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The paper presents valuable computational findings on how growth feedback affects the perfor-
mance of synthetic gene circuits designed for adaptive responses. By systematically analyzing 
over four hundred circuit topologies, the authors provide solid evidence for their conclusions on 
failure mechanisms and design features that enhance robustness against growth dynamics. While 
the study's significance and rigor are somewhat constrained by its reliance on previously published 
network topologies, these results are highly relevant for advancing the engineering of gene circuits 
in various applications.

Abstract The successful integration of engineered gene circuits into host cells remains a signifi-
cant challenge in synthetic biology due to circuit–host interactions, such as growth feedback, where 
the circuit influences cell growth and vice versa. Understanding the dynamics of circuit failures and 
identifying topologies resilient to growth feedback are crucial for both fundamental and applied 
research. Utilizing transcriptional regulation circuits with adaptation as a paradigm, we systematically 
study more than 400 topological structures and uncover various categories of failures. Three dynam-
ical mechanisms of circuit failures are identified: continuous deformation of the response curve, 
strengthened or induced oscillations, and sudden switching to coexisting attractors. Our extensive 
computations also uncover a scaling law between a circuit robustness measure and the strength of 
growth feedback. Despite the negative effects of growth feedback on the majority of circuit topolo-
gies, we identify several circuits that maintain optimal performance as designed, a feature important 
for applications.

Introduction
In biomedical science and engineering, artificially designed gene circuits are anticipated to play an 
ever-increasing role in disease diagnosis and therapy (Riglar and Silver, 2018; Sedighi et al., 2019; 
Xia et al., 2019). Gene circuits also show great potential in various applications such as microbiome 
modulation (Foo et al., 2017; Lee et al., 2018) and biological containment (Gomaa et al., 2014; 
Caliando and Voigt, 2015). While most gene circuits are designed to function after they are inserted 
or embedded into host cells, the interactions between the circuit and the host environment are gener-
ally extremely complex and can lead to undesired effects that were not present in the original, isolated 
circuit (Tan et al., 2009; Ceroni et al., 2015; Borkowski et al., 2016; Ceroni et al., 2018; Darlington 
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et al., 2018a; Darlington et al., 2018b; Kheir Gouda et al., 2019; Zhang et al., 2021; Zhang et al., 
2020; Melendez-Alvarez et  al., 2021). Understanding the interactions and identifying the circuit 
topological structures that can withstand the interactions and thrive in the host are thus of funda-
mental importance, requiring interdisciplinary efforts among systems and synthetic biology, metabolic 
engineering, nonlinear dynamics, and complex systems.

Typical circuit–host interactions include metabolic burden, cell growth, and resource relocation 
or competition, among which growth feedback is the most common type of circuit–host interac-
tion between the circuit gene expressions and cell growth. More specifically, a synthetic gene circuit 
embedded in a host cell possesses an intrinsic coupling mechanism: the circuit affects cell growth and 
the growth in turn modifies the gene expressions in the circuit (Klumpp et al., 2009; Klumpp and 
Hwa, 2014; Boo et al., 2019; Scott et al., 2010; Ray et al., 2016) – the so-called growth feedback. 
Studies have shown that the growth-mediated feedback can endow a synthetic gene circuit with 
various emergent properties, such as innate growth bistability (Deris et al., 2013). For example, a 
non-cooperative positive autoregulation system, when coupled with growth feedback, gains increased 
effective cooperativity, thereby resulting in bistability (Tan et al., 2009; Nevozhay et al., 2012). In 
another example, toxin cooperativity can be induced in multiple toxin–antitoxin systems by growth-
mediated feedback (Feng et al., 2014). The number of steady states in one gene circuit also depends 
on growth feedback and resource availability (McBride and Del Vecchio, 2020; Melendez-Alvarez 
and Tian, 2022). In general, growth feedback acts to hamper the forward engineering of the circuit 
functions by introducing modes of nonmodularity and reducing the predictability of the circuit compo-
nents in an in vivo context. While various phenomena caused by growth feedback were studied with 
desirable or undesirable effects on the functions of the gene circuits, a systemic picture is lacking on 
what effects growth feedback can have on the gene circuits, including failures.

A recent study has revealed that growth feedback can have drastically different effects on 
congruent circuits with distinct topologies (Zhang et al., 2020). In particular, the dynamical behaviors 
of two bistable synthetic memory circuits were studied: a self-activation switch incorporating positive 
autoregulation and a toggle switch incorporating double-negative regulatory motifs. It was found that 
growth-feedback impacts both circuits but with quite different manifestations. For the toggle switch, 
memory can be retained and the circuit tends to be refractory toward growth feedback. However, for 
the self-activation switch, growth feedback leads to memory loss. While these results indicate that the 
circuit topology can play a significant role in the circuit functions when growth feedback is present, 
they were obtained through two specific circuit topologies. Since a particular function of the gene 
circuit can often be achieved by a finite set of core topologies, it is of fundamental interest to identify 
the most robust topologies in response to growth feedback. The so-identified optimal topologies can 
then be used to construct synthetic gene circuits capable of maintaining the essential functions to 
meet the design goals under the fluctuating growth conditions of the host cell. A systematic study of 
the interplay between the gene circuit topology and growth feedback is needed.

Adaptation is an important and widely studied functionality of gene circuits, which is defined as 
the ability of the system to respond to environmental changes and to return to the basal or near-basal 
state after some time (Knox et al., 1986; Tyson et al., 2003; Friedlander and Brenner, 2009; Ferrell, 
2016). Previously, it was found that certain circuits possess biochemical adaptation (Ma et al., 2009) if 
they contain at least one of the two architectural classes: an incoherent feed-forward loop (IFFL) with 
a proportion node and a negative feedback loop (NFBL) with a buffering node. A number of synthetic 
gene circuits were proposed or constructed to achieve adaptation (Kim et al., 2014; Briat et al., 
2016; Aoki et al., 2019). Quite recently, a design principle for circuits with four genes was uncovered 
for simultaneously achieving noise attenuation and adaptation: the circuit must have a sequential 
assembly structure (Qiao et al., 2019). However, these existing adaptation studies did not include any 
growth-feedback mechanism.

In this paper, we conduct a comprehensive computational study to uncover and understand the 
effects of growth feedback on the gene circuits. Specifically, we focus on a type of transcriptional 
regulation circuit designed for adaptation. There are 425 possible circuit structures (identified by 
previous research; Shi et al., 2017), and we study all of them to simulate and test their response 
under different levels of growth feedback. Altogether, ‍2 × 105‍ sets of circuit parameters are randomly 
sampled for each structure. Our results reveal a vast number of cases where growth feedback has 
a detrimental effect on circuit function (‍1.3 × 105‍ cases in total) with varying response curves and 

https://doi.org/10.7554/eLife.89170


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Kong et al. eLife 2023;12:RP89170. DOI: https://doi.org/10.7554/eLife.89170 � 3 of 43

dynamical behaviors. To gain a more intuitive overall picture, we classify these cases into several 
distinct categories based on the circuits’ dynamic behavior. We then systemically summarize the 
dynamical mechanism behind these growth-induced circuit malfunctions. To quantify circuit adapta-
tion in the presence of growth feedback, we propose a robustness measure that enables us to identify 
an optimal group of circuits that exhibit a high level of robustness against growth feedback, making 
them particularly promising for real-world implementation. The motifs associated with this optimal 
group are found through machine learning. We also obtain a scaling law governing the dependence 
of this measure on the level of growth feedback and provide a mathematical analysis to gain insights 
into the underpinnings of the scaling law. The take-home message is that, in spite of the negative 
effects of growth feedback in the majority of the circuits, there exists a small set of circuits that are still 
able to deliver optimal performance as designed, which is promising for real-world implementation.

Results
A systemic search of functional failures due to growth feedback
Adaptation is referred to as the ability of a gene circuit to respond to changes in input and then to 
return to the pre-stimulus output level, even when the input change persists (Ma et al., 2009). More 
precisely, with an input signal switched from a lower value ‍I1‍ to a higher value ‍I2‍, as demonstrated in 
Figure 1b, a circuit with functional adaptation should have the following response-curve criteria: (1) 
precision – the final state ‍O2‍ should be close to the initial state ‍O1‍, (2) sensitivity – there should be a 
relatively high ‍|Opeak|‍ in response to the change in the input, and (3) the system should reach equi-
librium within a reasonable relaxation time. A three-node gene circuit can achieve adaptation (Ma 
et al., 2009), with one node receiving the input (node A), another node realizing various regulatory 
roles (node B), and a third node outputting the response (node C). A representative circuit topology 
is shown inside the red dashed box in Figure 1a. We restrict our study of the class of transcriptional 
regulatory networks (TRNs) with the AND logic. We fix node A as the input node, and node C as the 
output node.

Previous research identified 425 different three-node TRN network topologies that can achieve 
adaptation in the absence of growth feedback (Shi et al., 2017), providing the base of our compu-
tational study. These topologies can be classified into two families based on the core topology: 
networks with an NFBL and networks with an incoherent IFFL (Shi et al., 2017). More specifically, 
there are 206 network topologies in the NFBL family. All of these NFBL topologies have an NFBL for 
node B. This NFBL can be formed by the loop from node B to A and back to B (such as the circuit 
shown in Figure 1a), by node B to C and back to B, or by a longer route, from node B to A and then 
to C and back to B. There is always a self-activation link from B to B in all these 206 NFBL networks. 
There are 219 network topologies in the IFFL family. All of them have two feed-forward pathways from 
the input node A to the output node C. One pathway goes from node A to C directly, while the other 
involves node B in the middle. One of the pathways is activating while the other one is inhibitory. 
We use these 425 network topologies from the study (Shi et al., 2017), avoiding redundancy with 
established results. Due to the unique focus of our research on the effects of growth feedback and the 
need to evaluate quantitative ratios of robust circuits among all functional ones, we have chosen to 
use a 20-fold increase in the number of random parameter sets for each network topology compared 
to the simulations in Shi et al., 2017. This approach makes it computationally prohibitive to scan all 
possible 16,038 three-node circuits. We carefully follow the settings in Shi et al., 2017, which also 
analyzed TRNs with the AND logic as in this paper. Detailed descriptions of our simulation experi-
ments are provided in the Methods section. To make our results more convincing, we have adopted 
a set of adaptation criteria that are stricter than those used in Shi et al., 2017. Consequently, the 
ratio of adaptive circuits is somewhat lower in our study, with 4 out of the 425 network topologies not 
demonstrating adaptation. The specific structures of these 425 network topologies can be found in 
our GitHub repository (link provided in Data availability).

In our work, we use a parameter ‍kg‍ to control the strength of growth feedback, which is a param-
eter determining the maximal growth rate of the host cells, as mathematically explained in Model 
description. With all the other parameters fixed, a larger ‍kg‍ implies a faster cell growth rate and a 
stronger impact of growth feedback. To investigate the effect of growth feedback on these circuits, 
we systematically simulate the response of the 425 network topologies under a switch in the input 
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Figure 1. Schematic illustration of a synthetic gene circuit embedded in a host cell. (a) A representative three-gene 
circuit (inside the dashed red box) and its dynamical interplay with host-cell growth. Arrows with triangular ends 
and round ends denote activating and inhibiting regulations, respectively. Altogether, there are 16,038 possible 
three-node topologies, with 425 topologies capable of adaptation. (b) An example of the circuit input and output 
signals. The input is an idealized step function of currents ‍I1‍ and ‍I2‍ before and after the jump, respectively. The 

Figure 1 continued on next page
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signal. A three-node gene circuit subject to growth feedback has a large number of parameters, which 
determine the properties of the regulation links within the circuit and the circuit dynamics. For each 
topology, we randomly sample 2 × 105 trials of circuit parameters. Altogether, our study involves 
analyzing approximately ‍8.5 × 107‍ different circuits. We find that among these trials, only about 1.5 
× 105 meet the adaptation criterion in the absence of growth feedback. For these functional trials, 
we vary the growth-feedback parameter ‍kg‍ with a series of values, and find that the majority of trials 
(1.3 × 105 trials, about 87%) lose their adaptation in the interval of ‍kg ∈ (0, 1)‍, while only 13% of trials 
remain functional at ‍kg = 1.0‍.

A systemic classification of functional failures due to growth feedback
An essential step toward understanding the detrimental or even destructive effects of growth feed-
back on circuit functioning is to identify the distinct failure scenarios. Our extensive simulations have 
yielded a comprehensive picture of these scenarios, as shown in Figure 2. Overall, we have identified 
six failure scenarios that encompass more than 99.6% of the ‍1.3 × 105‍ failing cases we collect. The first 
level of classification distinguishes between failures that occur continuously or abruptly as the growth-
feedback strength ‍kg‍ increases. In a continuous failure, the response curve deforms continuously as 

‍kg‍ increases, as exemplified in Figure 2a–c. In an abrupt failure, the response curve exhibits a sudden 
change as ‍kg‍ increases through a critical value, as illustrated in Figure 2d–f. At the next classification 
level, we further divide the failures into three types of continuous failures and three types of abrupt 
failures.

The three types of continuous failures, denoted as types I–III as illustrated in Figure 2a–c, are deter-
mined according to the specific quantitative criteria in the response curve that the circuits violate. 
Type-I continuous failures, as shown in Figure 2a, are associated with the violation of the precision 
criterion. A circuit is deemed as precise if a change in the input signal (e.g., from ‍I1‍ to ‍I2‍) generates 
two opposite dynamical effects in the circuit that cancel each other out after a transient and return the 
final output to the original state, that is ‍O2 ≈ O1‍. For example, in some networks (e.g., the network in 
Figure 1a), an increase in the input signal ‍I ‍ will result in an increase in the concentration of gene ‍A‍ 
and a reduction in the concentration of gene ‍B‍. As both genes regulate the output gene ‍C‍ with the 
respective activation links, for proper system parameter values, the two effects will cancel each other 
out, resulting in ‍O2 ≈ O1‍. Type-I continuous failures constitute the largest failure category among all 
possible circuit topologies, suggesting that the exact cancellation is fragile and the loss of precision is 
the most common dynamical mechanism behind growth-feedback-induced failures.

Our simulations reveal that an exact cancellation between the two opposite sources at ‍kg = 0‍ 
prevents an exact cancellation at any other values of ‍kg‍. That is, the set of circuit parameter values 
leading to perfect precision, in general, depends on the value of ‍kg‍ (see Appendix 5 for more details). 
The implication is that, for fixed circuit parameter values, achieving high precision under growth feed-
back (‍kg > 0‍) is difficult if the circuit is precise in the absence of growth feedback (‍kg = 0‍).

Type-II continuous failures are characterized by a continuous change in the peak of the response 
curve, denoted as ‍Opeak‍, as ‍kg‍ increases, eventually falling below a threshold, as shown in Figure 2b. 
This type of failure can make it challenging for downstream circuits to detect the peak signal, hindering 
information transmission in the larger system. Type-II failures are the second most common type of 
failure observed in our simulations. The occurrence of a high peak in the response curve requires a 
significant transient deviation from the final equilibrium point. In the presence of growth feedback, the 
transient behavior changes, which can further alter the peak height ‍Opeak‍.

Type-III and type-IV failures arise due to growth-feedback-induced oscillations, while type-V and 
type-VI failures are caused by bistability or multistability. To provide a more detailed understanding 
of these different failure scenarios, we discuss the two mechanisms, respectively, in the sections of 
Growth-feedback-induced oscillations and Bistability or multistability.

output signal is a response of the circuit to the step function. The features of the output signal, as characterized 
by three key quantities characterizing the signal: ‍O1‍, ‍O2‍, and ‍Opeak‍, can be used to determine if the circuit has 
succeeded or failed in its intended function.

Figure 1 continued
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Figure 2. Systemic classification of circuit failure scenarios due to growth feedback. This study identifies six computationally detectable categories 
of failures based on the criterion of functional adaptation that the circuit violates as the effect of growth feedback becomes stronger. (a) Type-I and 
(b) type-II failures correspond to the cases where the precision criterion or sensitivity criterion is violated in a continuous fashion as the growth-
feedback strength ‍kg‍ increases, respectively. (c) Type-III and (d) type-IV failures occur when the circuits lose adaptation due to growth-feedback-induced 
oscillation, either continuously or abruptly, as ‍kg‍ increases, respectively. The abrupt changes in type-IV are caused by bifurcations, mostly a saddle-
node bifurcation of cycles or an infinite-period bifurcation. For instance, the case shown in (d) undergoes an infinite-period bifurcation. (e) Type-V and 
(f) type-VI failures are when the circuits lose adaptation due to an abrupt change in ‍O1‍ or ‍O2‍ as ‍kg‍ increases, respectively, which are caused by bistability 
or multistability in the systems. Trials that are not categorized under these six classifications or fall into multiple categories constitute less than 0.4% of 
all cases (see text for more details and discussions about each failure class). The insets around the pie chart provide exemplary response curves of the 
circuits in each failure scenario. Each inset shows the concentration of the output node ‍C‍ versus time with two values of the growth-feedback strength 

‍kg‍, one below and another above the failure threshold, for the specific failure scenario. In each case, the input is switched from state ‍I1‍ to ‍I2‍ at the time 
indicated by the red vertical dashed line.

https://doi.org/10.7554/eLife.89170
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Growth-feedback-induced oscillations
As demonstrated by the light green and yellow slices of the pie chart in Figure 2, a considerable 
portion (17%) of the circuit failures are caused by growth-feedback-induced oscillations. Growth-
feedback perturbations can easily change the system from the adaptive domain to the oscillation 
domain in these cases. Our program classifies oscillation-mediated failures into two categories: contin-
uous (type-III) and discontinuous failures (type-IV). Type-III failures are the results of either (1) a gradual 
increase in the oscillation amplitude or (2) a gradual increase in the transient lifetime of damped oscil-
lations. In the first case, an isolated circuit has already exhibited oscillations with small amplitudes in 
its gene concentrations with relatively weak growth feedback. As the feedback is strengthened with a 
larger value of ‍kg‍, the oscillations are intensified with a larger amplitude, leading to a circuit failure. In 
the second case, there is damped oscillation for small ‍kg‍ with a relatively short transient time before 
approaching an equilibrium. After strengthening the growth feedback, the damping weakens and 
the oscillation’s amplitude cannot be reduced to the threshold within the time limit, as exemplified in 
Figure 2c.

The second category of growth-feedback-induced oscillation is type-IV, where oscillations emerge 
suddenly as the growth-feedback strength increases through a critical point. The sudden emergence 
of oscillations can be caused by a bifurcation or a transition into a basin of a limit-cycle attractor. A 
random sampling of the type-IV failure cases reveals that most of them are caused by either a saddle-
node bifurcation of cycles (Strogatz, 2018) or an infinite-period bifurcation (Strogatz, 2018). In the 
former case, a pair of stable and unstable limit cycles suddenly emerge together. In the latter case, 
when observed from the opposite direction (i.e., with a decreasing ‍kg‍ crossing the threshold), the 
oscillation in the system spends a longer and longer time around a node on the limit cycle. This node 
finally becomes a stable fixed point at the bifurcation point, and the oscillation period approaches 
infinity. One example of type-IV oscillation-mediated failures caused by an infinite-period bifurcation 
is shown in Figure 2d. In our simulations, most of the cases where there are saddle-node bifurcations 
of cycles are categorized as type-III failures because, prior to the bifurcation point, the system can be 
oscillating near the ghost cycle (Strogatz, 2018) for a long time exceeding the criterion for relaxation 

A
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B
C

(b1)
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(b2)

(c2)

(a)

Figure 3. Frequencies of growth-feedback-induced oscillation failures for different network topologies. (a) Significant variations in the proportion 
of trials resulting in circuit failures due to growth-feedback-induced oscillations (types III and IV failures) across distinct network topologies. Some 
topologies exhibit virtually no oscillation-related malfunctions, while others experience about 80% of failures caused by growth-induced oscillations. 
Network topologies containing any oscillation-supporting motifs (discussed in the main text) are represented by red triangles, while the rest are 
shown as blue circles. The majority of red data points have higher fractions of oscillation-related failures compared to the blue ones, mainly due to the 
presence of oscillation-supporting motifs. To reduce fluctuations in the results, only circuit topologies with over 200 failed trials are included. (b1, b2) A 
pair of network topologies that differ by only one link (from node C to B). (c1, c2) The distinct topologies in (b1, b2) leading to different distributions 
of failure mechanisms. The topology in (b1) primarily experiences growth-induced oscillation as the major failure mechanism, while the one in (b2) has 
barely any trials with growth-feedback-induced oscillations.
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time, though that ghost cycle is not an attractor but only a transient in the system. More details on 
these two types of bifurcations in our simulated circuits can be found in Appendix 7.

Our results indicate that for various circuit topologies, the dynamic mechanisms leading to failures 
can differ, resulting in significantly different distributions of failure types among different networks. For 
instance, the fractions of failures caused by growth-induced oscillations can vary dramatically among 
all the topologies, as demonstrated in Figure 3a, where each data point represents a specific network 
topology. The fraction of failures caused by growth-induced oscillations can range from approximately 
zero to about 80%! A particular example of two different networks is presented in Figure 3b1, b2, 
both of which share the same minimal topology required for adaptation (Shi et al., 2017) – the circuit’s 
core function. Despite differing by only one link, the proportions of failures with unique mechanisms 
are quite distinct, as illustrated in Figure 3c1, c2. Notably, for the network in Figure 3b1, almost 
half of the failures result from oscillations, while hardly any oscillation-mediated failures occur for the 
network in Figure 3b2. The explanation is that, although the difference lies in only a single link, this 
link determines whether an oscillation-correlated motif exists within the network. Previously, three 
classes of motifs capable of supporting persistent oscillations were discussed (Novák and Tyson, 
2008), including the ‘delayed negative-feedback loop’ featured in Figure 3b1.

Generally, the circuit dynamics depend sensitively on the structure, but oscillations specifically 
require an NFBL with time delay (Novák and Tyson, 2008). Since there are no explicit time-delayed 
terms in the dynamical equations in our model, one of the two types of motifs – an intermediate node 
in the path of the NFBL or an additional positive feedback loop – is necessary to induce time delay 
(Novák and Tyson, 2008). For network topologies with a high ratio of functional failures caused by 
oscillations, both motifs are observed, especially the former type. For the network in Figure 3b1, the 
three links: A → C, C ‍⊣‍ B, and B → A, together constitute an NFBL, making the circuit more susceptible 
to oscillatory behaviors. For the circuit in Figure 3b2, no such NFBL exists. Figure 3a summarizes the 
total number of failed trials and the ratio of oscillation-induced failures for each network topology. The 
network topologies that contain one of the motifs for oscillation as discussed in Novák and Tyson, 
2008 are marked in red, while the networks that do not consist of any of them are marked in blue. 
Note that all the networks with relatively high ratios of oscillation-induced failures (e.g., ratio >0.2) 
consist of oscillation-correlated motifs. Details about these oscillation-correlated motifs are discussed 
in Appendix 6.

We conclude that, for a network with an oscillation-correlated motif, even if it is functional at some 
parameter values, the potential of oscillatory behaviors can be triggered by growth feedback. As a 
result, networks without these motifs can be safer choices to avoid too many failures cases due to 
oscillations. Note that this relationship is not deterministic. As shown in Figure 3, even the networks 
represented by blue dots that have no oscillation-correlated motifs can still have oscillation-induced 
failures (with small ratios). The complexity of the scenario makes it challenging to find general and 
relatively simple rules that connect circuit topology to the circuit’s robustness.

Bistability or multistability
In this section, we describe the dynamical mechanisms behind type-V and type-VI failures, which in 
total take up about 14% of all the circuit failures. These failures are abrupt, meaning that the response 
curve undergoes an abrupt change at a certain critical value of ‍kg‍ from a desirable curve of adaptation. 
Type-V and type-VI failures correspond to an abrupt change in ‍O1‍ and ‍O2‍, respectively. Both types of 
failures are closely related to bistability or multistability.

Bistability and multistability are common phenomena in nonlinear systems. Bistability refers to 
the situations where two stable attractors coexist in the phase space simultaneously. Multistability 
describes a similar coexisting phenomenon of attractors, but with more than two attractors. With 
bistability or multistability in the target dynamical system, the system trajectory may end up in any 
one of these stable attractors, depending on the initial state of the system evolution. The entire 
phase space can thus be separated into two or more basins of attraction. Each basin of attraction 
corresponds to an attractor and consists of all the initial states that eventually lead the system to the 
attractor. The boundary boundaries separate two different basins of attraction. A close pair of initial 
states but at different sides of a basin boundary lead the system to different attractors.

In our simulations, we observe bistability in most of the circuit topologies (377 out of 425 circuit 
topologies). While multistability has also been observed, it is relatively rare. Considering that both 

https://doi.org/10.7554/eLife.89170
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bistability and multistability impact the circuits similarly, our subsequent discussions will primarily 
focus on bistability, which can be straightforwardly extended to multistability. It is highly unusual for 
both attracting basins to exhibit the desired functional behavior simultaneously. This is because they 
are located in different regions of the system phase space, and accommodating both would impose 
overly stringent constraints on the circuit. After all, having one basin functional is already rare enough 
with a random sampling of circuit parameters. As a result, functional adaptation is typically found in 
only one of the basins, with adaptation being lost in the other, and the circuit is functional only locally 
in its phase space, rather than on a global scale. A drifting system parameter, such as ‍kg‍, can alter the 
dynamics of the gene circuit. In a situation with bistability, such a change in the system dynamics can 
modify the shape and position of the basin of attraction and the basin boundary. Consider an initial 
state close to a basin boundary. With the deformation caused by a drifting parameter, the boundary 
may shift across the initial state, leading to a sudden switching of the system’s final attractor. If the 
basin before the parameter change is functional and the basin after is not, this leads to a growth-
feedback-induced failure. The crossing of the basin boundary dictates that the system’s final state 
will abruptly change from one attractor to another. This type of failure can be classified as a switching 
type of failure.

An example of bistability-related failures is shown in Figure 2e, where in the upper panel, the 
circuit enters into the functional region after an initial transient. In the lower panel, the circuit enters 
into another region that does not have adaptability, and the circuit does not respond to the switching 
of the input signal. Figure 4a, b illustrates how the basin structure of the circuit changes significantly 
with different values of ‍kg‍. The functional basin is in yellow and it shrinks greatly with an increasing ‍kg‍. 
Note that the phase space is four-dimensional, so only a two-dimensional slice is shown. For a bista-
bility/multistability-induced type-V failure where ‍O1‍ is switched, the boundary of the functional basin 
crosses the initial state. For a type-VI failure, the simultaneous movement of both ‍O1‍ and the basin 
boundary under input ‍I2‍ results in ‍O1‍ crossing the basin boundary of ‍O2‍ states.

One might expect bifurcations to play an important role in many type-V and type-VI failures. 
However, in our simulations, failures precisely at the bifurcation point are not observed. This is because 
the bifurcation points under consideration, such as fold bifurcations, are where one of the attraction 
basins diminishes to zero. For a failure to occur exactly at the bifurcation point, the initial condition 
would need to coincide precisely with the infinitesimally small basin just before it vanishes. More 
realistically, failures almost always largely precede the exact bifurcation point. They happen while 
the basin is still contracting and the basin boundary crosses the initial condition or ‍O1‍. An example is 
shown in Figure 1b, where bistability persists, yet the lighter orange basin with a larger ‍O1(C)‍ cannot 
be reached as the boundary shifts away from the initial condition ‍A0‍ and ‍B0‍. As another example, in 
Figure 1c from a different circuit, the higher ‍O2(C)‍ state disappears at ‍kg ≈ 0.012‍ and switches to a 
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Figure 4. Bistability behind both the type-V and type-VI failures. (a, b) Basin structure of the circuit shown in Figure 2e (with type-V failure) for input 

‍I1‍ with different levels of growth feedback, for growth-feedback strength ‍kg = 0.05‍ (weak) and ‍kg = 0.97‍ (relatively strong). The coordinates ‍A0‍ and 

‍B0‍ are the initial values of nodes A and B, respectively, corresponding to a two-dimensional slice of the entire four-dimensional phase space by fixing 
‍C = 0.1‍ and ‍N = 10−3‍. The color bar indicates the equilibrium value of node C before the input switch, which is ‍O1(C)‍. There is bistability in both 
cases, as there are two basins of attraction. The yellow region is the functional basin that has adaptation, while the blue region is a non-functional basin 
without adaptation. The relative size of the blue non-functional region with larger ‍kg‍ in this case is significantly larger and includes the initial state of 
the system (‍A0 = B0 = 0.1‍), causing a type-V circuit failure. (c) Diagram of ‍O2(C)‍ from the circuit in Figure 2f with a type-VI failure. Prior to a threshold 
value of ‍kg ≈ 0.012‍, one higher stable value of ‍O2(C)‍ exists. After this threshold, the state suddenly switches to a lower ‍O2(C)‍ one. Note that this 
abrupt change is not caused by a bifurcation. Instead, it is caused by ‍O1‍ continuously changing with respect to ‍kg‍ crossing a basin boundary of ‍O2‍.

https://doi.org/10.7554/eLife.89170
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lower ‍O2(C)‍, but this point is not a bifurcation. It is the point where the stable ‍O1‍ continuously crosses 
the basin boundary of ‍O2‍.

Circuit robustness and optimal topology
To quantify a circuit’s robustness against growth feedback, we introduce two metrics: ‍Q‍-value and 
‍R‍-value. We track the number of remaining functional trials for each network for various ‍kg‍ values 
(starting from ‍kg = 0‍), denoted as ‍Q(kg)‍. This measure extends the concept of ‍Q‍-values in Ma et al., 
2009 by accommodating non-zero values of ‍kg‍. To characterize the circuit robustness, we define 
the survival ratio ‍R(kg)‍ as ‍R(kg = k) = Q(kg = k)/Q(kg = 0)‍. This ratio represents the fraction of random 
circuit realizations that maintain functionality under growth feedback with a strength of ‍kg‍.

Note that each ‍Q(kg)‍ or ‍R(kg)‍ is defined for a specific network topology in a suitable parameter 
space. A high value of ‍R(kg)‍ indicates that a large fraction of the randomly sampled circuit parameters 
is functional despite cell growth with any strength no larger than ‍kg‍, indicating that the topology is 
more robust against growth feedback. Because of the detrimental effects of growth feedback, ‍R(kg)‍ 
decreases monotonically with respect to ‍kg‍.

To justify the utility of ‍R(kg)‍, we test the circuit topologies employed in a previous work (Zhang 
et al., 2020), where two relatively simple network topologies were used for a comparison study in 
terms of their ability to resist growth feedback and remain functional. Our evaluation of ‍R(kg)‍ for the 
two topologies has yielded results that are consistent with those in Zhang et al., 2020, as discussed 
in Appendix 2. To illustrate our results in a concrete way, we set ‍kg = 0.6‍ and calculate the ratio 

‍R(kg = 0.6)‍ for different network topologies.
Our computations have revealed a set of eight circuit topologies with optimal performance as 

characterized by high values of both ‍Q(kg = 0)‍ and ‍R(kg)‍, as indicated by the set of orange points in 
Figure 5a. The optimal circuits form a family as their topologies exhibit a high level of similarity with 
one other. In particular, all eight circuits in this family share a common set of links (motif), as shown 
in Figure 5b. The combination of these common links is one of the minimal topologies with perfect 
adaptation in a three regulatory logic (Shi et al., 2017) and is critical for the circuit to be functionally 
adaptable. The only difference among the circuits in this family is the links from node C. While an 
inhibition link from node C can be important to achieving a value of ‍R(kg)‍, as discussed below, the 
eight optimal circuit topologies do not contain any such inhibition link from node C. The role of this 
particular link will be further studied in our analysis of the results in Figure 6. This also explains why 
the family has eight members, as follows. Each link from C has two options: either the link does not 
appear, or it appears as an activation link. As there are three possible links from C (C to A, C to B, and 
C to C), there are altogether eight (23) topologies within this optimal family, according to the simula-
tion results in Figure 5.

(a)

A

B
C

(b)

Figure 5. A family of circuit topologies with optimal performance. The circuits both have a large volume of the functional region in the parameter space 
in the absence of growth feedback as characterized by a large value of ‍Q(kg = 0)‍ and are robust against growth feedback with a high value of ‍R(kg)‍. 
(a) Values of ‍Q(kg = 0)‍ and ‍R(kg = 0.6)‍ from all the 425 network topologies, where each data point corresponds to a topology. The family of optimal 
topologies is represented by the orange data points, including eight network topologies. (b) The set of links (motif) shared by this family of circuits. The 
combination of these links is also one of the minimal topologies with perfect adaptation in three regulatory logic (Shi et al., 2017).

https://doi.org/10.7554/eLife.89170
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How can we quickly determine if a three-gene regulatory network with a given topology can be 
robust against growth feedback? Is there any structural feature of the circuit that can be used to 
estimate if a high value of ‍R(kg)‍ can be achieved? To gain insights, we observe that the histogram in 
Figure 6b has three peaks about low, moderate, and relatively high values of ‍R‍, respectively. Compu-
tations reveal certain ‘shared topological similarity’ (or motif) within each peak. Thus, each peak corre-
sponds to a group of similar network topologies that simultaneously have a similar level of ‍R‍. This 
observation suggests a correlation between the network topology and robustness against growth 
feedback. For convenience, we refer to these three groups of networks by the colors presented in 
Figure 6. For instance, the group with the highest ‍R‍ the green triangles in Figure 6a, d is called the 
green group, and the group with the lowest ‍R‍ (the red diamonds in Figure 6a, d) is the red group.

To better distinguish the three groups, we introduce two binary variables, ‍B1‍ and ‍B2‍. For each 
network, ‍B1 = 1‍ if the network contains the motif in Figure  6c, and ‍B1 = 0‍ otherwise. Then, for 
each network, an additional binary variable is set to be ‍B2 = 1‍ if there is an inhibition link from the 

A

B C

(c)

(e)
1
0
-1
1
…
0
1

(f)

(a) (b)

(d)

Figure 6. Strong correlation between circuit robustness against growth feedback and circuit topology. There are three groups of circuits, each 
displaying strong topological similarities within, exhibit distinct levels of robustness against growth feedback as measured by the characterizing quantity 
‍R‍. (a) Robustness measure ‍R(kg = 0.6)‍ versus ‍Q(kg = 0)‍ for all 425 network topologies. Circuits are color/shape-coded into three groups (green 
triangles, blue circles, and red diamonds) based on the rules defined in the text. The three groups of topologies display distinct levels of ‍R(kg = 0.6)‍ 
values, signifying a strong correlation between circuit robustness and topology. Only circuits with ‍Q(kg = 0) > 300‍ are shown to reduce fluctuations 
arising from random parameter sampling. What is demonstrated is the case of an intermediate level of growth feedback with ‍kg = 0.6‍ (a different 
value of ‍kg‍ has no significant effect on the results – see Figure 7). The topologies associated with the green triangles have a high level of robustness, 
which can be regarded as an optimal group and is more prevalent than the optimal group identified in Figure 5. (b) Histogram of ‍R(kg = 0.6)‍ the 
same color legends as in (a). Three distinct peaks emerge, each associated with a group of circuit topologies. (c) The shared network motif among all 
networks in the green group, which is highly correlated with the optimal minimal network shown in Figure 5(b), but without the link B ‍→‍ B, which is 
necessary for the negative feedback loop (NFBL) family of networks to have adaptation (Shi et al., 2017). (d) Effects of burden ‍b‍ for the three groups 
of networks, where the abscissa is the effective term of burden in the formula of growth rate Equation 12. The circuits in the red group have larger 
values of ‍1/(1 + ⟨b⟩)‍, suggesting that a heavier burden yields a stronger effect of the growth feedback for the red group. (e) A multilayer perceptron 
(MLP) for identifying the crucial connections that determine the robustness of the circuits. The circuit topology serves as the input, where 1, 0, and 
–1 represent activation, null, and inhibition links, respectively. The output is a predicted robustness measure, denoted as ‍̂R‍. To encourage the neural 
network to select as few links as possible for predicting ‍̂R‍, a l–1 regularization term, ‍β||Win||‍, is incorporated into the loss function alongside the 
fidelity error ‍||R̂ − R||‍. As a result, the feed-forward process eliminates information about the links that have little impact on circuit robustness since 
the corresponding ‍Win‍ entries automatically optimize to values close to zero. (f) Results from an ensemble of 50 MLPs, each trained with distinct initial 
values. Shown is the average importance of each of the nine links, which is determined by the weights in ‍Win‍ – see Appendix 8. The top four links with 
the highest importance correspond to the four links used to classify the three peaks in panel (b).

https://doi.org/10.7554/eLife.89170
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output node C, and ‍B2 = 0‍ otherwise. We find that a linear combination of the two binary variables, 

‍BS = B1 − B2‍, can characterize the circuit topology and robustness against growth feedback. In partic-
ular, the three possible cases ‍BS = 0, 1,‍ or –1 correspond to the three peaks in Figure 6b. This result 
suggests that the motif shown in Figure 6c is beneficial for robustness, while an inhibition link from the 
output node C is detrimental. It is the balancing act of these two factors that determines the overall 
circuit robustness.

The discovery of this three-peak structure and the corresponding topological similarity within each 
peak is facilitated with the use of machine learning. In particular, we consider a simple type of artificial 
neural network called multilayer perceptron (MLP), where we train it to predict the ‍R‍ value from the 
input of the network topology through a small hidden layer with only two nodes, as demonstrated in 
Figure 6e. This bottleneck structure in the hidden layer plus the ‍l‍–1 regularization imposed on the 
input matrix ‍Win‍ forces the MLP to extract low-dimensional features from the input topology to esti-
mate ‍R‍. In our tests, the MLP designed this way automatically assigns different levels of weights to the 
input information of different links. Over an ensemble of 50 MLPs trained with different random initial 
values, the ranking of average importance is shown in Figure 6f. The top four links are the four links 
used to categorize the three peaks.

The results in Figure 6 is for ‍kg = 0.6‍. However, we find that different values of ‍kg‍ lead to essentially 
the same ranking of ‍R(kg)‍ among the circuit topologies, as illustrated in Figure 7.

Three remarks on our categorizing rules based on the two extracted featured motifs are in order.
First, the shared motif for the green group is strikingly similar to the optimal minimal network in 

Figure 5b (the orange group). The sole distinction lies in the self-activation link of node B. This specific 
link plays a crucial role. Every network in the NFBL family depends on this link to achieve adaptation 
(Shi et al., 2017). However, for circuits within the IFFL family, this link is not a necessity for adaptivity. 
Missing this link makes the motif in Figure 6c no longer a minimal network for adaptation, and a 
circuit containing this motif may either belong to the NFBL or the IFFL family. We have thus identified 
two optimal groups: the green group with optimal robustness ‍R‍ and the orange group with both the 
optimal robustness ‍R‍ and the largest functional volume ‍Q(kg = 0)‍ in the absence of growth feedback. 
The orange group is a subset of the green group, with an additional requirement for ‍Q(kg = 0)‍.

Second, the shared motif for the red group is also exactly the group of all circuits containing 
an inhibition link from node C to B, denoted as C ‍⊣‍ B. These two different definitions are in fact 
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Figure 7. Robustness of the circuit division into three groups subject to different levels of growth feedback. From the top to the bottom, the four rows 
are for ‍kg = 0.2‍, ‍kg = 0.4‍, ‍kg = 0.6‍, and ‍kg = 0.8‍, respectively. The legends are the same as in Figure 6a, b. For different levels of growth feedback, 
the distribution of the robustness measure exhibits three distinct peaks that occur at approximately the same locations on the ‍R‍ axis. The implication is 
that the division of the circuit topologies into three groups in terms of the robustness measure can be revealed by examining the circuit functions at a 
single value of the growth-feedback strength.

https://doi.org/10.7554/eLife.89170
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equivalent: all networks with ‍Q(kg = 0) > 300‍ that contain C ‍⊣‍ A or C ‍⊣‍ C also contain the motif in 
Figure 6c, yielding ‍BS = 0‍, and belong to the blue group.

Third, the three circuit groups in Figure 6 are not correlated with the categories used in previous 
research on circuit functionalities without growth feedback (Ma et al., 2009; Shi et al., 2017). These 
studies classified adaptive networks into NFBL and IFFL families. Each family contains a few minimal 
topologies with or without some additional other motifs, and the two families have distinct minimal 
functional topologies. The minimal topology acts as the backbone for supporting circuit functionality. 
We find that, when growth feedback is present, the prior classification scheme and the underlying 
minimal topologies become less relevant. Circuits belonging to the NFBL family are spread across all 
three levels of ‍R(kg)‍ in Figure 6b, as are the circuits from the IFFL family. A robust circuit can be part 
of either family, just as a fragile circuit can belong to both. We give that: (1) the topological motifs 
determining circuit functionality robustness and (2) the motifs deciding whether a circuit belongs to 
the NFBL or IFFL family are independent. To quantify this irrelevance, we calculate the point bise-
rial correlation between ‍R(kg = 0.6)‍ and a binary variable determining the family to which the circuit 
belongs. The resulting correlation is merely 0.1, suggesting hardly any correlations. A further illustra-
tion and quantification of this irrelevance can be found in Appendix 4.

What are the reason and mechanism behind the phenomenological set of circuit categories? Espe-
cially, it is desired to understand why the shared motif for the green group is beneficial for circuit 
robustness, and why the shared motif for the red group is harmful for robustness. It is challenging 
to find straightforward explanations given the complexity of the problem (see Discussion section). 
Certain insights are as follows. We find that the average node concentrations at the equilibrium for 
the network topologies in the red group are consistently smaller than those in the blue group. This 
difference is reflected in the value of burdens ‍b‍. In particular, according to Equation 12, the cell 
growth rate is proportional to the term ‍1/(1 + b)‍ under the same level of growth feedback. Figure 6d 
shows the average burden ‍⟨b⟩‍ for each network topology, demonstrating that the values of the term 

‍1/(1 + ⟨b⟩)‍ for the circuits in the red group are larger than the values in the blue group. As a result, 
for the same value of ‍kg‍, the growth feedback effectively received by the circuits in the red group is 
stronger than that of the blue group circuits. Further support is provided by the results from the limit 
‍J → ∞‍ (Appendix 3). In this limit, the burden ‍b‍ does not affect the strength of the growth feedback. 
As a result, the ‍R‍ values of the red group significantly overlap with those of the blue group, suggesting 
that the distinctively low values of ‍R‍ for the red group be a result of the burden with finite ‍J ‍. We also 
find that the existence of the shared motif for the red group has a stronger correlation to the motif 
necessary for growth-feedback-induced oscillations. All circuits with oscillation type of failures taking 
up more than 20% of failures belong to the red group. This correlation can result in further fragility of 
the red group circuits.

Scaling law quantifying the effect of growth feedback on gene circuits
A comprehensive way to understand the effects of growth feedback on gene circuits is through 
scaling laws, an approach commonly employed in statistical and nonlinear physics. Does a scaling law 
exist that characterizes quantitatively how growth feedback affects the circuit functioning? Through 
a systematic computational analysis of the circuit robustness, we have uncovered a scaling law that 
governs how the robustness measure ‍R(kg)‍ deteriorates as growth feedback is strengthened, as shown 
in Figure 8, where the blue curve is the result averaging over all the 425 network topologies. The 
three other curves represent circuit topologies that have a relatively high, moderate, and low value ‍R‍ 
among the 425 topologies tested, to demonstrate that this scaling behavior is generic. These three 
topologies are the highest ‍Q(kg = 0)‍ topology in each of the three groups shown in Figures 6 and 7. 
As growth feedback is strengthened, the number of circuit topologies that can maintain functioning 
decreases (or, equivalently, the number of failed circuits increases). The decreasing behavior of ‍R(kg)‍ 
with ‍kg‍ tends to be slower than exponential [e.g., ‍exp(−βkg)‍ with ‍β > 0‍ being a constant].

A general theoretical argument for the scaling law is unavailable. However, if we simplify the system 
by setting the parameter ‍J ‍ in Equation 12 to be large so the burden ‍b(t)‍ is much smaller than one, we 
are able to argue that the scaling law is approximately given by

	﻿‍ R(kg) ∼ exp(−βkλg ),‍� (1)

https://doi.org/10.7554/eLife.89170
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Figure 8. Scaling law governing the circuit robustness measure ‍R(kg)‍. The blue curve is the average result of all the 425 network topologies. The other 
three curves represent circuits with different robustness levels: high (Circuit No. 98), moderate (Circuit No. 3), and low (Circuit No. 28) values of ‍R‍, to 
demonstrate that this scaling behavior is generic. Each of these three circuit topologies is selected from one of the three groups illustrated in Figures 6 
and 7, and they have the highest ‍Q(kg = 0)‍ value within their respective groups.
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where ‍β > 0‍ and ‍0 < λ < 1‍ are two specific constants that depend on the network topology, and the 
typical value of ‍λ‍ is about 0.6. The exponential scaling is assumed, given its memorylessness. That is, 
there is no special zero point of ‍kg‍, for the reason that a certain level of ‍kg‍ is mathematically equivalent 
to a larger ‍dx‍, as discussed below.

The quantity ‍R(kg)‍ is a simple and straightforward measure characterizing the detrimental effect of 
growth feedback on gene circuits. We carry out a semi-quantitative analysis of this quantity and the 
effect of ‍kg‍ on it. The circuit dynamical equations, Equations 9–12 can be simplified by substituting 
Equation 14 into them to cancel the ‍dN/dt‍ terms, leading to

	﻿‍

dA
dt

= vA
InIA

InIA + KnIA
IA

− (dA + kg
1

1 + b
)A,

‍�
(2)

	﻿‍

dB
dt

= vB
AnAB

AnAB + KnAB
AB

− (dB + kg
1

1 + b
)B,

‍�
(3)

	﻿‍

dC
dt

= vC
AnAC

AnAC + KnAC
AC

KnBC
BC

BnBC + KnBC
BC

− (dC + kg
1

1 + b
)C.

‍�

(4)

Compared with the equations without growth feedback Equations 6–8, we see that introducing 
growth feedback is equivalent to adding a variable ‍kg/(1 + b)‍ to the degradation terms for each node. 
Intuitively, the value ‍Q‍ of a network topology measures the volume of the functional region ‍M‍ in the 
parameter space, which is also a function of ‍kg‍. We thus have that ‍R(kg = k)‍ is the volume of the inter-
section between ‍M(kg = k)‍ and ‍M(kg = 0)‍ divided by the volume of ‍M(kg = 0)‍:

	﻿‍

R(kg = k)

= V(M(kg = k) ∩M(kg = 0))/V(M(kg = 0)),‍�
(5)

where ‍V(M)‍ is the volume of ‍M‍.
The picture can be further simplified if we assume the burden ‍b‍ is approximately a constant within a 

range of ‍kg‍. Since growth feedback contributes to an additional term in degradation ‍dx‍, strengthening 
the feedback is equivalent to increasing all three quantities ‍dx‍ together. Consequently, as ‍kg‍ increases, 
the high dimensional region ‍M ‍ does not deform, but simply translates in the negative direction in all 
dimensions of degradation ‍dx‍ in the parameter space. That is, as growth feedback becomes stronger, 
it becomes more difficult for the circuit to maintain it functioning.

Discussion
When a synthetic gene circuit is introduced into a host cell, an inherent coupling arises wherein the 
gene circuit affects cell growth and cell growth in turn alters the circuit gene expression (Klumpp 
et al., 2009; Klumpp and Hwa, 2014). Due to the fundamental nonlinearity in the gene network and 
in the cell growth dynamics, the interaction is generally quite complicated. To understand this inter-
action so as to identify the circuit topologies that can withstand the interaction and maintaining the 
intended circuit functions is one of the most challenging problems in synthetic biology.

Previous studies showed that growth-mediated feedback can endow synthetic gene circuits with 
various emergent properties. In general, growth feedback tends to negatively impact the intended 
function the circuit is designed for. There was preliminary evidence that the effects of growth feed-
back depend strongly on the circuit topology (Zhang et al., 2020). For a particular circuit function, 
while the vast majority of the topologies would fall under growth feedback, a handful still exists that 
is adaptable to maintain its designed functions.

Identifying the ‘optimal’ topologies that are most robust against growth feedback is fundamental 
to constructing synthetic gene circuits that can survive, adapt, and function as designed in the fluctu-
ating growth environment of the host cells.

The main contribution of this paper is a systematic computational study of three-gene circuits with 
adaptation to uncover and understand the detrimental effects of growth feedback on gene circuits 
and to identify optimal groups of topologies. Without growth feedback, there are 425 possible 

https://doi.org/10.7554/eLife.89170
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topologies with functional adaptation. A vast majority of these circuit topologies fail in their functions 
under growth feedback, and our computations have revealed, for the first time, six distinct main 
failure categories covering more than 99% of the cases. From a dynamical point of view, there are 
three mechanisms by which growth feedback can deprive the circuit of its ability to adapt: (1) contin-
uous deformation of the response curve, (2) strengthened or induced oscillations, and (3) sudden 
switching to coexisting attractors (also summarized in Box 1). By introducing a robustness measure 
to quantify circuit adaptation in the presence of growth feedback, we uncover a general scaling law 
characterizing the detrimental effect of growth feedback on the circuit functioning in a quantitative 
manner. We identify an optimal group of circuits with high robustness and key subsets of links associ-
ated with this group that play a critical role in sustaining circuit function in host cells. Taken together, 
to design a functional gene circuit, growth feedback must be taken into account, as the same circuit 
designed with perfect functions without the feedback can behave quite differently when the feedback 
is present. Our study has provided unprecedentedly quantitative insights into the interplay between 
gene circuit topology and growth feedback, unlocking the dynamical mechanism of growth-induced 
failures and providing guidance to better design practically applicable synthetic gene circuits.

A unique finding is that growth feedback can induce or strengthen oscillations in gene circuits 
designed for adaptation. Such oscillations can often destroy the circuit functionality. In a recent 
experimental study, a similar phenomenon was observed in gene circuits designed for self-activation 
(Melendez-Alvarez et  al., 2021). These results suggest that growth-feedback-induced oscillation 
may be a general dynamical mechanism that can negatively affect the robustness of gene circuits. In 
addition, our study has shown that growth feedback has a highly sensitive dependence on the circuit 
topology: even a small structural differences between two circuits designed for the same function can 
result in drastically different outcomes under growth feedback. For example, Figure 3 demonstrates 
that a link critical for an oscillation-supporting motif can significantly affect the robustness of the 
circuit against growth feedback. It can thus be quite useful to identify failure-related motifs so that 
they can be avoided when designing a gene circuit.

From a broad point of view, our study has yielded basic insights into the fundamental topology–
function relationships in gene circuits. Examples include how circuit topology affects circuit robustness 

Box 1. Three classes of growth-induced failures.

All the failures we observed can be categorized into the following three general classes, 
applicable to both the three- and four-gene circuits we tested:
Continuous deformation of the response curve
Typically, we require a specific range of response curve shapes for a gene circuit, such as 
a peak in the output with a minimum height or duration. In a failure caused by continuous 
deformation, the growth feedback prompts a gradual change that crosses the boundary of 
these criteria for response curve shapes.
Growth-induced or growth-strengthened oscillations
Growth feedback can induce oscillations in a circuit through various types of bifurcations or 
amplify existing oscillatory behavior with longer relaxation times or larger amplitudes. A circuit 
experiencing growth-induced or growth-strengthened oscillations cannot reach a relatively 
steady state (an equilibrium or relatively small oscillations) within a finite time or reasonable 
relaxation period.
Growth-induced switching among coexisting attractors
When coexisting attractors are present in the circuit dynamics, such as bistability or 
multistability, the circuit typically only functions with one of the attractors. In other words, the 
circuit is functional locally in its phase space rather than globally. Strengthened growth can 
push the system across the boundary of different attracting basins in the circuit phase space, 
causing the circuit to lose its desired functionality by switching from a functional basin to a 
malfunctioning basin.

https://doi.org/10.7554/eLife.89170
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against growth feedback and whether a circuit topology contains motifs supporting a specific type of 
growth-induced failure, such as oscillation-related malfunctions. However, searching for and under-
standing the interplay between circuit topology and dynamical behaviors remain to be a challenge, 
for the following five reasons.

First, the two relevant questions are whether a circuit topology supports adaptation and whether 
the circuit is robust against growth feedback or is susceptible to a specific type of growth-induced 
failures. While our study focused on the latter, the former is important. Addressing both questions to 
identify and analyze all possible scenarios is infeasible at the present, due to the complex parameter 
space of the circuits. To make our study feasible, we focused on the cases where the circuit satisfies all 
the requirements for adaptation in the absence of growth feedback. These cases may occupy a small 
region in the entire parameter space of the circuit. For each circuit topology, the uncovered function 
failures due to growth feedback are thus limited to relatively small parameter regions. Second, most 
network topologies studied have dense connections among the three nodes (only about 20% of the 
networks have fewer than six connections). As a result, different motifs can overlap with each other, 
blocking or enhancing the function of each other. The dense connections thus pose a difficulty in 
identifying the motifs accurately. Third, for a particular class of failures, competition among different 
failure types may arise. For instance, a circuit with oscillation-supporting motifs may not have a high 
fraction of oscillation-induced failures because it also contains the motif for bistability, leading to a 
large fraction of failures due to the bistability-induced malfunctions. Fourth, due to the necessity to 
set a threshold in the relaxation time, transient behaviors can arise. In many failure cases caused by 
oscillations, the oscillatory behavior is not stable and the circuit will eventually approach a fixed point. 
However, time scales should be taken into account. The transient behaviors can make the network 
topologies without the necessary motif for sustained oscillations exhibit oscillation-induced failures. 
Fifth, growth feedback acts as additional feedback loops within the circuit, potentially complicating 
the circuit dynamics and adding more links to the circuit topology. These extra links in the integrated 
topology might give rise to an oscillation-related motif. However, our simulations have shown that 
the impact of this additional oscillation motif, introduced by growth feedback, tends to be weak 
(Appendix 3).

Although the primary focus of this paper is on how growth feedback can undermine an originally 
adaptive circuit and how to design circuits that are robust against such feedback, our simulated dataset 
reveals instances where growth feedback can benefit the circuit within certain ranges. Specifically, we 
identified 2092 circuits across 306 different topologies where adaption, lost at an intermediate level 
of growth feedback, is restored at higher levels. This is 1.4% of all circuits tested. We anticipate that 
additional circuits exhibiting this loss-and-recovery behavior exist, as our sampling of six discrete 
levels of ‍kg‍ (0, 0.2, 0.4, 0.6, 0.8, 1.0) might have overlooked numerous cases. This result again suggests 
the possible advantages of growth feedback in gene circuits (Tan et al., 2009; Nevozhay et al., 2012; 
Deris et al., 2013; Feng et al., 2014; Melendez-Alvarez and Tian, 2022). A comprehensive study 
into how growth feedback can endow or enhance adaption in circuits would require entirely different 
approaches for sampling circuit parameters and selecting candidate network topologies, demanding 
significantly high computational costs. Given that this topic extends beyond the scope of the current 
paper, we leave this matter to future research.

Our study focuses on scenarios where random noises are ignored. Realistically, gene circuits are 
subjected to diverse types of noise, which can complicate their predictable behavior and design. 
These noises can originate externally from a noisy input signal ‍I ‍, or intrinsically, directly affecting the 
circuit components. Further, these noises can be classified based on various mechanisms that cause 
them (Colin et al., 2017; Sartori and Tu, 2011). And with different mechanisms, each type of noise 
can be characterized by different attributes such as frequency, amplitude, and noise color. These 
variances can lead to different impacts on the circuits, potentially necessitating unique mechanisms 
or designs for the attenuation of each category (Sartori and Tu, 2011; Qiao et al., 2019). Given the 
extensive complexity and the need for thorough investigation, these noise-related challenges are 
beyond the scope of this paper and require a series of future studies.

In our paper, we consider dilution due to cell growth as the dominant factor of growth feedback. 
Here, we compared the adaptive circuits under no-growth conditions and their ability to maintain 
their adaptive behaviors after dilution into a fresh medium, which mediated a significant dilution to 
the circuits. This is based on our previous work Zhang et al., 2020. However, growth feedback is 
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inherently complex (Klumpp et al., 2009). For instances, an increased growth rate can change protein 
synthesis rate (Hintsche and Klumpp, 2013; Scott and Hwa, 2023), and cell growth rates can affect 
the distribution of protein expression in cell populations (Kheir Gouda et al., 2019). In our paper, we 
concentrate on a simplified model with dilution, which we consider to have captured the dominant 
factor. The dynamic roles of the dilution and growth-affected production rate should be analogous, 
given that they both act as inhibitory factors arising from cell growth. Incorporating the impact of 
growth rate on protein synthesis into our model would offer a more comprehensive analysis, a task 
beyond the scope of this paper but presenting an intriguing opportunity for future research to address 
the complexities of growth feedback.

In Appendix 1, we extend our analysis to four-gene circuits with over 2000 functional failure trials. 
A remarkable finding is that the failure scenarios for these four-gene circuits are the same as the 
categories for three-gene circuits (summarized in 1), indicating that the growth-feedback-induced 
failure mechanisms identified in our work are general. The focus of our study on small gene circuits is 
driven by their current relevance in synthetic biology. The primary reason is that even modest sized 
circuits, when introduced to a host, can provoke unintended and often uncontrollable outcomes due 
to competition and interactions in the form of growth feedback. Additionally, resource competition 
within the host cell can arise, where circuit genes compete for limited resources, adversely affecting 
the dynamics of the circuit. Consequently, larger gene circuits encounter more challenges due to 
these complexities. Indeed, the state-of-the-art synthetic gene circuits typically involve only three to 
four genes, a realm where the implications of growth feedback have been insufficiently understood 
until now. Our work aims to bridge this knowledge gap.

It is possible that, in the future, synthetic biology may use larger and more complex circuits. 
To uncover and understand the failure mechanisms as well as to identify circuits that are resilient 
to growth feedback, machine learning can be used. For example, recurrent neural networks have 
recently been used to identify circuit topologies appropriate for a specified desired function (Shen 
et al., 2021), and reinforcement learning tackle the combinatorial optimization problem (Bello and 
Pham, 2016; Mazyavkina et al., 2021) of pinpointing the optimal circuit topologies. Furthermore, 
automated differentiation (Hiscock, 2019; Kong, 2022) can be exploited to locate optimal network 
parameters, which can be efficient for larger circuits with a high-dimensional parameter space. In spite 
of these works, to study the effects of growth feedback and resource competition among numerous 
genes in larger circuits remains to be a formidable challenge. Our work providing a comprehensive 
picture of the failure mechanisms induced by growth feedback represents a step forward in this field.

Model
Model description
We restrict our study to the class of TRNs with the AND logic. In order not to overwhelm readers with 
too many terms and parameters, we first describe a partial model (an isolated circuit without growth 
feedback) before introducing the complete model that we study in this work. For an isolated circuit 
without any growth feedback, and with the topology specified inside the red dashed box in Figure 1a, 
the dynamical equations are

	﻿‍

dA
dt

= vA
InIA

InIA + KnIA
IA

BnBA

BnBA + KnBA
BA

− dAA,
‍�

(6)

	﻿‍

dB
dt

= vB
KnAB

AB
AnAB + KnAB

AB
− dBB,

‍�
(7)

	﻿‍

dC
dt

= vC
AnAC

AnAC + KnAC
AC

BnBC

BnBC + KnBC
BC

− dCC,
‍�

(8)

where the dynamical variables ‍A‍, ‍B‍, and ‍C‍ are the concentrations of each protein (node). The nota-
tions are as follows. Let ‍x‍ and ‍y‍ be two arbitrary nodes. The quantity ‍vx‍ is the maximal production rate 
of gene ‍x‍, ‍dx‍ is the degradation rate of gene ‍x‍, ‍dx/dt‍ is its time derivative of the concentration, and 

‍nxy‍ and ‍Kxy‍ are the coefficients in the Hill function for a transcriptional regulation from gene ‍x‍ to ‍y‍.
When growth-mediated feedback is present, the dynamical equations of the three-node circuits 

are modified to
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where the additional dynamical variable ‍N ‍ denotes the density of the host cells, ‍kg‍ is a parameter 
controlling the maximal growth rate of the host cells, ‍J ‍ is a parameter reflecting how this three-node 
gene circuit contributes to the burden. Equations 9–13 are the dynamical equations we actually use 
for simulating the circuit dynamics.

The growth of ‍N ‍ is under the regulatory action of two sources: by itself following the logistic equa-
tion with the environmental capacity ‍N0‍ and by the burden ‍b‍ that represents the competence from 
the metabolism of the gene circuit. To make the computations feasible, we focus our analysis on the 
exponential growth phase so that ‍N0 ≫ N ‍. The equation governing the growth of the cell numbers, 
Equation 12, can then be rewritten as

	﻿‍

dN
dt

= kg
1

1 + b(t)
N,

‍�
(14)

where the dilution rate ‍dN/dt‍ is regulated only by the burden ‍b(t)‍ of the gene circuit. While cell growth 
is inhibited by the metabolism of the gene circuit, the circuit is also regulated by the growth of ‍N ‍ that 
dilutes the concentration of circuit nodes with increasing cell volume. This dilution is reflected by the 
additional terms ‍−(x/N)(dN/dt)‍ in Equations 9–11.

It is useful to clarify the meaning of the degradation parameter ‍dx‍ and its relationship to growth 
feedback. While degradation and growth-feedback terms have the same sign in the regulatory equa-
tions, ‍dx‍ may include a constant dilution. We assume that ‍dx‍ represents the sum of all the degradation 
effects in cells that are distinct from growth feedback. For instance, degradation tags, especially in the 
ssrA tagging systems (Gottesman et al., 1998), are often used in synthetic gene circuits to increase 
the degradation rate and thus increase the time scale of the whole system (Elowitz and Leibler, 2000; 
Fung et al., 2005; Stricker et al., 2008; O’Brien et al., 2012).

Numerical simulations of circuit dynamics
We use the fourth-order Runge–Kutta method to numerically integrate the dynamical equations of the 
gene circuits, with the integration step as ‍tstep = 0.05‍. The dynamical equations we use are similar to 
Equations 9–13 but with different topologies. All the initial states of ‍A‍, ‍B‍, and ‍C‍ are taken to be 0.1. 
The input signal is initially ‍I0 = 0.06‍ and then switched to ‍I1 = 0.6‍. The simulation codes can be found 
in our GitHub repository (link provided in Code availability). The simulation results can be found in our 
OSF repository (link provided in Data availability).

To achieve the desired adaptation, the circuit’s output should reach a steady state before and after 
the input signal is switched. The values of ‍O1‍ and ‍O2‍ can be determined as the output signal associ-
ated with the steady states. However, realistically, it is not necessary for the circuit to reach an exact 
equilibrium. From a computational perspective, the system’s state is almost always asymptotically 
approaching that exact equilibrium but not actually reaching it. As we are simulating the dynamical 
process of the circuit, setting a condition such as ‍dA/dt = dB/dt = dC/dt = 0‍ to determine ‍O1‍ or ‍O2‍ is not 
meaningful. From a more biological perspective, relatively small drifting or oscillations in the circuit 
should not harm the circuit functionality and are acceptable. Therefore, we define a ‘relatively steady 
state’ where, within a time block of ‍tblock = 200‍, the standard deviation of the time series of each 
node ‍x(t)‍ satisfies: ‍std(x) < 1 × 10−4

‍ and ‍std(x)/mean(x) < 0.05‍. To further guarantee that the circuit is 
actually in the ‘relatively steady state’, two successive time blocks satisfying the standard deviation 
requirements are needed. The quantities ‍O1‍ or ‍O2‍ are then defined as the respective mean values of 
the output signal in that last time block ‍tblock‍.
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Numerical criteria for functional adaptation and failure types
We introduce four criteria to determine if a circuit has functional adaptation, and the failure types. 
The codes implementing these criteria are available in our GitHub repository, with the link provided in 
Code availability. The failure type results for all circuits tested are available in our OSF repository, with 
the link provided in Data availability. An additional note is provided in the README file of our GitHub 
repository for further guidance on generating pie charts similar to Figure 2 for any network topology 
or subset of topologies.

Precision
The basic requirement of adaptation is that the output remains the same when is input is switched 
from one state to another, that is, ‍O2‍ should be close to ‍O1‍ in Fig. 19b. Specifically, we set the precision 
criterion to be ‍|(O2 − O1)/O1| < 0.1‍.

Sensitivity
The circuit is also required to respond to the switch of the input signal with a high peak. This ability of 
the circuit is named sensitivity. We introduce two types of sensitivity: relative and absolute, with the 
respective criteria ‍Opeak/O1 > 0.5‍ and ‍Opeak > 0.1‍. Only the circuits meeting both criteria are regarded 
as having achieved the required sensitivity.

The need to use the two different criteria simultaneously can be justified, as follows. Given the 
variety of network topologies and a large number of system parameters, there is a vast diversity in the 
circuit dynamics and the values of ‍O1‍. When ‍O1‍ is small, it is difficult to observe a peak that has even 
satisfied the relative sensitivity criterion. If the absolute criterion is used alone for a circuit with a large 

‍O1‍ value, the peak may be negligible in comparison with ‍O1‍, making its observation practically difficult. 
It is thus necessary to combine the two criteria so that the cases of small and large values of ‍O1‍ can be 
dealt with on the same footing.

Oscillations and relaxation time
An ideal gene circuit should be able to respond and adapt within a reasonable time scale. We set an 
upper bound of evolution time ‍tmax = 4, 000‍. If the system cannot reach the ‘relatively steady state’ 
within this time, it is regarded as non-functional. According to our results, a circuit exceeds our relax-
ation time upper bound almost always due to oscillations.

Continuous or abrupt failures
We categorize failures into continuous failures and abrupt switching, as exemplified in Figure 2. After 
determining the circuit’s critical ‍kg‍ value for a circuit, we calculate the changes in ‍O1‍ and ‍O2‍ both 
before and after this critical point to evaluate if the change is continuous or not across the critical 
value. More specifically, taking ‍O1‍ as an example, we calculate the ‍O1‍ values before and after the 
critical value, ‍O1,before‍ and ‍O1,after‍. Then, for each gene A, B, and C, we calculate their changes in 

‍O1,before‍ and ‍O1,after‍. Taking gene A as an example, if ‍O1,before(A) > 0.001‍, then a relative difference 

‍|O1,after(A) − O1,before(A)|/O1,before(A) > 0.05‍ is considered as abrupt. If ‍O1,before(A) < 0.001‍, the relative 
difference is not reliable as when ‍A‍ approaches zero, it can be observed as ‍A ≈ 10−10‍ or ‍A ≈ 10−12‍, 
depending on the rather arbitrary time window. So in this case, when ‍O1,before(A) < 0.001‍, we use a 
criterion based on the absolute difference ‍|O1,after(A) − O1,before(A)| > 0.01‍. If any of the genes have 
abrupt switching, then the entire failure is considered as an abrupt switching.

Details of parameter space sampling
A three-node gene circuit subject to growth feedback has a large number of parameters. Let ‍L‍ be the 
number of links among the three nodes (excluding the input link). The total number of parameters 
is ‍2 · 3 + 2(L + 1) = (2L + 8)‍. The values of these parameters determine the properties of the regula-
tion links within the circuit and, as a result, the circuit dynamics. The circuit parameters are randomly 
generated by the Latin hypercube sampling method (Iman, 1980) using the function ‘lhsdesign’ in 
Matlab. The parameters are sampled uniformly either on a logarithmic or a linear scale. The sampling 
ranges of the parameters are: ‍vx ∈ [10−1, 101]‍ (sampled in logarithmic scale), ‍dx ∈ [10−2, 1]‍ (sampled 
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in logarithmic scale), ‍nxy ∈ [1, 4]‍ (sampled in linear scale), and ‍Kxy ∈ [10−3, 1]‍ (sampled in logarithmic 
scale).

Data availability
All relevant data can be found at https://github.com/lw-kong/Growth_Feedback_Adaptation, copy 
archived at lw-kong, 2024 and https://osf.io/pzy7r/.

Code availability
All computer codes can be found at https://github.com/lw-kong/Growth_Feedback_Adaptation., 
copy archived at lw-kong, 2024.
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Appendix 1
Four-gene circuits
To demonstrate the general applicability of our nonlinear dynamical analysis of the failure mechanism, 
we study four-gene circuits. Appendix 1—figure 1 shows ten representative circuits, where eight 
are from Qiao et al., 2019 and two being the four-node modifications of three-gene circuits with 
oscillation-related motifs. For each circuit, we test 105 random sets of parameters. To generate 
acceptable statistics, we ease the precision and sensitivity criteria to: (1) ‍|(O2 − O1)/O1| < 0.4‍, (2) 

‍Opeak > 0.1‍, and (3) ‍Opeak/O1 > 0.5‍ or ‍Opeak/O1 − |(O2 − O1)/O1| > 0.1‍. All other simulation settings are 
the same as those in the three-gene circuit simulations as detailed in the main text. We collect a total 
of 3275 trials exhibiting functional adaptation in the absence of growth feedback (‍kg = 0‍). As the 
growth feedback is turned on so that ‍kg = 0‍ increases ‍kg = 0.5‍, 2373 trials encountered functional 
failures across all 10 circuits.
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Appendix 1—figure 1.  (a) Ten representative four-gene circuits. The eight circuits in the first four columns are 
from Qiao et al., 2019, and the two circuits in the fifth column are selected due to the oscillation-related motifs 
in their topologies and the relatively high ‍Q(kg = 0)‍ values when reduced to three-gene circuits. (b–d) Examples 
of the three major categories of growth-feedback-induced functional failures in the four-gene circuits, where the 
upper panels display the circuit outputs with smaller ‍kg‍ values for which the circuits remain functional and the 
lower panels showcase the circuit outputs with larger ‍kg‍ values for which the circuits lose their functionality. The 
vertical red dashed line marks the time when the input is switched to another state. The three failure categories are 
identical to these in the three-gene circuits in the main text: (b1, b2) continuous trajectory deformation causing 
the system to cross thresholds associated with the sensitivity criterion, (c1, c2) growth-strengthened oscillations, 
and (d1, d2) growth-induced switching in bistability. The change in ‍kg‍ between panels (d1) and (d2) is small so as 
to show the abrupt change in the response at a critical point.

We then investigate the causes of the functional failures. We find that all 2373 trials fall into the 
same three categories identified for three-gene circuits: growth-induced oscillations, growth-induced 
switching in bistability, and continuous deformation of the system trajectory leading the system to 
cross the criteria thresholds, as shown in Appendix  1—figure 1b–d, respectively. For the cases 
studied, continuous deformation is the dominant failure mechanism, accounting for about 88% of the 
failures. The fractions of oscillation- and bistability-related failures are approximately 10% and 3%, 
respectively. These results indicate that four- and three-gene circuits share the common mechanisms 
of growth-feedback-induced failures, implying the generality of these failure mechanisms.

https://doi.org/10.7554/eLife.89170
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Appendix 2

Self-activation and toggle switch circuits
The key quantitative results about the survival ratio ‍R(kg)‍ presented in the main text are obtained 
from various circuit topologies with three genes. To demonstrate the general applicability of ‍R(kg)‍, 
we study two simpler gene circuits: a self-activation circuit with a single gene and a toggle switch 
circuit with two genes. A comparative study of these two classes of circuits has been carried out 
recently (Zhang et al., 2020), whose topological structures are shown in Appendix 1—figure 1a1, 
a2, respectively. In the absence of growth feedback, both networks exhibit bistability and a hysteresis 
loop. Under dilution, the self-activation circuit quickly loses the memory while the toggle switch 
circuit can remain functional, as was observed numerically and experimentally (Zhang et al., 2020).
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Input
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Appendix 2—figure 1. Scaling law of robustness measure for the single-gene self-activation circuit and the 
two-gene toggle switch circuit. (a1, b1) The topology of the self-activation circuit and the decay of the robustness 
measure with the growth-feedback strength. (a2, b2) Same legends as (a1, b1), respectively, for the toggle switch 
circuit. Note the drastic difference in the range of ‍kg‍ values in (b1) and (b2) where ‍R‍ approaches zero much more 
quickly in the former than in the latter, indicating the nearly immediate loss of functions of the single-gene circuit 
even under weak growth feedback.

Our simulation settings are mostly identical to that of three-node circuits in the main text, including 
the sampling regions of the random circuit parameters, the specifics of the ODE solver, and the 
criterion for locating equilibrium. We set ‍J = 1‍. Other than the network topology, the only difference is 
the functionality criteria. Here, the desired function is a hysteresis. We test the response of the circuit 
output when (1) the input is a switch from an off-state (with input signal ‍Ioff = 10−8

‍) to an on-state 
(with input signal ‍Ion = 2‍) and (2) the input is switched from an on-state to an off-state. In the former 

https://doi.org/10.7554/eLife.89170
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trial, the steady-state output is switched from ‍O1,off ‍ to ‍O1,on‍, while in the latter it is switched from 

‍O2,on‍ to ‍O2,off ‍. The criteria are: (1) the two steady states are distinguishable: ‍∆O = O2,on − O1,off > 0.1‍; 
and (2) the system exhibits a hysteresis: ‍(O1,on − O1,off)/∆O > 0.5 > (O2,on − O2, off)/∆O‍.

Appendix 2—figure 1b1, b2 show the scaling law of ‍R(kg)‍ with ‍kg‍ for the self-activation and 
toggle switch circuits, respectively. It can be seen that, for the self-activation circuit, as the growth-
feedback strength increases, ‍R(kg)‍ approaches zero quickly, indicating that the circuit function cannot 
sustain even weak feedback with near zero strength. For the toggle switch, ‍R(kg)‍ approaches zero 
eventually but at a much slower rate, a result that is consistent with the finding in Zhang et al., 2020. 
Remarkably, the scaling of ‍R(kg)‍ with ‍kg‍ exhibits qualitatively similar behavior as the scaling laws 
reported in the main text for various three-gene circuits, lending further credence for the general 
applicability of the quantitative measure ‍R(kg)‍ to characterize the effects of growth feedback on 
gene networks.

https://doi.org/10.7554/eLife.89170
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Appendix 3
Results from low burden level
For the simulation results reported in the main text, the burden parameter is fixed at ‍J = 1‍. What are 
the possible behaviors of the gene circuit for different values of ‍J ‍? Suppose ‍J ‍ is much larger than 
one. In this case, the burden term ‍b‍ that has ‍J ‍ in the denominator is negligible, thereby reducing the 
complexity of the system and providing a parameter regime in which the contributing factors to the 
survival ratio ‍R(kg)‍ other than the burden can be identified.

In the regime of large ‍J ‍, the burden in Equation 8 in the main text is much smaller than one, so 
Equation 7 in the main text about growth rate can be simplified as

	﻿‍

dN
dt

= kg
1

1 + b
N = kg

1
1 + (A + B + C)/J

N ≈ kgN,
‍�

(15)

indicating that cell growth is determined entirely by the growth-feedback strength ‍kg‍. It can be seen 
from Equations 4–6 in the main text that, in this case, the effect of growth feedback is equivalent to 
a linear change of the amount ‍kg‍ in the degradation terms ‍dx‍. Further, the interaction between cell 
growth and the gene circuit is no longer of the type of mutual inhibition: the regulation is a one-way 
interaction from cell growth to the gene circuit. A semi-quantitative analysis of this scenario can be 
found in Appendix 5.

We carry out the simulations as in the main text in the regime of large ‍J ‍ and perform a comparative 
analysis of the results.

The first issue concerns the relative fractions of different failure scenarios. Appendix 3—figure 
1 compares the distributions of distinct types of circuit failures for ‍J = 1‍ and ‍J → ∞‍. The possible 
failure scenarios are identical in both cases, in spite of the quantitative differences in the relative 
fractions of the failure mechanisms. Some of the differences are sizable, but none is significant in 
the sense that none is beyond an order of magnitude. For example, for ‍J = 1‍, type-I failures are the 
most common (49%) where the precision criterion is broken in a continuous fashion. For ‍J → ∞‍, the 
fraction is about 31%, but the reduction is still within a factor of two. The plausible reason for the 
reduction is that the additional regulation of the burden ‍b‍ for ‍J = 1‍ is more difficult to be maintained 
(Appendix 5).

Appendix 3—figure 1. Circuit performance for zero burden. Shown is a comparison of the distributions of circuit 
failure scenarios under growth feedback for (a) ‍J = 1‍ as in the main text and (b) ‍J → ∞‍ (zero burden). In both 
cases, there are six categories in spite of some quantitative differences in their probabilities, implying that, as the 

https://doi.org/10.7554/eLife.89170
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burden is reduced to zero from a finite value continuously, the failure scenarios are qualitatively the same. Notable 
is the fraction of circuits suffering type-I failures (violation of the precision criterion), which has a relatively large 
reduction for ‍J → ∞‍, a result that is consistent with the semi-quantitative analysis in Appendix 5.

The second issue is the scaling law between the survival ratio ‍R(kg)‍ and the growth-feedback 
strength ‍kg‍. Appendix 3—figure 2 compares the scaling laws of ‍R(kg)‍ for three circuit topologies for 
‍J = 1‍ and ‍J → ∞‍, where the results in panels (a1) and (a2) are represented on a linear scale, while 
those in panels (b1) and (b2) are on a double-logarithmic versus logarithmic scale. The approximately 
linear relation in panel (b2) suggests that, for ‍J → ∞‍, the scaling laws is given by (1) in the main text.

https://doi.org/10.7554/eLife.89170
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Appendix 3—figure 2. Scaling law of circuit robustness measure for zero burdens. (a1, b1) Representative 
scaling relations between ‍R(kg)‍ and ‍kg‍ for ‍J = 1‍ as in the main text, plotted on two different scales. (a2, 
b2) Representative scaling relations for ‍J → ∞‍. The curves in (b2) are approximately linear, suggesting the scaling 
law (1) in the main text. In (b1), the curves are less linear where the added burden leads to more reduction in ‍R(kg)‍ 
in the regime of weak growth feedback.
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For ‍J = 1‍, the scaling law (1) is less accurate, as shown in Appendix 3—figure 2b1, which can be 
heuristically explained, as follows. Suppose we use Equation 15 and reduce ‍J ‍ from a large value 
to one, which is equivalent to adding back the negative feedback from the burden ‍b = A + B + C‍ 
to cell growth. Since cell growth effectively inhibits the gene regulation in the circuit, the burden 
will be larger for smaller values of ‍kg‍, suppressing the cell growth. Thus, for weak growth feedback 
(corresponding to small values of ‍kg‍), for small ‍J ‍, ‍R(kg)‍ decreases more slowly than for larger values 
of ‍J ‍. The difference becomes smaller for larger values of ‍kg‍, causing the curves on the left side in 
Appendix 3—figure 2b1 to be lower than those in Appendix 3—figure 2b2, but the curves on the 
right side are similar in both cases.

https://doi.org/10.7554/eLife.89170
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Appendix 3—figure 3. Dependence of the distribution of the robustness measure ‍R(kg = 0.6)‍ on circuit topology. 

(a1) For ‍J = 1‍ (as in the main text), ‍R(kg = 0.6)‍ versus ‍Q(kg = 0)‍ (a quantity that measures the likelihood of a 

functional circuit) for all 425 network topologies. (b1) Histogram of ‍R(kg = 0.6)‍ for ‍J = 1‍ constructed from all network 

topologies. (c1) ‍R(kg = 0.6)‍ versus the burden parameter. In (a1–c1), each data point represents a specific network 

topology. (a2–c2) The same legends as in (a1–c1), respectively, for ‍J → ∞‍. For diminishing burden, the circuit 

topologies associated with the red group remain to be more unstable comparing with those in the green group.

https://doi.org/10.7554/eLife.89170
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The third issue is the effect of the network topology on the survival ratio ‍R(kg)‍. Appendix 3—
figure 3 presents a comparison of the dependency of ‍R‍ on the circuit topology for ‍J = 1‍ and ‍J → ∞‍. 
As discussed above, the difference in the burden ‍b‍ can be a major reason for the data points in 
the red group to have lower ‍R‍ values compared with those in the blue and green groups. When 
the term ‍b‍ is effectively removed by setting ‍J → ∞‍, the difference diminishes. It can be seen from 
Appendix 3—figure 3a2, b2, c2 that, in this case, the range of ‍R‍ for the red group, in spite of the 
low ‍R‍ values, overlaps with that of the blue group. However, the ‍R‍ values associated with the red 
group are still distinctly smaller than those with the green group, suggesting some characteristic 
differences in the network motifs that define these two groups.

Appendix  3—figure 3b1, b2 indicates a persistent feature of the distribution of the survival 
ratio ‍R(kg = 0.6)‍ for the ensemble of networks: there are three peaks regardless of whether ‍J ‍ has a 
small or a large value. Further, the three peaks are approximately located at the same positions for 
‍J = 1‍ and ‍J → ∞‍. This feature provides a criterion to determine the likelihood of a given network 
topology being stable or unstable under growth feedback without the need to calculate the ‍R(kg)‍ 
value for many values of the feedback strength. In particular, if the network is such that its ‍R(kg = 0.6)‍ 
value is associated with the red peak, then it is highly likely to be unstable and fail to function under 
growth feedback. On the contrary, if a network ‘belongs’ to the green peak, then the chance for it 
to sustain its function in a growth environment will be improved significantly.

There can be two different mechanisms for growth-induced oscillations: (1) by altering the system 
parameter and (2) by altering the circuit topology with the additional dynamical variable ‍N ‍ and 
regulations attached to it. Our results suggest the first mechanism is the major one, while the second 
one does not appear to play a significant role. The second mechanism only exists with a finite ‍J ‍. 
Thus, we compare the cases of ‍J = 1‍ and the limit of a large ‍J ‍. As shown in Appendix 3—figure 3, 
the ratio of functional failures caused by growth-induced oscillations does not change much between 
the two cases. However, the oscillatory behavior is sensitive to the value of the dilution parameter. 
In order to have oscillations, it is necessary that the parameter be in some specific interval (Novák 
and Tyson, 2008).

https://doi.org/10.7554/eLife.89170
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Appendix 4
Lack of correlation between the circuit robustness and topological 
families
As shown in Appendix 4—figure 1, the network topologies belonging to the two different families 
(marked in different colors) are mingled together and spread all over the range of ‍R(kg)‍, suggesting no 
significant correlation between the circuit robustness and circuits family. To quantify this irrelevance, 
we calculate the point biserial correlation between (a) the ‍R(kg)‍ values of all the network topologies 
with ‍Q(kg = 0) ≤ 200‍ (to lower the fluctuations) and (b) a binary variable ‍bf ‍ which is ‍bf = 0‍ for the 
NFBL family and ‍bf = 0‍ for the IFFL family. The calculation involves 108 NFBL network topologies 
and 93 IFFL topologies. The resulting point biserial correlation is as small as 0.1. The 95% confidence 
interval for the true difference with respect to the two families of ‍R(kg)‍ is (–0.01,0.06), which is narrow 
around zero.
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Appendix 4—figure 1. Demonstration of circuit robustness against growth feedback being unrelated to negative 
feedback loop (NFBL) or feed-forward loop (IFFL) family membership. The green and blue colors represent the 
NFBL and IFFL families, respectively. (a) Robustness measure ‍R(kg = 0.6)‍ versus ‍Q(kg = 0)‍, where each node 
represents a network topology. Circuits from both families are widely distributed across different levels of ‍R‍ and 
intermingled. (b) Distributions of ‍R(kg = 0.6)‍ for the two families, which are quite similar.
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Appendix 5
An analysis on the mathematical criterion for robustness against 
growth feedback
The quantitative measure ‍R(kg)‍ we have introduced to characterize the effects of growth feedback 
on gene circuit functioning is generally not amenable to analytic treatment. However, for weak 
feedback, certain analytic insights can still be gained. Here, we consider a three-node gene circuit 
designed to have adaptation and analyze how growth feedback destroys adaptation. We focus on 
type-I failure, where the growth feedback makes ‍O2(C)‍ deviate from ‍O1(C)‍, because (1) this type of 
failures is arguably the most important type as it alone takes nearly half of all the failures, and (2) it 
can be analyzed. Here, we provide a semi-quantitative analysis to elucidate how a small ‍kg > 0‍ can 
make ‍O2(C)‍ deviate from ‍O1(C)‍.

Circuit robustness in the absence of growth feedback
The dynamical equations of the circuit in the absence of growth feedback are:

	﻿‍
dA
dt

= fA = GA − dAA,
‍�

(16)

	﻿‍
dB
dt

= fB = GB − dBB,
‍�

(17)

	﻿‍
dC
dt

= fC = GC − dCC,
‍
 
�

(18)

where

	﻿‍ GA = HInput,A(Input) · HA,A(A) · HB,A(B) · HC,A(C),‍� (19)

and each ‍H ‍ term represents the regulation of a single link in the circuit. The steady-state solutions 
‍(A0, B0, C0)‍ are given by

	﻿‍ A0 = GA/dA‍,� (20)

	﻿‍ B0 = GB/dB‍,� (21)

	﻿‍ C0 = GC/dC.‍� (22)

For notation convenience, we use ‍x‍ to denote an arbitrary node (A, B, or C). The steady-state 
solutions can thus be written as

	﻿‍ x0 = Gx/dx.‍� (23)

With a small input signal change ‍∆I ‍ applied to the circuit, the steady states becomes 

‍(A0 + ∆A0, B0 + ∆B0, C0 + ∆C0)‍. Under ‍∆I ‍, the dynamical equations at the steady point can be 
written as

	﻿‍ 0 = fx(y0 + ∆y0, input = ∆I).‍� (24)

For ‍∆I = 0‍, the equation becomes

	﻿‍ 0 = fx(y0, input = 0).‍� (25)

Subtracting Equation 25 from Equation 24, we get

	﻿‍




0

0

0


 = Jf



∆A0

∆B0

∆C0


 +




∂fA
∂I
0

0


∆I,

‍ � (26)

where
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	﻿‍

Jf =




∂fA
∂A

∂fA
∂B

∂fA
∂C

∂fB
∂A

∂fB
∂B

∂fB
∂C

∂fC
∂A

∂fC
∂B

∂fC
∂C



‍�

(27)

is the Jacobian matrix of the original dynamical equations evaluated at ‍(A0, B0, C0)‍.
Solving Equation 26, we have

	﻿‍



∆A0

∆B0

∆C0


 = −Jf

−1




∂fA
∂I
0

0


∆I

‍

.

�

(28)

For the steady state to remain stable under ‍∆I ‍, the requirement is that ratio ‍∆C0/∆I ‍ be 
small. Assuming that the Jacobian matrix satisfies the conditions to make points ‍(A0, B0, C0)‍ and 

‍(A0 + ∆A0, B0 + ∆B0, C0 + ∆C0)‍ stable in their corresponding dynamical systems, we have

	﻿‍

∆C0
∆I

=


−Jf

−1




∂fA
∂I
0

0







3

,

‍�

(29)

where ‍(·)3‍ denotes the third component of the vector inside. The limiting case of a perfectly precise 
circuit is defined to be ‍∆C0/∆I = 0‍, yielding a precision criterion of by ‍(J

−1
f )31 ≈ 0‍ or

	﻿‍

(
∂fB
∂A

∂fC
∂B

− ∂fB
∂B

∂fC
∂A

)
/Det(Jf) ≈ 0.

‍�
(30)

leading to

	﻿‍
∂fB
∂A

∂fC
∂B

− ∂fB
∂B

∂fC
∂A

= 0.
‍�

(31)

which is the central criterion analyzed in Shi et al., 2017. The two families, NFBL and IFFL, satisfy this 
same criterion through different mechanisms.

Precision criteria in the presence of weak growth feedback and ‍J → ∞‍
We now incorporate growth feedback into the analysis in the limit ‍J → ∞‍. In this case, the burden 
‍b‍ is small so that the dilution strength can be approximated as ‍dN/dt/N ≈ kg‍. Suppose weak growth 
feedback is present before and after the small input signal ‍∆I ‍ is applied. Let the steady state under 
growth feedback before application of ‍∆I ‍ be denoted as ‍(A

′
0, B′

0, C′
0)‍. The steady state with input ‍∆I ‍ 

can be written as ‍(A
′
0 + ∆A′

0, B′
0 + ∆B′

0, C′
0 + ∆C′

0)‍. The basic equations before and after application 
of ‍∆I ‍ are

	﻿‍
dx′

dt
= fx(y′, input = 0) − kgx′,

‍�
(32)

	﻿‍
d(x′ + ∆x′)

dt
= fx(y′ + ∆y′, input = ∆I) − kg(x′ + ∆x′).

‍�
(33)

Subtracting Equation 32 from Equation 33, we get

	﻿‍




0

0

0


 = (J ′

f − kgI)



∆A′

∆B′

∆C′


 +




∂fA
∂I
0

0


∆I,

‍� (34)

where ‍I ‍ is the identity matrix. The solution is
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	﻿‍



∆A′

∆B′

∆C′


 = −(J ′

f − kgI)−1




∂fA
∂I
0

0


∆I.

‍�

(35)

Compared with Equation 28, the differences are that the matrix ‍Jf‍ is replaced by ‍(J
′
f − kgI)‍, and 

‍x,∆x‍ are replaced by ‍x′,∆x′‍, respectively.
The precision criterion again requires ‍∆C′

0/∆I ‍ to be small. We have

	﻿‍

∆C′
0

∆I
=


−(J ′

f − kgI)−1




∂fA
∂I

0

0







3

,

‍

 

�

(36)

which is equivalent to

	﻿‍
((J ′

f − gE)−1)31 =
[
∂fB
∂A

∂fC
∂B

− (∂fB
∂B

− kg)∂fC
∂A

]

A′,B′,C′
/Det(J ′

f − gI) ≈ 0,
‍
 
�

(37)

leading to

	﻿‍

[
∂fB
∂A

∂fC
∂B

− (∂fB
∂B

− kg)∂fC
∂A

]

A′,B′,C′
≈ 0.

‍�
(38)

Comparing this equation for precision criterion Equation 38 with the criterion Equation 31 in the 
absence of growth feedback, we find an extra term of ‍kg‍. This explicit term of ‍kg‍ makes the criterion 
more difficult to satisfy with a range of different ‍kg‍ values. It requires either ‍∂fC/∂A‍ is zero or the four 
partial derivative terms change accordingly with a varying ‍kg‍ to have exact cancellations.

For neither the NFBL nor the IFFL family, ‍∂fC/∂A = 0‍ can be satisfied. In none of the 425 network 
topologies, the link from node A to C is absent (‍∂fC/∂A = 0‍). Thus with a random sampling of the 
parameters for the circuits that have adaptation at ‍kg = 0‍, the probability that ‍∂fC/∂A = 0‍ can occur 
is negligibly small.

Precision criterion with exact cancellations for the optimal family
As the criterion ‍∂fC/∂A = 0‍ cannot be satisfied in three-node gene circuits, we discuss the possibility 
of exact cancellations with varying ‍kg‍. For the optimal circuit family demonstrated in Figure 5b, we 
have ‍∂fC/∂B = 0‍ as there is no direct link from node B to C. The precision criterion becomes

	﻿‍

[
(∂fB
∂B

− kg)∂fC
∂A

]

A′
0,B′

0,C′
0

≈ 0.
‍�

(39)

Since ‍∂fC/∂A ̸= 0‍, this can be rewritten as

	﻿‍
∂fB
∂B

|A′
0,B′

0,C′
0
− kg ≈ 0.

‍�
(40)

For this family, the precision criterion in the absence of growth feedback is

	﻿‍
∂fB
∂B

|A0,B0,C0 ≈ 0.
‍�

(41)

Combining Equations 40 and 41, we get

	﻿‍

∂2fB
∂A∂B

|A0,B0,C0 (A′
0 − A0) + ∂2fB

∂C∂B
|A0,B0,C0 (C′

0 − C0)

≈ kg. ‍� (42)

Using the approximation employed in Shi et  al., 2017 for the NFB family that ‍fB‍ is a linear 
function of ‍B‍, we have
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	﻿‍

∂fB(A, B, C)
∂B

≈ fB(A, B, C)
B

= vB
KBB

HA,B(A)HC,B(C) − dB.
‍�

(43)

We thus have

	﻿‍

dHA,B(A)
dA

|A0 HC,B(C0)(A′
0 − A0) + HA,B(A0)

dHC,B(C)
dC

|C0 (C′
0 − C0) ≈ KBB

vB
kg.

‍�
(44)

This equation can be solved analytically only in the regime of ‍kg ∼ 0‍ where ‍(A
′
0 − A0)‍ and ‍(C

′
0 − C0)‍ 

are approximately linear functions of ‍kg‍. But it should be difficult for the circuit to meet this criterion 
with a random sampling of the circuits that have adaptation at ‍kg = 0‍.
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Appendix 6
Network motifs supporting oscillations
As summarized in Novák and Tyson, 2008, three classes of motifs can support oscillations in a three-
node circuit.

Class 1 (the dominant class)
Delayed negative-feedback loop with an intermediate node in the path of the NFBL. A majority of 
the networks with an oscillation-supporting motif belong to this class (237 out of 245 networks). All 
the circuits that have more than 20% failures as oscillation-induced failures belong to this class.

Class 2
Amplified negative-feedback loop, with a node regulated by both a negative-feedback loop through 
another node and a positive-feedback loop through the third node. There are only eight network 
topologies that fall into this class. They result in 3–20% oscillation-induced failures.

Class 3
Incoherently amplified negative-feedback loops, as demonstrated in Figure 5c of Novák and Tyson, 
2008. Among all the 425 networks capable of adaptation studied in our work, no network belongs 
to this class.

https://doi.org/10.7554/eLife.89170
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Appendix 7
Oscillation-related bifurcations
In growth-feedback-induced oscillations, we mentioned the oscillation-related bifurcations that 
can give birth to undesired oscillation to the circuit and cause adaption failure. Here, we provide 
further details on the two types of bifurcations: saddle-node bifurcation of cycles and infinite-period 
bifurcation. In this appendix, we use ‍tstep = 0.01‍ and ‍tblock = 1, 000‍ to make the results more accurate.

In Appendix 7—figure 1, we show a demonstration of an infinite-period bifurcation. In panel (b), 
there is the characteristic slow–fast behavior before such a bifurcation. On the limit cycle, there are 
ranges where the system rotates fast (with a sharp slope in our panel) or slow (with an almost flat 
curve in our panel). These ‘slow parts’ are slow passage through a bottleneck due to a ghost point 
that is close to becoming a fixed point (Strogatz, 2018). From panel (e) to panel (a), as ‍kg‍ decreases, 
the ‘slow parts’in the curves become slower and slower, until the period length diverges where the 
ghost point actually becomes a fixed point. This trend of period length is also shown in panel (f), 
where the period length diverges at the critical ‍kg‍.

https://doi.org/10.7554/eLife.89170
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Appendix 7—figure 1.  Demonstration of two types of oscillation-related bifurcations: infinite-period bifurcation 
in panels a–f and saddle-node bifurcation of cycles in panels (g) – (j). Panels (a) – (e) show the output signal of a 
circuit around an infinite-period bifurcation with increasing ‍kg‍. The circuit fails between panels (a) and (b) due to 
the emergent oscillation. Panel (f) shows the length of the oscillation period with respect to ‍kg‍ after the critical ‍kg‍ 
value. There is no persisting oscillation before the critical ‍kg‍. Panels (g) –(j) show the output signal of another circuit 
around a saddle-node bifurcation of cycles with increasing ‍kg‍. The circuit failed between panels (i) and (j). Panel 
(k) shows the length of the oscillation period with respect to ‍kg‍ after the critical ‍kg‍ value, where two distinct 
branches exist on the two sides of the critical ‍kg‍.

In Appendix 7—figure 1g–k, we show a demonstration of a saddle-node bifurcation of cycles. 
When ‍kg‍ is small, there is only a damped oscillation that quickly approaches a fixed point. As ‍kg‍ 
increases from panel (g) to panel (j), the damping is weaker and weaker until the outer cycle becomes 
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stable. In panel (k), we show the period length with respect to various ‍kg‍ values. More precisely, 
here we are plotting the limits of the period length, as the period length can have some transient 
values before approaching the limit. The period length before and after the critical ‍kg‍ (which is 
somewhere between 0.025 and 0.0275) has two distinct branches. Although these two branches 
have different trends, they have relatively similar values around the critical ‍kg‍ point, without the 
divergence behavior around an infinite-period bifurcation. This is one of the features of a saddle-
node bifurcation of cycles.
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Appendix 8
Regularized feed-forward neural networks for identifying critical links
We employed ensembles of regularized feed-forward neural networks to detect, in an automated 
fashion, the links that are crucial in determining the level of robustness ‍R‍. The neural-network 
structure is illustrated in Figure 6e, which has three layers: an input layer, a hidden layer, and an 
output layer. The input layer receives a nine-dimensional circuit topology vector where each entry 
represents a potential link in the three-node circuit, such as ‍A → A‍ and ‍B → C‍. For an activation 
(inhibition) link, the entry value is set to +1 (−1). In the absence of such a link, the value is zero. In the 
hidden layer, there are only two neurons that use a hyperbolic tangent activation function, creating 
a bottleneck that limits the complexity of the extracted features. The output layer has one neuron 
that uses a hyperbolic tangent activation function trained to output the estimated robustness ‍̂R‍. 
The input and hidden layers are connected by the matrix ‍Win‍, and the hidden and output layers are 
connected by the matrix ‍Wout‍. Given the input vector ‍u‍, the estimated ‍̂R‍ can be expressed as

	﻿‍ R̂ = tanh[Wout tanh(Winu)].‍� (45)

We use all the 303 circuit topologies that have ‍Q(kg = 0) > 100‍ for training to minimize the relative 
random fluctuations in the training data. The loss function for optimization is

	﻿‍
Loss = |R̂ − R| + β

wh∑
i=1

Ln∑
j=1

|Win,ij|,
‍�

(46)

where ‍β = 0.05‍ is the ‍l‍ – 1 regularization coefficient, ‍Ln = 9‍ is the number of possible links within a 
three-gene circuit, and ‍wh = 2‍ is the width of the hidden layer. We train the network using a stochastic 
gradient descent algorithm and repeat it 50 times with different initial weights in the neural net 
matrices. The ‘importance’ of a link is determined by the logarithm of the absolute value of the 
weights in ‍Win‍ corresponding to the gain of that link. This importance measure is then averaged over 
all 50 neural networks.
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