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Physical controllability of complex
networks
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A challenging problem in network science is to control complex networks. In existing frameworks of
. structural or exact controllability, the ability to steer a complex network toward any desired state
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Published: 11 January 2017 : control by imposing input signals on the minimum set of driver nodes, an unexpected phenomenon

. arises: due to computational or experimental error there is a great probability that convergence to

the final state cannot be achieved. In fact, the associated control cost can become unbearably large,
effectively preventing actual control from being realized physically. The difficulty is particularly severe
when the network is deemed controllable with a small number of drivers. Here we develop a physical
controllability framework based on the probability of achieving actual control. Using a recently
identified fundamental chain structure underlying the control energy, we offer strategies to turn
physically uncontrollable networks into physically controllable ones by imposing slightly augmented
set of input signals on properly chosen nodes. Our findings indicate that, although full control can be
theoretically guaranteed by the prevailing structural controllability theory, it is necessary to balance the
number of driver nodes and control cost to achieve physical control.
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The past few years have witnessed great progress toward understanding the linear controllability of complex
networks' 2. Given a linear and time-invarijant dynamical system, the traditional approach to assessing its con-
trollability is through the Kalman rank condition?. However, for a complex network, it is difficult to test, both
mathematically and computationally, the Kalman rank condition directly to determine the optimal configuration
for control input signals' due to the typically large network size and the complex spectrum of network topology.
To overcome this difficulty, Liu et al. proposed in their pioneering work* to exploit Lin’s classic theory of struc-
tural controllability®. In this framework, the fundamental issue is to determine the minimum number of con-
trollers required to steer the whole networked system from an arbitrarily initial state to an arbitrarily final state in
finite time. It was proved and demonstrated* that, for directed complex networks, their structural controllability
can be established via the maximum matching algorithm® 3. In particular, based on Lin’s theory, one can deter-
mine the maximally matched set of nodes, where each and every unmatched node requires an external control
signal. An equivalent optimization procedure was developed for undirected networks to determine the mini-
mum dominating set of nodes®. The structural controllability framework also served the base to address an array
of issues such as edge dynamics®, lower and upper bounds of energy required for control’, control centrality®,
optimization®, effects of the density of in/out degree nodes', and scaling of energy cost?. In addition, based on
the classic Popov-Belevitch-Hautus (PBH) rank condition® from traditional control engineering, a variant of the
structural-controllability theory, an exact controllability framework was developed!® which is universally appli-
cable to all kinds of complex networks: directed or undirected, weighted or unweighted. In terms of applications,
the structural controllability framework has been used to characterize protein interaction networks to determine
the key proteins responsible for certain biological functions!®.

In both structural and exact controllability frameworks, the focus is to determine the minimum number of
control signals, denoted by Ny, for complex networks of various topologies. However, we have encountered an
unexpected difficulty when using the minimal set given by either structural or exact controllability theory to
carry out actual control of the network: convergence to the final state. In particular, given a network, once Np, is
determined, we can determine the specific control signals to be applied at various unmatched nodes by using the
standard linear systems theory?®. The surprising phenomenon is that, quite often, actual control of the system
cannot be achieved computationally in the sense that, in any finite time, the system cannot be driven from an
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arbitrarily initial state to an arbitrarily final state. We believe that this difficulty is fundamental, as we were not
able to remove or even mitigate the problem of divergence despite extensive and systematic computational efforts
in implementing various ways to optimize the numerical algorithm. This difficulty in realizing actual control
persists for a large number of model and real world networks. While somewhat unsettling, the issue prompts us to
hypothesize that the existing controllability frameworks are merely mathematical, as the implementation of actual
control would often require infinite precision computations and, more seriously, an infinite amount of energy. To
make the notion of controllability of complex networks meaningful, the issue of physical controllability must be
addressed.

In this paper, we develop a physical controllability framework for complex networks to address whether actual
control can be achieved in an experimentally or computationally feasible way. Given a complex network, we
first use the structural controllability theory* to determine N, and a set of unmatched nodes to which control
signals are to be applied. Then, with a given pair of arbitrarily initial and final states as well as a finite control
time, we calculate the optimal control signals®*® and evolve the whole networked system, which is essentially a
linear dynamical system under external driving, to determine whether the system can be driven from the initial
state to the final state in the given amount of time. During this process, the energy required for control can be
calculated through the standard formula in linear systems theory®®*’, which expresses the energy as the integral
of the product of a number of matrices, including the inverse of the positive-definite, symmetric Gramian matrix.
Freedom in choosing the initial and final states and independent network realizations render feasible a statistical
analysis of the control process. We find that, typically, there are two cases, depending on whether the network
can be physically controlled. For the physically controllable case, the whole system, starting from the chosen
initial condition, can actually converge to the final state in the prespecified time within a predefined precision. In
this case, the Gramian matrix is well-behaved, meaning that both its condition number and the energy are not
unrealistically large. For the physically uncontrollable case, the system cannot reach the final state within the pre-
defined precision in the given time. In such a case, the Gramian matrix is singular in the sense that its condition
number can be arbitrarily large, so is the corresponding energy. Increasing the precision of the computation, e.g.,
by using special simulation packages with round-off error orders of magnitude smaller than that associated with
the conventional double-precision computation, would convert a few uncontrollable cases into controllable ones,
but vast majority of the uncontrollable cases remain unchanged.

The main result of this paper is a proposal of a general, probabilistic measure to characterize the physical con-
trollability for complex networks of arbitrary topology. For physically uncontrollable networks, it is important
to develop effective strategies to make them physically controllable. To accomplish this goal, we gain insights by
calculating the control energy for a bidirectional 1D chain and obtaining an analytical relation between energy
E and chain length L. We then apply the result to general networked systems based on the idea of longest control
chain (LCC)¥. Optimization strategies can be derived to decrease the control energy drastically. In fact, if the sys-
tem is physically uncontrollable, a viable way to make it controllable is to increase the number of control signals
beyond Nj,. Our framework of physical controllability thus contains the following essential ingredients: (1) Ny,
the minimum number of control signals determined by the existing mathematical controllability frameworks, (2)
a measure of physical controllability, (3) control energy E determined by the Gramian matrix, and (4) augmenta-
tion of N, for physically uncontrollable networks. The existing mathematical controllability theories*!° thus pro-
vide a base for our physical controllability framework. The quantity Np, on which the mathematical controllability
theories focus, can effectively be regarded as the lower bound of the actual number of control signals required. To
realize physical control, depending on the specific system and control settings, either N, control signals suffice or
substantially more signals are needed.

Results
Definition of physical controllability. We consider the standard setting of a linear dynamical system
subject to control input™*;

X=A-x+B-u, (1)
where x= [x,(t), ..., xy(t)]” is a vector of dynamical variables of the entire network, u= [u(f), ..., uy(t)]" is a
vector defining the set of control input signals, A = {a;}y. v is the adjacency matrix with N being the number of

nodes in the network, and B = by oy 18 control input matrix specifying the set of Ny, “driver” nodes*, each
D.

receiving a control signal that corresponds to one component of the control vector u. From the linear systems
theory, optimal control of a linear dynamical network in the sense of minimized energy cost can be achieved

T
when the input control signals u, are chosen as***”:u, = B" - ¢* 0. w!. (x,, — e . x,), where

te T
w= e B. BT A Tdr
ty (2)
is the Gramian matrix, a positive-definite and symmetric matrix*®, which serves as the base to determine quan-
titatively if a system is actually controllable. In particular, the system is controllable only when W is nonsingular
(invertible) for given control precision®**”. With the control input signal u, the energy cost is*

t¢
E(t;) = J; ul - u,dt, 3

where control is initiated at f=0 and ended at t =t¢;.
To present concrete evidence for the existence of physically uncontrollable networks, we use the Erdos-Renyi
(ER) type of directed random networks®® and the Barabasi-Albert (BA) type of directed scale-free networks* with
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a single parameter P,. The meaning of P, is the following. Given a pair of linked nodes, i and j, the probability that
the link points from the smaller-degree node to the larger-degree one is Py, and the probability in the opposite
direction is 1 — Py, The link direction is chosen randomly if i and j have the same degree. To determine the set of
driver nodes, we use the maximum-matching algorithm®’, which gives the control matrix B. For each combina-
tion of A and B, we first randomly choose the initial and final states. We then calculate the corresponding Gramian
matrix W, its condition number, the input signal u,, the actual final states x;‘f, and finally the control energy E(t;).
Repeating this process for each and every independent network realization in the ensemble enables an extensive
statistical analysis of the control process.

Mathematically, if the Gramian matrix W is singular, the energy diverges. Through extensive and systematic
numerical computations, we find that, even when W is non-singular in the mathematical sense, for typical com-
plex networks its condition number can be enormously large, making it effectively singular as any physical meas-
urement or actual computation must be associated with a finite precision. Say in an experiment the precision of
measurement is €. In a computational implementation of control, ¢ is effectively the computer round-oft error.
Consider the solution vector X of the linear equation: W-X =Y, where Y is a known vector. Let Cy, be the condi-
tion number of W. The accuracy of the numerical solution of X, denoted by ey=107% (k is a positive integer), is
bounded by the product between Cy, and £%. We see that, if Cyy is larger than 10 */e = T, it is not possible to
bring the system to within 107 of the final state at finite control cost, so physically control cannot be achieved in
finite time.

For a large number of networks drawn from an ensemble of networks with a pre-defined topology, the condi-
tion numbers of their Gramian matrices are often orders of magnitude larger than C,,. Figure 1 shows the corre-
lation between the condition number Cy, and the control error ey. We observe that, within a certain range of Cy,
an approximate scaling relation exists between Cy, and ey, as shown in panels (a, ¢, e, g). However, the scaling
disappears outside the range where the Gramian matrix W is ill conditioned, leading to considerable errors when
computing the matrix inverse. In principle, the scaling regime can be extended with improved computational
precision, but not indefinitely. For the networks with an ill conditioned Gramian matrix, not only is the control
vector unable to drive the system to the target state, but the associated energy can be extremely large. These obser-
vations suggest the following criterion to define physical controllability in terms of the control energy cost: a
network is controllable with respect to a specific control setting if and only if the condition number of its Gramian
matrix is less than Cy, a critical number determined by both the measurement or computational error and the
required precision of control. For a given set of network parameters (hence a given network ensemble) and con-
trol setting, the probability that the condition number of the Gramian matrix is less than (_?W, P(C w)» can effec-
tively serve as a quantitative measure of physical controllability. Increasing the precision of the computation, e.g.,
by using special simulation packages with round-off error orders of magnitude smaller than that associated with
the conventional double-precision computation, would convert a few uncontrollable cases into controllable ones,
but vast majority of the uncontrollable cases remain unchanged.

Note that, physical controllability is characterized by the condition number of the Gramian matrix W, which
is defined by the adjacency matrix A, the control matrix B, and the control time from f, to ¢ The adjacency matrix
A totally defines the structure of the underlying network and, in the absence of control, solely determines the
evolution of the system from an initial state. The purpose of control is to design the control matrix B so that the
Gramian matrix is numerically to ensure that the system is physically controllable, which can be accomplished
regardless of whether the matrix A is stable or unstable.

We also note that, in a linear dynamical system, the Gramian matrix W is determined by the network struc-
ture, the control configuration, and the control time; it does not depend on the dynamical trajectory. As a result,
additive noise of reasonable amplitude does not affect the physical controllability of the network.

Structural controllability does not imply physical controllability. We present evidence that struc-
tural and physical controllabilities are not necessarily compatible with each other. Figure 2(a,b) show the percent-
age of driver nodes, n, = Np/N, versus the directional link probability P,. We see that np, is minimized for
P, =0.5, indicating a maximal (optimal) level of structural controllability because only a few control signals are
needed to control the whole network®. But can physical controllability be achieved in the same parameter regime
where structural controllability is optimized? Figure 2(c,d) show the corresponding physical controllability
P(C,) versus the network parameter P;. We see that, in both regimes of small and large P, values where structural
controllability is weak [corresponding to relatively high values of np, in Fig. 2(a,b)], the physical controllability is
relatively strong. In the regime of small P, values, most directed links in the network point from small to large
degree nodes. In this case, the network is more physically controllable, in agreement with intuition. The striking
result is that, in the regime of intermediate Py values (e.g., P, around 0.5) where the number of driver nodes to
control the whole network is minimized so that structural controllability is regarded the strongest, the physical
controllability is in fact the weakest, as the probability of the condition number P(C,,/) being small is close to zero.
For example, for the random networks in Fig. 2(c), for (k) =4, the minimum value of P(C,,) is only about 0.1 for
Py, ~ 0.6, while for (k) =6 and (k) =8, the minimum values are essentially zero. Surprisingly, near zero values of
P(Cyy) occur in a wide range of the parameter Py, e.g., [0.3, 0.8] and [0.2, 0.9] for (k) =6 and (k) =8, respectively,
as shown in Fig. 2(c). This indicates that the network is physically uncontrollable for most cases where structural
controllability is deemed to be strong. BA scale-free networks behave similarly, as illustrated in Fig. 2(d). Another
finding from Fig. 2 is that Ny, is symmetric about P, = 0.5, but the symmetry is broken for P(Cyy), indicating that
there is no simple linear correlation between Np, and P(Cyy). It is thus necessary to find the fundamental struc-
tural properties responsible for the smallness of P(Cyy). Through a detailed analysis of the energy cost associated
with controlling a simple one-dimensional chain and a double chain network ( Methods) and of the energy
scaling?”, we identify the longest control chains (LCCs), the shortest paths through which the control energy is
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Figure 1. Condition number Cy, versus control precision ey for random and scale-free networks. Network
size is N=100 for (a-d) and 200 for (e-h), average degree is (k) = 6 for ER random networks [(a), (b), (e) and
(f)] and 8 for BA scale-free networks [(c), (d), (g) and (h)]. Directional link probability between any pair of
nodes is P,=0.1. Panels (a), (c), (e) and (g) show the scaling relation between the condition number Cy, and
the control precision ey. Panels (b), (d), (f) and (h) show the fraction R, of the networks with a certain C,,,
number. The scaling relation holds within some Cy,-ey region with boundaries specified as the black dashed
lines. The ey values are not physically meaningful outside the boundaries that are defined according to the
precision limit of computation. The thresholds of C;, and e used in the computations are 10'> and 107%,
respectively, which are indicated as the blue dashed lines. The threshold values are chosen to lie within the
physical boundaries so that the calculations for all Cy, values are meaningful.

“flowed” to all nodes in the network, as the fundamental structural component responsible for the control energy.
The longer the LCCs, the more singular the Gramian matrix, and the smaller the probability P(C,,). The maximal
LCC is effectively the control diameter of the network?.

Physical controllability of an electrical circuit network and a strategy to balance control
energy and extra inputs. To further illustrate the concept of physical controllability, we consider a real
one-dimensional cascade parallel RC circuit network, as schematically illustrated in Fig. 3(a). The network can
be represented by a bidirectional 1D chain with self-loops for all the nodes, as shown in Fig. 3(b) (see Methods).
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Figure 2. Structural and physical controllability measures in directed networks. Structural controllability
measure np, versus directional edge probability P, for (a) ER random networks and (b) BA scale-free networks
of size N=1000 and three values of the average degree ((k) =4, 6, and 8). The dash-dotted lines represent the
results obtained from the cavity method*®, and the squares, triangles, and circles are simulation results from the
maximum matching algorithm*. (c,d) Measure of physical controllability P(C,,) for ER random and BA scale-
free networks of size N =100, respectively, where P(C,,) is the probability that the condition number of the
Gramian matrix is less than some physically reasonable threshold value. Comparing (a) with (c), or (b) with (d),
we observe the striking phenomenon that, in the parameter regime where the number of driver nodes is
minimized so that the corresponding networks are deemed to be most structurally controllable, they are
physically uncontrollable. The phenomenon persists regardless of the network size and type. All nodes are self-
loop free. The qualitative behavior is robust against variations in the value of Cy,,.

The network size can be enlarged, say by one unit, by attaching an additional branch of resistor and capacitor at
the right end of the circuit. The state u,(f) of node i at time ¢ is the voltage of capacitor i, and the input voltage u(t)
represents the control signal. The purpose of control is to drive the voltages of the capacitors from a set of values
to another within time t; through the input voltage u(t). The control energy can then be calculated by Eq. (3). The
actual energy dissipated in the circuit during the control process is given by

I

E,, :fo U - 1(t)dt, @
where U(f) = u(t) and I(t) are the input voltage and current at time t, respectively, and E,, is in units of Joule.
By making the circuit equivalent to a 1D chain network, we have three types of energy: the control energy of the
actual circuit calculated from Eq. (3), the dissipated energy of the circuit from Eq. (4), and the control energy of
the 1D equivalent network. Figure 3(c) shows that the control energy and the dissipated energy of the circuit do
not differ substantially from the energy calculated from the unidirectional 1D chain. Among the three types of
energy, the energy cost associated with the control process calculated from Eq. (4) is maximal.

Our extensive computations reveal that many structurally controllable networks are not physically control-
lable due to a combination of the ill-conditioned Gramian matrix and the finite computational or experimental
error. Our analysis of the chain model (Methods) suggests a simple but effective strategy to reduce the energy
significantly so as to enhance the physical controllability of the network: to place extra control signals along
the LCCs to break the chains into shorter subchains. (In Methods, we show how the redundant control input
can be planted in a circuit network.) To be illustrative, we consider a unidirectional 1D chain and add an extra
control input at the ith node. As shown in Fig. 3(d), the magnitude of the control energy is reduced dramatically.
The optimal location to place the extra control should be near in the middle of the chain so as to minimize the
length of the LCC using a minimal number of extra control signals. In Fig. 3(d), the red circles represent a 1D
chain and indicate that this simple strategy of adding one redundant control signal near the middle can reduce
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Figure 3. Illustration of parallel R-C circuit and optimization of control energy. (a) A cascade parallel R-C
circuit with L =7 resistors (R, R,, ..., and R;, each of resistance 1Q)) and 7 capacitors (C,, C,, ..., and C;, each
of capacitance 1F). External voltage input u(f) is applied from the left side of the circuit, and the voltage of
capacitor C;is u;(t)(1 <i<L). An extra external current input i(f) serves as a redundant control input injected
into the capacitor Cs, where i; and i, denote the currents through resistors R; and R,, respectively. In absence of
the extra current input, i5(f) — iy() is the current through the branch of C;. (b) Network representation of the
circuit in (a) as a bidirectional 1D chain network of seven nodes, where the external voltage input u(t) is injected
into node 1 (yellow driver node, the controller). The dynamical state of node i is described by the voltage of its
capacitor, u(f). Links (blue) between nodes are bidirectional and have uniform weight 1 in either direction.
Each node has a self-link (red) of weight —2, except the ending node (node 7) whose self-link has weight —1.
The extra external current input i,(¢) serves as a redundant control input injected into node 3 of the network in
(b). Now there are two driver nodes (yellow) in the network, nodes 1 and 3. (¢) Energy required for controlling
a unidirectional chain (red circle) and the corresponding circuit (blue square) as well as the dissipated energy
(green triangle) of the circuit calculated from Eq. (4) versus chain length L. (d) Control and dissipated energies
in presence of a redundant control signal to node i (i > 1), which breaks the chain into two subchains of lengths
iand L — i, respectively.

dramatically the required energy. For the circuit network in Fig. 3, the redundant control input can be realized
by inducing external current input into a capacitor. In Fig. 3(d), the real energy is represented by green triangles,
which reaches the minimum when the extra input is putting around the middle. Applying a single redundant
control input can thus be an extremely efficient strategy to make the one-dimensional chain network physically
controllable.

Control energy optimization of complex networks. For a complex network, there often exist multiple
LCCs, requiring multiple redundant control inputs. With insights from the RC circuit example, we see that a
strategy is to place one redundant control input at the middle of each LCC. In this case, each LCC in the network
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Figure 4. Effects of redundant control inputs. (a) For control diameter D=4, distribution of the normalized
energy reduction AE/E with redundant control in an ensemble of 10000 ER-random networks ({(k) =6,
P,=0.1). Results from the LCC-breaking optimization and random control augmentation are marked by “mid”
(red circles) and “R-mid”(blue squares), respectively. For each network, a corresponding number of additional
random control inputs are applied to the system 10 times to average out the statistical fluctuations. Panel (b)
shows the AE/E distributions for networks with control diameter D= 5.

|

is broken into two subchains. Figure 4(a) shows the effect of this optimization strategy on the energy distribution.
For comparison, the same number of redundant control inputs are also applied randomly throughout the net-
work. The reduction ratio between the control energy under optimization strategy, AE, and the original control
energy E characterizes the effectiveness of the optimization process. In particular, if the distribution of AE/E is
concentrated on large values of AE/E, then the corresponding optimization strategy can be deemed to be effec-
tive. As shown in Fig. 4(a), for relatively large AE/E values, P(AE/E) as a result of optimization has values that
are systematically larger than those under random control signal augmentation, while the opposite situation is
observed for regions with relatively smaller AE/E. Thus, our optimization strategy outperforms the random strat-
egy. The networks requiring proper optimization to be physically controlled are typically those with large control
diameters. Figure 4(b) show that this is indeed the case: for networks with larger values of D¢, the performance of
our optimization strategy is significantly better than that with random placement of extra controllers.

Discussion

As stated in ref. 4, the ultimate proof that one understands a complex network completely lies in one’s ability to
control it. However, we find that strong structural controllability is no guarantee that the network can be physi-
cally controlled. To resolve this paradox, We develop a physical controllability framework in terms of the control
energy cost and the number of external input signals. To illustrate the framework, we focus on the situation where
the structural controllability theory yields a minimum number of external input signals required for full control
of the network, and determine whether in these situations the control energy is affordable so as to realize actual
control. Our systematic computations and analysis reveal a rather unexpected phenomenon: due to the singu-
lar nature of the control Gramian matrix, in the parameter regimes where optimal structural controllability is
achieved in the sense that the number of driver nodes is minimized, energy cost can be physically impossible to
accommodate. To obtain a systematic understanding, we focus on a bidirectional 1D chain and study the relation-
ship between energy and chain length. We then apply the 1D chain model to complex networks based on the idea
of LCCs. In fact, the simple chain model captures the scaling behavior of energy distribution found in random
networks?*?”. The chain model also provides a guiding principle to articulate optimization strategies to reduce the
control energy, which are tested using a RC circuit network and model complex networks.

An intuitive picture of the interrelation between mathematical controllability*'? and our physical controlla-
bility is the following. In a fictitious world where the Gramian matrix is not singular (regardless of its condition
number) and the computer round off or experimental errors are absolutely zero, using Np controllers as deter-
mined by the structural controllability theory can bring the networked system from any initial state to any final
state in a given time. However, in the physical world, the inevitable measurement or computational errors will
have a devastating consequence in the execution of actual control as the Gramian matrix is typically effectively
singular with an arbitrarily large condition number. The dynamical interplay between the error and the singular
Gramian matrix makes the system uncontrollable in the sense that it cannot be driven to the final state in finite
time within the desirable precision and the energy required in the process diverges. Often, to realize physical
control, many more control signals than those determined by the structural controllability theory are needed.

Our work indicates the difficulty of achieving actual control of complex networks associated with even linear
dynamics. Although the mathematical controllability theories*!° offer theoretically justified frameworks to guide
us to apply external inputs on a minimum set of driver nodes, when we implement control to steer a system
to a desired state, the energy consumption is likely to be too large to be affordable. For nonlinear dynamical
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networks, we continue to lack a general controllability framework and an understanding of required control
energy, although progress has been made?*!~, in spite of the fact that for specific types of systems, e.g., gene
regulatory networks, controllability can be defined in terms of the coexisting attractors (final destinations) of the
system®. Unlike linear networked systems, controllability of a nonlinear network depends on both the network
structure and the system dynamics. We speculate that the physical controllability of a nonlinear dynamical net-
work, if it can indeed be defined, would depend on both the structural controllability and the system dynamics. At
the present we still know very little about controlling complex networks hosting nonlinear dynamics, and further
effort is needed to address this challenging but greatly important problem shared by a wide range of fields.

Methods
Control energy of one-dimensional chain model. To gain insights into how a network’s structure
affects the control energy, we rewrite Eq. (3) as E(t;) = xg ~H'. xX,, Where H = e Al W e_AT". Since H is
positive definite and symmetric like W, its inverse H ' can be decomposed in terms of its eigenvectors
as H''=Q-A-QT, where Q=[q;, g5 .-, qu] is composed of the orthonormal eigenvectors that satisfy
Q-Q"=Q"-Q=1I and A =diag{\,\,, ..., Ay} is the diagonal eigenvalue matrix of H~! in a descending
order. Numerically, we find that A, is typically much larger than other eigenvalues. We thus have
E(tf)—xo Q-A- Q E, 1)\( Xo) ~)\(q1 Xo)

In an undirected network the ad)acency matrix A is positive definite and symmetric. We can decompose A
into the form A=V-S. VT, where the columns of V constitute the orthonormal eigenvectors of A and S = diagf{s,,
S, ..., Sy} is the diagonal eigenvalue matrix of A in a descending order. We thus have

Hee. w.eAtr—y. oSyl w. v. e Syl
Let

A = diag{N iy Appyy oo Ay, } = diagl{l/An, VA o /A
be the eigenvalue matrix of H in a descending order. The energy can be expressed as

E(tf) = /\l(qlT ' XO)2 = /\I;:](qlT ' X0)2~ (5)

We consider a bidiretional 1D chain network and provide an analytical calculation of the relationship between
control energy and chain length L. In the undirected chain, the adjacency matrix is defined as
01
10 .
A=l 1" 1
“.01
10 LxL

the control matrix is B=[1, 0, ..., 0]%, and the eigenvalues and eigenvectors of A are, respectively,

s; =2 cos T il, i=1,...,L,
L+1

(6)

] ij=1,..,L

0 — 2 i[
N L+1 L+1 (7)

Recall that H = V - ¢S4 . ( f TSt yT . B.BT. V. eMdt) - e 5. V7. Substituting this in Eqs (6) and (7),
after some algebraic mampulatlon, we obtain

H=—Yv.p.p.D.V
L+1 (8)
where D =diag{sin(), sin(20), ..., sin(L6)}. and Py = fo2tf ¢ lcos i)+ coskt gt vwith = /(L 4 1),j,k=1,...,L.
The Rayleigh-Ritz theorem can be used to bound P as:

/\PL<—Y P Y <,

T yy

andy= [y}, y,, ..., ;)T is an arbitrary nonzero column vector, \ p,and \, are the maximal and minimal eigenval-
ues of P, respectively. Letting T=2t;, we have
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N
T )
YT Py = (yl...yL)[J; e*[COS(]G)‘F cos(ké)]rdT

LxL| Y

L T
—[cos(j#)+ cos(k6)] T

<ZL:yje[cos(j9)] t, iyje[cosﬁﬁ)]t> ,

j=1 j=1

)
with (f, g) f fgdr. Lettlng b= ¢ <09 and performing a Taylor expansion on b’ around t= O we obtain

=yEl- cos(}@)] -+ [— cos(J@)]L i —, with ;€ 0, T]. Nowlettmgq (t) = Xk —cos(jO) I —, we have
be =g, (t) + [—cos (]0)] (t /L!). Consequently, the numerator in the Raylelgh quotient can be expressed as

L
yTPY <Z}’]]>Zy >
j=1
L " o1 . tt
+ Zyj[fcos(]@)] ﬁ, Zyj[fcos(iG)] j

i=1 s =1
L
<Zyjqj(t), 1> ‘
j=1

=~

Ml‘*

yiq;(t) +y;[- COS(J(’)] -

.E

1

L
19,0+, [—cos(j) 1" ﬁ] >

.
Il

L L L L LL
Z)’]‘Ij(t)» Zly]q](t)> + 2<Zly1q1(t)’ Zlyj[—COS(ie)]L ﬁ>
j= = = )

j=1

-

L L TL L
J= k=

j=1
Denote asK; Denote asK,
LY L
* F j,%::l|yjyk | !
Denote asK; ( 1 0)

Sincey=1[y}, ¥, ..., y;) T is an arbitrary nonzero column vector, for each L and T, we can choose y =y, insofar
as K, and K, are relatively small compared with K;. We can normalize yz; -y to arrive at

L

>
k=1

TZL

2

Yo Py, (I ol L
2

(L")

Ap, < T Tm |\ L

- T
Y Yo L

>

o Y| T ™

(11

where Ap, I8 the smallest elgenvalue of P. Since P is symmetric and positive definite, using Cholesky decomposi-
tion we can obtain its factorization“* as P= U”- U, where Uis the upper trlangular matrix with its diagonal being
the square roots of eigenvalues of P. Equation (8) can then be written as H = —V D-U"-U-D- V" Since
orthonormal transform does not change the eigenvalues of a matrix, "H'has the same eigenvalues as
R= L—D U'-U-D= L—HD Ut (D - UMY, Suppose Ay = d1ag{)\P1, Apy oor A L} is the diagonal
eigenvalue matrix of P in a descending order. We then have

1 . 2 1
Ap (sin kf)” < Aps
e e

where j and k run from 1 to L. For arbitrary but fixed x,, the control energy E(#;) can be approximated as

2
(L+1)(f)

E(t) ~ O\g)) =
f

(12)

where we see that E(t;) increases faster than exponential with L. As shown in Fig. 5(a), the energy required to
control a unidirectional 1D chain nearly overlaps with that of a bidirectional one with identical weights. From
Fig. 5(b—d) we see that Eq. (12) provides a reasonably accurate estimate of the control energy.

Furthermore, we find numerically that Eq. (5) holds for random and scale-free networks. As shown in Fig. 6,
thereisa strong correlation between the average network control energy, (E), and the smallest eigenvalue of the
H-matrix, Ay , ! for ER random and BA scale-free networks, indicating that the network control energy is essen-
tially determined by the smallest eigenvalue of its H-matrix.
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a 10%° b _—
- F
10°F ANy X
| s EHDEY? ‘

10

Figure 5. Control energy for 1D chain. (a) Energies required to control a unidirectional chain E,; (purple
circles) and a bidirectional one E,; (green squares) versus chain length L. (b), (¢) and (d) Control energies of
bidirectional chain calculated by simulation (red squares), A ;; ! (azure triangles), and chain length L as shown in
Eq. (12) (navy crosses) for different values of the control time £=0.3, 0.5, 1, respectively.

10" ;
a
10° |
A
5
v
10" |
5 D)j = 4
10° kit 1 10
10° 10 10° 10" 10* 10° 10° 10"
<A > <A >

Figure 6. Correlation between network control energy and the smallest eigenvalue of H-matrix. Network
size is N=100, directional link probability between any pair of nodes is P, = 0.1, and average degree is (a)
(k) =6 for ER random networks and (b) (k) = 8 for BA sale-free networks.

Network representation of a circuit system. We consider a cascade parallel R-C circuit consisting of
three identical resistors and capacitors as an example to illustrate how the circuit can be abstracted into a directed
network, as shown in Fig. 7. For convenience, we set R, =R, = R; =R and C, = C,= C;=C, and denote the cur-
rents through Ry, R,, and R; as i,(1), i,(), and i5(t), respectively. The equations of the circuit are
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a : b

-2 -1

2
|E(Z| w(t) == C1u2 ® ::C2 u3(t) :=C3 e' e ‘_

P uq () uy (t) uz(t)

i() = i3()

uz (t)i us ® ==

l/ ip(8) — i3(8)
\1, l
ie (£)

Figure 7. Controlling and optimizing a cascade parallel RC circuit system and the corresponding network
presentation. (a) A cascade parallel R-C circuit with 3 resistors (R;, R,, and R;, each of resistance 1Q)) and 3
capacitors (C,, C,, and C;, each of capacitance 1F), where u(?) is the external input voltage, u,(%), u,(t), and u;(t)
are the voltages on the capacitors C,, C,, and C;, and i,(#), i,(t), and i5(t) are the currents through the resistors
Ry, Ry, and R;, respectively. (b) Network representation of the circuit in (a). (¢) Circuit with an extra external
current input i.(t) into the capacitor C,. (d) The extra external current input i.(f) serves as a redundant control
input injected into node 2 of the network in (b). There are two driver nodes (yellow) in the network: 1 and 2.

u(t) = iL(OR + u(t)
w(®) = LOR + uy(0)
uy(t) = i;(t)R + us(t)

c—d”(;t(t) = i) — iy(0)

cd”gt(t) — i) — k(1)

duy(t)

g = H0 (13)

After some algebraic manipulation, we have

du, (1) 2
1 = Lt 1)+ —ul(t
dt RCul()+R uZ(HRcu()
du, (t
%() = () ~ () + (o)
dus(t) 1 1
= = () — —us(b),
dt RCuZ( ) Rc”3( ) (14)
which can be written as
dw@| (L2 1
dt RC RC u,(£) L
du;t(t) _ é 2 1 u, ()| + RC |1
duy (1) S S N L A
ar RC  RC (15)
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Setting R=1Q and C= 1F, we have

du, (1)
dt u (1)
duy () | _ A |uy(®| 4 B - u(®),
. dt uy(t)
dus(t)
dt "
where
-2 1 0
A=|1 -2 1
o (17)

is the adjacency matrix of the network representing the circuit, and
1
B=|0
0 (18)

is the control input matrix. The circuit has thus been transferred into a 3-node bidirectional 1D chain network
with adjacency matrix A.

Implementation of extra control input in the circuit system.  Without loss of generality, we inject an
extra external current input i.(t) into the capacitor C,, and the circuit equations become:

u(t) = iy(HR + u,(t)
u(t) = i, (R + u,(t)
Uy (1) = i5(R + uy(t)
du, (¢ . .
c‘il;t() = i(t) — i(D)
d
c%(t) = iy(t) — i(t) + i,(t)
dus() .
g 0 (19)
The state equations are
du, (1)
dr
)
™) _ . Zl(t) +B .[“(f)]
dt z(t) < i)
duy () s
dt (20)
where
10
B.=101
00 (21)

is the control input matrix of the circuit under the original control input #(t) on node 1 and a redundant control
input i,(¢) to node 2. Similarly, the redundant control input can be injected into any capacitor.

It is necessary to keep all other nodes unaffected while introducing exactly one extra control input into the
circuit. However, any additional voltage change in any part of the circuit can lead to voltage changes on all the
capacitors. A change in the current through a capacitor will not affect the currents in other components of the
network, since only the time derivative of its voltage is affected. Thus, a meaningful way to introduce an extra con-
trol signal input to one node of a circuit’s network is to inject current into one particular capacitor in the circuit.
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