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Megacities are causal pacemakers of
extreme heatwaves
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Xueli Yang 1, Zhi-Hua Wang 1 , Chenghao Wang 2,3 & Ying-Cheng Lai 4,5

Global climate change has been shown to cause longer, more intense, and frequent heatwaves, of
which anthropogenic stressors concentrated in urban areas are a critical contributor. In this study, we
investigate the causal interactions during heatwaves across 520 urban sites in the U.S. combining
complex network and causal analysis. The presence of regional mediators is manifest in the
constructed causal networks, together with long-range teleconnections. More importantly,
megacities, such as New York City and Chicago, are causally connected with most of other cities and
mediate the structure of urban networks during heatwaves. We also identified a significantly positive
correlation between the causality strength and the total populations in megacities. These findings
corroborate the contribution of human activities e.g., anthropogenic emissions of greenhouse gases
or waste heat, to urban heatwaves. The emergence of teleconnections and supernodes are
informative for the prediction and adaptation to heatwaves under global climate change.

The progress of development of modern human societies is driven by
urbanization. Or, as emphatically put by Spengler, “world history is city
history”1. The sustainable future of human societies is closely linked to urban
sustainability. Today, urban areas accommodate 56% of the world’s popu-
lation, consume over two thirds of the world’s energy, and produce about
70% of global carbon emissions2,3. Critical environmental challenges faced
by cities due to global climate change include excessive heat stress, envir-
onmental pollution, infrastructure vulnerability, public health risks, and
degraded ecosystems, to name a few4–6.

As a particular type of climatic extremes, heatwaves incur widespread
adverse impacts on human health, infrastructure, and natural ecosystems7.
Global climate change has led to an increase in duration, intensity, and
frequency of heatwaves in contiguous United States (CONUS) since the
mid-1960s8–10. To understand the formation and development of extreme
heatwaves, both natural contributors7 and anthropogenic drivers10 were
studied. Natural contributors of heatwaves include, but are not limited to,
high-pressure synoptic systems11, land surface and temperature couplings
such as soil moisture memory12, climate variability and large-scale tele-
connections such as El Niño-SouthernOscillation (ENSO)13 and the Pacific
Decadal Oscillation (PDO)14. Meanwhile, anthropogenic emissions have
contributed approximately to two-thirds of the observed global temperature
rise due to climate change for the period 1971-201015.

The contributionof humanactivities to global climate change ismainly
associatedwith the combustion of fossil fuels and the concomitant increases
of greenhouse gases (GHGs) in the atmosphere. Thewarming effects caused
by increasingGHGshavebeendetected inmost continents16,17. For example,
the observed increasing trends in U.S. temperature extremes for the last few
decades were mainly due to changes in anthropogenic forcings18,19. The
projected near-term increases in GHG forcing could result in warm-season
drying and intensification of heat extremes throughout most U.S. regions20.
For example, a recent study revealed that almost half of the world’s popu-
lation will likely be exposed to heatwaves threatening human thermo-
regulatory capacity by 2100 under an intermediate emission scenario
(Representative Concentration Pathways RCP 4.5), and nearly third-
quarters of the world’s population will be threatened by heatwaves under a
higher emission scenario (RCP 8.5)21.

Various urban environments are intrinsically connected and co-evolve
together. For example, some major U.S. cities exhibit striking similarity (or
“analog”) in their urban thermal environments22. This can be partly
explained by the long-range connectivity in urban areas, or
“teleconnection”23. U.S. cities are clustered as connected groups under dif-
ferent environment stressors associated with human activities, such as
extreme heat, air pollution, and precipitation climatology24. To gain insights
into the intrinsic dynamics of heatwave propagations, it is useful to take a
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network approach by treating the various urban areas in the U.S. as the
interconnected nodes in the network.

In recent years, the techniques of complex networks have been applied
in climate studies, ranging from the observations andpredictions of weather
extremes25–28 to early warning schemes29,30. The climate system can be
treated as a network of many dynamical systems that enables us to inves-
tigate collective behavior of climate dynamics from network theory26. A
climate network is characterized as a collection of components in climate
that are meaningfully connected. In the network, spatial variables in the
climate system, such as precipitation or temperature, canbe viewed as nodes
whose connectivity (by edges) is determined by a critical threshold of
strength of interactions based on linear or nonlinear interactions27,28. The
connectivity among different locations (cities) in the climate network, i.e.,
the hub-periphery structure (clustering in network structure), can be
quantified by network analysis24. Previous efforts in identifying various
atmospheric teleconnections were largely based on linear Pearson’s or
Spearman’s correlations31. However, the so-constructed climate networks
may not capture the underlying physical processes in the complex climate
system32–34. To overcome the deficiency, nonlinear-dynamics based meth-
ods have been used to investigate the interactions of large-scale patterns in
climate, such as event synchronization26,27,35,36, mutual information32, dis-
tance metric37, and causality33,34,38. Causality networks are especially useful
for distinguishing direct dependencies from indirect ones or from common
drivers in complex climate systems33,34,38,39. Compared with numerical
models, network-based analysis is less influenced by measurement errors
and initial and/or boundary conditions, and are relativelymore accurate for
weather predictions29.

In this work, we aim to investigate causal interactions across the built
environment of the U.S. during summertime (May-September) heatwaves.
This is primarily motivated by the fact that the causal analysis of urban
heatwaves has been hitherto underexplored, especially from the perspective
of complex urban system dynamics. In fact, quantifying the impact of
human activities and their connection with extreme heatwaves remains an

open challenge, especially in urban areas where the impact of heatwaves can
be intensified through, e.g. the synergistic interactions with urban heat
islands. Here we evaluate the spatial patterns of U.S. extreme heatwaves for
the last four decades (1979-2021) and identify various causal relationship
among 520 U.S. urban areas during the detected extreme heatwaves. The
inferred causality allows us to construct directed causal networks and to
evaluate the network topology, viz. the structure and connectivity matrices
that quantify the network. In addition, we study the emergence of hubs/
clusters and estimate how large cities contribute to the propagation of
extreme heatwaves in the causal network. The presence of hub-periphery
structures in urbannetworks enables us to identify supernodes in heatwaves
propagations, especially in Northwest, Northeast, and the Great Lakes.
Further, megacities (with population totals greater than or around 10 mil-
lion in metropolitan areas), such as New York City and Chicago, are
manifested as pacemakers during heatwaves, in the sense that they are
causally connected with most other urban areas and mediate the occur-
rences andpropagations of heatwaves. It is also shown that humanactivities,
roughly represented by the total population size, largely impact the causal
interactions of cities in urban heatwaves.

Results
Major heatwaves in CONUS
In the U.S., warm extremes have increased more rapidly in recent decades
compared to cold extremes18. In fact, warm season (May-September)
heatwaves across theU.S. exhibited a substantial increaseduring the last four
decades40,41.We use dailymaximum temperature of the gridded data during
warm season to detect extreme heatwaves during thewarm seasons of 1979-
2021. From these 43 years, we select 12 extreme heatwaves (Supplementary
Figure 1) that impactedmost of theU.S. states.Of all the heatwaves detected,
we found some regions such as the Great Plains (Texas, Oklahoma, and
Kansas) and Southwest (Arizona, California) are more susceptible to
extremeheatwaves,which is consistentwithfindings inprior studies that the
central and southernU.S. is an “warminghole” region42. In Fig. 1, four out of

Fig. 1 | Identifiedmajor heatwave events based onmaximumdaily temperature (°C) across the CONUS. Fourmajor heatwaves (a) July 19-23, 1998, bAugust 5-10, 2001,
c July 16-20, 2011, and d July 18-22, 2020, are presented here for illustration purposes (all 12 heatwaves can be found in Supplementary Figure 1).
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the 12 heatwave events are selected for illustration purposes, where each
heatwave event lasted for more than four days (see Methods for the
detection of heatwave events), which captures the characteristic patterns of
heatwaves in theU.S. For example, the Texas heatwave of 2011 (Fig. 1c) was
centered in Texas and extended to adjacent southern plains states accom-
panied by an extreme drought (characterized as the record-breaking driest
consecutive 12 months based on precipitation). The principal physical
processes contributing to this record-breaking heatwave were associated
with the coupling of soil moisture and high temperature, such as the severe
rainfall deficit and antecedent dry conditions43. This region has also
experienced other notable heatwaves, including the Texas-Oklahoma heat
wave in 1998 (Fig. 1a), which have strong connections to antecedent
droughts44. Since the focus of our study is on the heatwaves of theU.S. urban
areas, we extract the corresponding hourly air temperature during the same
time (1979–2021). The distribution of temperature and the anomalies after
removing the long-term trend for the 520 urban sites can be found in
Supplementary Figs. 2 and 3.

Causal network of urban heatwaves
Network theory has been increasingly applied to climate sciences in recent
years. Mathematically, a climate network is a graph that consists of nodes
and edges that connect nodes inmeaningful way26,30,32. In this study, each of
the 520 urban sites are represented as nodes of the urbannetwork,where the
edges are determined by the causal strength between a pair of nodes (see
Methods). Long range connections (edges linking geographically distant
vertices) enhance the information transfer (heat or moisture) within the
network32. Identifying the evolution of teleconnections can provide a
pathway to analyze or even predict large-scale extreme climate events
(heatwaves). Those atmospheric teleconnections presented in data can be
well captured through network analysis29. Besides, the directions of the
teleconnections are key to deciphering the spatial propagation of heatwaves.
Causality is capable of revealing the true interactions and connecting them
with the underlying physical mechanisms of the climate dynamics33,34,38.

Here we construct directed climate networks based on the causality for
all 520 stations in urban areas during each of the 12 heatwaves (the details of
the causality calculation using the convergent cross mapping (CCM)
method canbe found inMethods). Thenetwork results for all heatwaves are
shown in Supplementary Figure 6. Figure 2d shows the asymmetrical causal
matrix of the 520 urban locations (no self-connection) for the August 5-10,
2001 heatwave event, revealing directed interactions amongmost city pairs.
Some pairs show a high causality over 0.8, suggesting strong causal inter-
actions during heatwaves. To determine the locations of cities having strong
causal connection with others during heatwaves, we introduce three para-
meters: Indegree, Outdegree, and PageRank centrality in the (directed)
network analysis to uncover the structures of causal networks. The indegree
andoutdegree of anodemeasure the ingoing andoutgoing links fromand to
other nodes in a network, respectively45. Clustering of homogeneous sites
with high inward strength (similar to indegree here) are vulnerable to
heatwaves occurring at other various locations27, while centrality can be
interpreted heuristically as the energy or matter flow28. In our study, a city
with a higher indegree and outdegree has more connections with others in
two-way directions during heatwaves spreading, and the PageRank cen-
trality of a city can be viewed as its importance in propagating extreme heat
flow in the network. The distribution of indegree, outdegree, and PageRank
centrality are shown in Figs. 3–5, along with the directed ingoing and out-
going spatial links, including the long-range teleconnections. The causal
network of heatwaves across the CONUS possesses hub- or core-periphery
structures, where some cities stand out as groups with high values of net-
work metrics. These regions are highlighted in zoom-in boxes (a-g) in Figs.
3–5, such as urban clusters in theNortheast (box g), theGreat Lakes (box e),
and the Ohio valley region (box f). This signifies the vital roles these urban
regions play in the spreading of heat during extreme heatwaves, during
which a large area of the U.S. becomes vulnerable to extreme thermal
conditions.

In a climatenetwork, certainnodesposemore connections thanothers:
a cluster of such nodes functions as hubs or supernodes46. Previous studies

Fig. 2 | An illustration of causal network construction using the CCM algorithm
during a U.S. heatwave event. a The relationship between logCN(ε) and the
neighborhood size ε with different embedding dimension m (ranging from 2 to 15)
(site 1 is shown here for illustration). b The slope values in curve (a) for different
embedding dimension m values at 18 sites (randomly selected from the 520 sites).
The embedding dimension for the reconstruction of phase-space manifold in CCM
is taken as the value of m where the slope plateaus (shown as the red solid line).

c Robustness test of the library size L in the calculation of CCM causality. d The
directed causality network (520 urban sites as nodes) for the heatwave in 2001
(results for other heatwaves can be found in Supplementary Fig. 6). eDistribution of
causality and the threshold chosen (black dotted line) for constructing the adjacency
matrix (0-1 matrix), as shown in f. g An illustration of a directed network structure
(nodes, ingoing, and outgoing links).
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revealed that regions such as Northwest and Southwest behave as drought
hubs that synchronize with others via teleconnections across different
spatial scales, possibly attributable to the upper-tropospheric ridge over the
Rockies and the North Pacific High28. Another study suggested that regions
with high connectivity in the northeast U.S. and the Great Plains exhibit a
high coherence of extreme precipitation37. In addition, causality studies on
the regional scale found that the Ohio Valley region acts as a regional
gateway of long-term heat transfer and moisture transport across the U.S.,
regulated by atmospheric uplifts34,38. For heatwaves, the locations with the
highest centrality are clustered near Lake Michigan and Northeast, while
those with the lowest centrality are mainly concentrated near the coastal
regions of CONUS, including regions in southern U.S. such as Florida and
Southern California27.

Surprisingly, besides the climate conditions associated with high
connectivity of these seven subregions, we find that the urban areas with the
highest values of network metrics within each sub-region are almost coin-
cident with major populous cities (megacities), as shown by the red dot in
each subplot inFigs. 3–5. For example, in Fig. 3, cities such asNewYorkCity
(NY), Chicago (IL), San Jose (CA) are causally connected with others, as
represented by the number of ingoing links (IN number in each subplot)
over 450, suggesting those cities are impactedby about 90%of the 520 urban
sites during the heatwave event. From a network perspective, these large
cities serve as heat sinks during heatwaves. The outgoing links of cities
represented by outdegree in Fig. 4 also show some hubs in those seven
subregions, and large cities such as Detroit (MI), New York City (NY), San
Jose (CA), Portland (OR), Columbus (OH) exert outgoing influence on
approximately 400 other urban areas, acting as heat sources during the
extreme heatwaves. It is worth noting that both ingoing links and outgoing
links come to or from those large cities that contain long-range tele-
connections across large spatial areas of theU.S. Furthermore, we find some

large cities, such asDenver (CO) andPhoenix (AZ) are causally impacted by
many urban areas even when they are “isolated” cities located in less dense
urban clusters (box c and d). The distribution of the PageRank centrality in
Fig. 5 represents the overall importance of cities on regulating heatwave
propagations, and large citieswith high value of PageRank centrality such as
Chicago (IL), Seattle (WA), New York City (NY), San Jose (CA) serving as
pacemakers on propagation of extreme thermal conditions. Similar infor-
mation canbe inferred from the results for other heatwaves (Supplementary
Figures 9-11). These results suggest that the propagation of extreme thermal
conditions among urban areas is likely due to the interplay of synoptic
(climate) conditions with anthropogenic stressors such as emissions of
GHGs and waste heat.

The role of megacities in regulation of heatwaves
Extreme heatwaves can influence building performance and waste heat
discharge in several ways. The waste heat emission in inland and dense
urban districts is more sensitive to extreme events than in coastal or sub-
urban areas47. To further investigate the roles that large cities play in the
extreme heat propagation across the U.S. we choose some of the large cities
(53 in total) with populations over 200,000 according to population totals in
2020 from the U.S. Census Bureau, Population Divisions (See Methods).
Here we adopted two population metrices, viz. the population totals and
density, to represent the extent of human-induced activities in large U.S.
cities. Figure 6 shows the comparison of both population metrics in large
cities, and their correlation with the causality (outdegree) for a selected
heatwave event in 2020.The results in Fig. 6a andFig. 6c suggest thatmost of
those large cities have more than 230 outgoing links to other urban areas,
meaning that they exert influence on more than half of 520 urban sites.
Similar patterns can be observed in other extreme heatwaves (See Supple-
mentary Figures 12 and 14), signifying that large cities are more conducive

Fig. 3 | Indegree of 520 urban sites in causal network during a heatwave event.
Subplots from (a) to (g) are the “hub” cities that show the greatest values of indegree
or ingoing edges (denoted by the gray directed links with ingoing arrows), inlcuding
(a) Seattle, WA, b San Jose, CA, c Denver, CO, d Phoenix, AZ, e Chicago, IL,
fColumbus, OH, and gNewYork, NY. Inset values are for the highest indegree value
(IND) among urban areas for each sub-region ((a)-(g)). Those cities are also
metropolitan areas with large population, such as New York City, Chicago, Seattle,

San Jose. Green nodes in each subplot are the urban areas that are causally connected
with the considered metropolitans (marked by red solid dots), and the gray links
with ingoing arrows indicate where the causal information of heat comes from. A
city with high indegree indicates that it is venerable to extreme thermal conditions
from large number of other urban areas, and it serves as a heat sink experiencing
simultaneous heatwave propagation from others.
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Fig. 4 | Outdegree of 520 urban sites in causal network during a heatwave event.
The seven subregions inlcude (a) Seattle, WA, b San Jose, CA, (c) Denver, CO,
d Phoenix, AZ, e Chicago, IL, f Columbus, OH, and gNew York, NY, same as those
in Fig. 3. The city with the highest outdegree (OUT) is marked by a red dot in each
zoom-in box, where the outgoing edges (denoted by the gray directed links with

outgoing arrows) means the connections that this target large city made to other
urban areas (green nodes) during the extreme heatwave. Those cities are metro-
politan regions with large populations, such as New York City, Portland, and
Detroit. A city with high outdegree indicates that it serves as a heat source simul-
taneously dispersing heatwave to others.

Fig. 5 | PageRank centrality of 520 urban sites in causal network during a
heatwave event. The seven subregions inlcude (a) Seattle, WA, b San Jose, CA,
cDenver, CO, d Phoenix, AZ, eChicago, IL, fColumbus, OH, and gNew York, NY,
same as in Fig. 3 with relatively large values of centrality. Metropolitan regions with

the largest population size in the subregions are also labeled (approximate locations).
The PageRank centrality can be interpreted as a measure to characterize the
importance of 520 urban sites in heatwave spreading in the causal network during a
heatwave event.
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to heat propagation to other (ambient and distant) areas and act as heat
sources during these events. Interestingly, the results in Fig. 6b indicate
positive correlation between the causality and population totals during
many (10 out 12) heatwaves (See Supplementary Figure 13). For the attri-
bution of population density, the results exhibit similar, though apparently
weaker, positive correlation with the causal outdegree in Fig. 6d, than its
counterpart of popular totals in Fig. 6b; both results are statistically sig-
nificant. There are 8 out of 12 heatwaves that show a positive correlation
between population density and causality (See Supplementary Fig. 15). This
is understandable because the population totals havemuch larger variability
among large U.S. cities (Fig. 6a), than the population density (Fig. 6c).
Megacities with huge total population do not necessarily have a higher
population density; an example is that the population density of the New
York city is less than San Jose (Fig. 6d). Hence, the population totals may
better represent the compounding impacts of human activities, such as the
vehicular emission of waste heat whose density is more sensitive to popu-
lation totals than density. Nevertheless, it is caveated that the relationship
between causality and population metrics can be far more complex than a
simple log-linear relationship48. Othermeasures of human activities such as
landuse types (e.g., coverage of paved or vegetated areas) or management
practices (e.g., urban irrigation) have the potential to significantly contribute
to causal interaction with the thermal environment in cities during
heatwaves.

Discussion
Causally interpretable networks of climatology such as precipitation38,
temperature34, ormean sea-level pressure33 facilitate a data-driven approach
to investigate regional atmospheric pathways and gateways. Extreme cli-
matic events are characterized by behaviors distinct from those of long-time

climatology in terms of duration and magnitude, especially at the city-scale
where the anthropogenic activities are concentrated. This work explores the
patterns of urban heatwave propagation through a complex network ana-
lysis combinedwith causal inference.Ourmain finding is that the spreading
of extreme thermal conditions among the urban areas exhibits clear hub-
periphery structures, along with long-distance teleconnections via causal
pathways. A key point is that the topological pattern of the heatwave net-
works is largelymodulated by some city hubs, especially megacities, such as
NewYork City and Chicago. Thosemegacities emerge as pacemakers of the
occurrence of extreme heatwaves. Our study also unravels a positive rela-
tionship between the population and causality during heatwaves. This is
likely due to the concentrated population and the associated extensive
anthropogenic emissions of waste heat and greenhouse gases, such as
increased use of air-conditioning during the heatwaves47 or extensive
anthropogenic emissions of air pollutions24.

Our study quantifies the importance of urban areas across the CONUS
in the propagations of extreme heatwaves. The findings can provide prac-
tical guidelines on extreme heatwave mitigation for urban planners, pol-
icymakers, and stakeholders. For instance, judicious strategies to reduce
extreme heat stress could be implemented based on assessments of how
vulnerable cities are (indegree) and which cities have a greater chance to
potentially exert heat impact on others (outdegree). It has been known that
the characteristics of long-range teleconnections in the climate network
before extreme events can be helpful for the early prediction of climate
drivers such as El Niño event29. As the frequency of extreme ENSO is
projected to increase with GHG concentration49, the long-distance tele-
connections among urban areas uncovered in our study during extreme
heatwaves can provide useful information for predicting extreme events. In
addition, our study offers a new insight to inter-municipal and inter-

Fig. 6 | Comparison of causality (outdegree) with two population metrics for 53
large U.S. cities with a population over 200,000 during the 2020 heatwave event
(July 18-22). a, b For population totals, and c and d are for population density. The
top panel shows comparison maps of the causal outdegree (triangular markers) and

population metrics: population totals in a and population density in (c), with sizes
represented by gray shaded circles. The bottom panel represents the log-log corre-
lation between the causal outdegree and population metrics: population totals in
b and population density in d and causality, with sizes represented by colored circles.
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regional coordination of urban mitigation/adaptation strategies among
different cities for better efficacy of sustainable urban development plans.

To the best of our knowledge, this study is a pioneering attempt to
disentangle the causal mechanism behind extreme heatwaves and attribu-
tion of human impacts on urban heat extremes in theU.S., calling for future
data-driven research endeavors on complex climate systems. For example,
multidimensional measurements including frequency, magnitude, dura-
tion, and spatial extent could be considered to analyze heatwaves40. In
addition, the role of atmospheric moisture can be included to determine
heatwave impacts in urban areas, as humidity is a key variable in the
measure of the human thermal comfort and heat-related morbidity and
mortality41. Recent advances in machine learning techniques exhibit great
potential for future studies of extremeurban heatwaves. For instance, a deep
learning based Graph Neural Network was recently developed to predict
regional extreme heatwaves, in terms of spatial extent and frequency, inU.S.
cities50. Artificial neural networks (ANNs) in combination with complex
network analysis have a great potential to capture the characteristics of the
climate system for better prediction29. The framework proposed here can be
integratedwith deep learning tools for predicting urban heatwaves and their
mechanistic causality.

While our analysis in this study is focused on the historical heatwaves,
the proposed framework of causal network analysis, on the other hand, can
be readily extended to enhance the predictability of future urban heatwaves.
For example, it has been found that the structure of climate networks
exhibits distinct patterns of evolution at the onset of critical transitions in
climate dynamics (with the occurrence of heatwave as a special case), suchas
the increase of network clustering coefficient30. Therefore, by looking into
the temporal variationof causalnetworks constructedusingprojected future
evolution of urban temperatures in CONUS cities, it will enable the detec-
tion of possible occurrence of future heatwave and provide early-warning
signals to such critical events. In addition, utilizing the framework proposed
in thiswork,we can also identify andquantify potential causal drivers for the
occurrence of extreme events, such as atmospheric forcing (e.g., blocking
high pressure systems) and/or natural variability of climate system (e.g.,
ENSO and PDO).

Furthermore, it is also possible to extend the current work to look into
themultiple spatiotemporal extents and scales involved in urban heatwaves
and their dynamic evolutions under different background climate condi-
tions. For instance, heatwaves spreading among arid/semi-arid cities sus-
ceptible to drought conditions likely have distinct and localized causal
relationship with variables such as humidity or soil moisture. It remains
intriguing, albeit challenging, to unravel causal heat-drought interactions in
the context of a changing climate. It is also noteworthy that the causal
network analysis used in this study is scalable, e.g. downscaled to neigh-
borhood or upscaled to global scales, and transferable to urban networks in
Europe or East Asia in the context of diverse urban planning/management
practices. The key challenge that hinders the scalability and transferability of
the proposed framework is the availability of archived urban dataset with
sufficiently fine temporal resolution (to meet the minimum library size for
CCM analysis) and/or adequately large spatial coverage (to render spatially
complete network topology), which remains scarce especially for cities in
developing countries.

Last but not least, the increasingly imperative urban environmental
challenges, of which urban heatwaves are critical players, call for innovative
adaptation strategies to be supported by cooperations among researchers,
policy makers, and stakeholders. Nevertheless, such cooperation and/or
resources for climate mitigation cannot be equally distributed spatially/
temporally among stakeholders from all cities in the networks (such as the
CONUS networks of cities), largely due to economic disparities, political
priorities, and lack of regional and/or intercity agreements. The current
study helps to provide a guidance of prioritizing the climate solutions
temporally (e.g. towards extreme events such as heatwaves) and spatially
(e.g. towards megacities that are hubs or pacemakers), so to optimize the
efficiency and outcome of these solutions.

Methods
Detection of extreme heatwaves
In this study, extremeheatwaves are definedasmajor heatwaves in the study
period with comparatively higher intensity, longer duration, and/or larger
spatial coverage. For detection of extreme heatwave events, daily maximum
temperature data covering 1979-2021 (43 years) are acquired from NOAA
Climate Prediction Center (CPC) https://www.psl.noaa.gov/data/gridded/
data.cpc.globaltemp.html, with 0.5 °× 0.5° spatial grids over the global
domain starting from 1979. The CPC Global Unified Temperature data is
provided by the NOAA PSL, Boulder, Colorado, USA. The dataset is based
on global GTS data gridded using the Shepard algorithm51. In our study, we
focus on the data for the warm season (May-September) over the CONUS.
Heatwaves represent a continuous period of elevated temperature7 and is
defined as a period (at least 3 consecutive days) when the daily maximum
temperature exceeds 99th percentile of the daily maximum during warm
seasons for each year24,27. The 99th percentile is calculated based on the daily
maximum temperature, centered on a 15-day moving window41. This
relative threshold allows for a better representation of the physics behind the
extremes for all locationswith different climate conditions7. This criterion is
applied for each grid during the study period from1979 to 2021, and intense
(with large areal extent) heatwaves across the country are chosen for ana-
lysis. For our analysis, 12 heatwaves during 1998-2021 are selected (Sup-
plementary Figure 1).

Hourly air temperature data for CONUS urban areas
We retrieved hourly air temperature data of 520 urban weather stations
from the Historical Comprehensive Hourly Urban Weather Database
(CHUWD-H).This databasehas hourly air temperature from1998 to2021-
the sameperiod for network analysis of extremeheatwaves in this study. It is
noteworthy that these weather stations constitute a subset of over 900 sta-
tions from the latest release of the National Renewable Energy Laboratory’s
typical meteorological year (TMY3) database, which ensures the quality of
weatherobservations at these stations.Tobequalified for an “urban station”,
the selected stationsmust be located within or nearby (within 55 km) urban
areas. Among the 520 stations, 390 weather stations fall directly within
urbanized areas (with at least 50,000 population) defined by theU.S. Census
Bureau’s Topologically Integrated Geographic Encoding and Referencing
(TIGER) database (https://www2.census.gov/geo/pdfs/maps-data/data/
tiger/tgrshp2010/TGRSHP10.pdf), while 130 weather stations are in close
proximity to these urbanized areas (selected through manual inspection).
The quality controlledhourly air temperature observations at all stations are
retrieved from the Integrated SurfaceDatabase (ISD)52. Post-processing, gap
filling, and quality control processes were then performed following our
previous study. With respect to hourly temperature and its pre-processing
(anomaly) for those 520 urban sites during the detected extreme heatwaves,
we remove the long-term average value for each hour in each urban site to
reduce the effect of seasonal/annual cycles and potential thermal analogue
between adjacency cities on the causality results. The temperature data
(original and anomaly) during heatwave events can be found in Supple-
mentary Figures 2-3.

Causal inference using CCMmethod
For nonlinear dynamic system with weak or moderate coupling, the CCM
method is used to detect causality from time series53, which is based on the
classic Taken’s lag-coordinate embedding theory for reconstructing the
shadowmanifolds of the underlying nonlinear system53–55. A variableXwith
lengthL contains the corresponding time seriesX =X (1),X (2),…,X (L), to
capture the dynamics of X, a manifoldMX needs to be reconstructed from
lagged-coordinate vectors of X to estimate contemporaneous values of Y.
The points in the manifold, denoted by x(t), consists of a set of E-dimen-
sional vectors: x(t) = [X(t), X(t−τ), X(t−2τ), …, X(t−(E−1)τ)] can be
formed for t = 1+ (E−1)τ to t = L, with τ > 0 being the time lag. This set of
vectors represents the reconstructed shadowmanifoldMX. The calculation
of causality in CCM lies in a simplex projection, a nearest-neighbor
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algorithm that involves exponentially weighted distance fromnearby points
on a reconstructed manifold to do kernel density estimation53.

To generate a cross-mapping estimation of Y(t) from information of
MX, denoted as Ŷ tð Þ

�
�MX , we begin with locating the contemporaneous

lagged-vector x(t) onMX and find itsE+ 1 nearest neighbors, and then find
the time indices of those E+ 1 nearest neighbors of x(t), denoted from the
closet to farthest by t1, t2,…, tE+1. Those time indices are used to identify the
neighbors inY to estimateY(t) from a locally weightedmean of the E+ 1 of
Y(ti) values, the cross mapping from X to Y is defined as

Ŷ tð Þ
�
�MX ¼

XEþ1

i¼0

wi tð Þ � Y ti
� � ð1Þ

where wi is a weight based on the distance from its ith nearest neighbor on
MX, and Y(ti) are the contemporaneous values of Y. The weights are
determined by,

wi tð Þ ¼
ui tð Þ

PEþ1
j¼1 uj tð Þ

ð2Þ

with

ui ¼ exp � d x tð Þ; xðtiÞ
� �

d x tð Þ; xðt1Þ
� �

( )

ð3Þ

and d[x(t), x(ti)] is the Euclidean distance between two vectors. If X and Y
are dynamically coupled, the nearest neighbors of MX should identify the
time indices of corresponding nearest neighbors onMY. The predictability
measured by the correlation between the original Y(t) and predicted values
Ŷ tð Þ

�
�MX from cross-mapping estimates, can be used to measure the

directed dynamical influence from Y to X, which is defined as

ρYjMX
¼ E Y tð Þ � μY

� � � Ŷ tð Þ
�
�MX � μŶ

� �� �

σYσŶ
ð4Þ

where E, μ and σ are the statistical expectation, average, and standard
deviation, respectively.

Larger values of ρYjMX
implies a stronger causal influence fromY toX, a

non-positive value of ρYjMX
suggests thatY is not causal toX. Similar process

canbe applied tomeasure a causal influence fromX toY. In this study,X and
Y denote the air temperature (anomaly) during heatwaves for each pair of
cities.

To reconstruct thephase space of theunderlyingdynamical system, the
delay-coordinate embedding algorithm inCCMrequires a proper choice on
the time delay τ and embedding dimension E value56. The method for
choosing the parameters τ and E in our work is the correlation integral and
dimension57–59. The correlation integral CN(ε) is the fraction of pairs of
points on the attractor within a hypersphere of radius ε, it can be evaluated
approximately by

CN εð Þ ¼ 1
NðN � 1Þ

XN

j¼1

XN

i¼jþ1

Θ ε� k xi � xj k
	 


ð5Þ

where N is the number of points inside the time series of X, Θ is the
Heaviside step function, and || xi-xj || is the distance between two vectors.
The correlation dimension D2 is given by

D2 ¼ lim
ε!0

lim
N!1

logCN εð Þ
log ε

ð6Þ

Results of calculations of the correlation integral from the time series of
temperature records during two long-lasting heatwave events for some
urban areas (18 randomly chosen) can be found in Supplementary Figs. 4

and 5. In the main text we present some results in Fig. 2: Slope values of
logCN(ε) versus logε for increasing values of embedding dimension m are
shown in Fig. 2a. The slope increases with the embedding dimension and
reaches a plateau at m greater than 10, justifying E = 10 in CCM causality
analysis, as illustrated in Fig. 2b. To ensure the data lengthor size of libraryL
is sufficient to calculate causality, a sensitivity test for L is performed for two
long-lasting heat wave events (see Supplementary Figs. 4 and 5) and the
results for one case is illustrated in Fig. 2c, where the two different heatwave
events show similar behavior aswith the increase of library size: fluctuations
at the beginning and stable values when L is large enough (around 4.5 days).
All the major heatwaves chosen in this work with more than 4 days can be
used to reconstruct the phase-space manifolds in the CCM method.

Network analysis
A network or graph is a collection of nodes (vertices) joined by edges. The
fundamental mathematical representation of network is the adjacency
matrix45. Since we consider causal interactions in two directions, the net-
works are directed, where each edge has a direction. The adjacencymatrixA
of the directed networks is defined to be the n× nmatrix with elements Aij

such that:

Aij ¼
1if there is an edge fromitoj

0otherwise

�

ð7Þ

In general, the adjacency matrix of a directed network is asymmetric,
since the existence of an edge from i to j does not necessarily imply there is
also an edge from j to i. In a directednetwork, eachnodehas twodegrees: the
indegree is the number of ingoing edges connected to a node and the out-
degree is the number of outgoing edges. The in- and outdegrees of node i can
be written as

kini ¼
Xn

j¼1

Aij ð8Þ

koutj ¼
Xn

i¼1

Aij ð9Þ

wheren is the total numberof nodes in thedirectednetwork.Tomeasure the
importance of nodes in the directed network, we use the PageRank cen-
trality:

xi ¼ α
X

j

Aij

xj
koutj

þ β ð10Þ

For nodes with no outgoing edges, the contribution to the centrality of
any other node is zero. Practically, koutj is set as one or any non-zero value as
Aij is always zero if j has no outgoing edges. The constant term α should be
less than 1 and set to 0.85 in calculations based on experimentation, and β is
set to 145. For the construction of climate network, each urban site is treated
as an individual node of the network (n = 520), and the causal connection
between them represents the edge within the network. The causality by the
CCMmethod is used to construct directed links/edges here: the entity of the
adjacency matrix A is one when the causality strength exceeds a threshold,
and zero otherwise. The determination of the threshold is done using the
distribution of causality in statistics (details in Supplementary Figs. 7 and 8).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The 0.5 °× 0.5° CPC Global Unified Temperature is available from NOAA
Physical Sciences Laboratory (PSL) at https://www.psl.noaa.gov/data/
gridded/data.cpc.globaltemp.html. Boundaries of urban areas are

https://doi.org/10.1038/s42949-024-00148-x Article

npj Urban Sustainability |             (2024) 4:8 8

https://www.psl.noaa.gov/data/gridded/data.cpc.globaltemp.html
https://www.psl.noaa.gov/data/gridded/data.cpc.globaltemp.html


retrieved from the U.S. Census Bureau’s Topologically Integrated Geo-
graphic Encoding and Referencing (TIGER) database available at https://
www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.
html .The population data are obtained from the 100-mWorldPop dataset
available at https://hub.worldpop.org/geodata/summary?id=24863. Popu-
lation density is derived based on population counts and spatial extent of
urban areas.

Code availability
All relevant computer codes are available from the authors upon request.
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