N(\epsilon, \tau, m) \) is evaluated at 200 values of \(\epsilon \) for \(\log_2 \epsilon \in [-20, 0] \), for embedding dimensions ranging from \(m = 2 \) to \(m = 12 \), and for delay times \(\tau \) ranging from 1 to 20. Since \(T = 1 \) and \(N = 28000 \), Eq. (7) reduces to

\[\tau_{\text{max}}(m) < 39.22 \left(\frac{m - D_2}{m^2} \right). \]

Figs. 1a–1d show \(\log_2 C_N(\epsilon, \tau, m) \) versus \(\log_2 \epsilon \) for \(m = 2, 4, 8, 12 \), respectively, where in each figure, curves correspond to different values of the delay times ranging from \(\tau = 1 \) to \(\tau = 20 \). For large values of the delay \(\tau \), delay coordinates are essentially independent of each other and, hence, we see that the curves \(\log_2 C_N(\epsilon, \tau, m) \) versus \(\log_2 \epsilon \) have a slope \(m \) for large values of \(\epsilon \). The curves follow this envelope for \(\epsilon > \epsilon_{\text{max}}(\tau, m) \) and then level off to obey the asymptotic law \(\log_2 C_N(\epsilon, \tau, m) \sim D_2 \log_2 \epsilon - K_2 \tau T m \log_2 e \). For \(m = 4, \) we have \(\tau_{\text{max}}(4) \approx 7 \) from Eq. (8), while numerical computation gives \(\tau_{\text{max}}(4) \approx 8 \) (Fig. 1b). For \(m = 8, \) we have \(\tau_{\text{max}}(4) \approx 4 \) from Eq. (8), and numerics gives \(\tau_{\text{max}}(4) \approx 4 \) (Fig. 1c). Fig. 2 shows both the theoretical prediction for \(\tau_{\text{max}}(m) \) and the corresponding numerical results for embedding dimension ranging from \(m = 3 \) to \(m = 12 \). The agreement between Eq. (8) and the numerics for \(m \geq 5 \) is good.

We briefly mention two additional issues related to the bound on the delay time. The first is the influence of environmental noise, whose presence can significantly reduce the range from which \(\tau \) can be chosen. Thus the choice of a proper delay time is more limited in practical applications where random noise is inevitable. The second issue is the appearance of a “knee” behavior in the plot of correlation integrals when a somewhat large delay time, but still less than the upper bound, is used. This behavior is qualitatively different from that due to excessive autocorrelation between nearby points in the reconstructed space [19], and therefore it cannot be removed by excluding the contribution from nearby points to the correlation integral [18].

As the field of chaotic dynamics matures, it becomes important to establish and test theoretical relations between the various system parameters such
as D_2 and λ_1 and those such as m and τ which are to some extent under the control of the observer. A well-known example is the result of Eckmann and Ruelle [15]. In this spirit, we have shown the existence of such a relationship for the size of the effective linear scaling region which incorporates an upper bound for the delay time. Our result agrees well with the numerical experiments.

Y.C. Lai acknowledges partial support from AFOSR through grant no. F49620-96-1-0066 and a New Faculty Research Fund at the University of Kansas. This work was also supported by the Kansas Institute for Theoretical and Computational Science through the NSF/K*STAR EPSCoR Program.

References