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Universal framework for edge 
controllability of complex networks
Shao-Peng Pang1,2, Wen-Xu Wang3,4, Fei Hao1,2 & Ying-Cheng Lai4,5

Dynamical processes occurring on the edges in complex networks are relevant to a variety of real-world 
situations. Despite recent advances, a framework for edge controllability is still required for complex 
networks of arbitrary structure and interaction strength. Generalizing a previously introduced class 
of processes for edge dynamics, the switchboard dynamics, and exploit- ing the exact controllability 
theory, we develop a universal framework in which the controllability of any node is exclusively 
determined by its local weighted structure. This framework enables us to identify a unique set of 
critical nodes for control, to derive analytic formulas and articulate efficient algorithms to determine 
the exact upper and lower controllability bounds, and to evaluate strongly structural controllability 
of any given network. Applying our framework to a large number of model and real-world networks, 
we find that the interaction strength plays a more significant role in edge controllability than the 
network structure does, due to a vast range between the bounds determined mainly by the interaction 
strength. Moreover, transcriptional regulatory networks and electronic circuits are much more strongly 
structurally controllable (SSC) than other types of real-world networks, directed networks are more SSC 
than undirected networks, and sparse networks are typically more SSC than dense networks.

Complex networks composed of interacting dynamical units are widespread in many natural, social and techno-
logical systems1–5. Great deal of effort has been devoted in the past decade to understand the evolution of complex 
networks and the interplay between network structures and dynamical processes6, 7. However, the problem of 
controlling complex networks8–14 remains unresolved as it is challenging to apply the classical control theory15–17 
to complex networks. Liu et al. made a breakthrough by developing a structural controllability theory18, 19 for 
complex networks, and offering a mathematical foundation and efficient computational algorithms based on the 
concept of maximum matching to characterize the controllability of directed networks20. An exact controllability 
theory was then developed to characterize and analyze the controllability of undirected networks21. The key issue 
underpinning these works on network controllability is to identify a minimum set of driver nodes in a network 
to steer the network system to any desired final state within finite time15–17. Due to the importance of the network 
control problem, recent years have witnessed a growing interest in investigating various aspects of controllability 
of complex networks22–37.

Most studies of network controllability focused on nodal dynamical processes, in which the variables are 
defined on individual nodes and the interactions occur exclusively among the neighboring nodes. However, in 
many real-world networks, edge dynamics can also be important. For example, in the Internet with computers 
and routers (a directed network), the edges represent physical connections such as Ethernet cables, optical fiber 
cables, and wireless connections, enabling nodes to transmit information. A node (e.g., a router) processes the 
information received from its inbound edges and decides to which nodes the information is transmitted through 
some outbound edges. The state variables are the inbound and outbound signals, and their dynamical evolutions 
are governed by the switching matrices. The state variables, together with the switching matrices, define the edge 
dynamics. Another example is railway networks, which are undirected, where the nodes represent stations and 
two nodes are connected by an edge if there is at least one train that stops at both nodes. A node receives and 
sends trains through the corresponding edge connected with it. The state variables are the inbound and outbound 
trains on an edge, and the transportation rule is modeled by the switching matrices. A pioneering work to address 
the edge controllability of complex networks was proposed by Nepusz and Vicsek38. They introduced the 
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switchboard dynamics as a general mathematical framework for edge dynamics and discovered that the structural 
controllability of edge dynamics can differ characteristically from that of nodal dynamics. Specifically, they con-
sidered directed complex networks G(V, E) with x denoting the vector specifying the state of each edge in the 
network, and with −yv  and +yv  being the state vectors corresponding to the incoming and outgoing edges of node v, 
respectively. Factors that can influence the evolution of the state vector +yv  are the vector −yv , the vector of the 
damping terms τv, and the external input vector uv. The edge dynamical process can then be described by the 
following switchboard dynamics:

στ= ⋅ − ⊗ ++ − +


Sy y y u , (1)v v v v v v v

where ∈ ×+ −
Sv

k kv v  is switching matrix. Its row number equals the out-degree +kv  and its column number is the 
in-degree −kv  of node v. σv is unity if node v is a driver node and is zero otherwise. ⊗ denotes the entry-wise prod-
uct of the two vectors of the same size. This switchboard dynamics is suitable for modeling a variety of real world 
situations such as social communications and load-balancing or routing on the Internet38, 39.

Reformulating the switchboard dynamics in terms of the edge variables yields a time invariant dynamical 
system:

= − ⋅ + ⋅


W T Hx x u( ) , (2)

where ∈ ×W M M is the transpose of the adjacency matrix of the line graph L(G) (see Fig. 1(a,b) for an example 
of a line graph), in which wij is nonzero if and only if the head of edge j is the tail of edge i. T is a diagonal matrix 
composed of the damping terms of each edge. H is a diagonal matrix where the i th element is σv if node v is the 
tail of edge i. The controllability of system (2) can be assessed and quantified by employing the structural control 
theory through the assumption that W − T is a structural matrix, while omitting the effect of interaction strengths 
in the switching matrix18, 20. Consequently, a minimum set of driven edges in the original network G can be iden-
tified by calculating the maximum matching of the line graph L(G). All the tail nodes of the driven edges are the 
driver nodes in G. One key result is that all divergent nodes ( >+ −k kv v ) are driver nodes, and that one arbitrary 
node from each balanced component ( = >+ −k k 0v v  for all nodes in a connected component) is also a driver 
node38. The criterion for discerning driver nodes gives rise to several structural controllability properties of edge 
dynamics that differ markedly from those associated with nodal dynamics. Other findings include that most of 

Figure 1.  Control of general switchboard dynamics. (a) A directed network G with four nodes: a, b, c, and d, 
and five edges: xi (i = 1, …, 5). (b) The line graph L(G) of the original directed network G. The colors of edges 
in L(G) correspond to those of the nodes in (a). (c) Structural switching matrices of the nodes in network G 
in (a). (d) Structural adjacency matrix W of the line graph L(G) in (b). (e) Driver node, driven edge and input 
signal for the structural adjacency matrix W. (f) Unweighted switching matrices of the nodes in network G in 
(a). (g) Unweighted adjacency matrix W of the line graph L(G) in (b). (h) Driver node, driven edge and input 
signals for the structural adjacency matrix W. Panels (c–e) and (f–h) correspond to the lower and upper bounds 
of controllability, respectively. The linearly dependent rows in W in (d,g) stem from independent rows in the 
switching matrices in (c,f), respectively. The edges associated with linearly dependent rows in W are the driven 
edges that should be controlled. The external input signals u should be imposed on the tail nodes of the driven 
edges.
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real-world networks are more controllable than their randomized counterparts, transcriptional regulatory net-
works are easy to be controlled, heterogeneous networks are more controllable than homogeneous networks, and 
a positive correlation between the in- and out-degrees can enhance the controllability38. Despite the interesting 
findings, since the structural controllability theory is valid only for directed networks, a number of open issues 
remain, such as the edge controllability of undirected networks, the effect of interaction strengths on the control-
lability, and the strong structural controllability associated with edge dynamics. It is worth of noting that strong 
structural controllability is an important index for measuring the robustness of controllability against uncertain-
ties or variations in the interaction strengths among the edges.

In this paper, we generalize the existing framework of structural edge controllability38 by developing a univer-
sal framework capable of characterizing the controllability of edge dynamics in arbitrary networks and interaction 
strengths. In particular, by bridging the exact controllability theory for nodal dynamics and the general switch-
board dynamics, we find that, for an arbitrary network with any distributions of the interaction strengths among 
the edges, the role of a node in edge dynamics and strong structural controllability is exclusively determined by 
the local weighted structure of the node. We use this key result to uncover a number of phenomena associated 
uniquely with edge controllability, which have no counterparts in nodal controllability. Firstly, the set of driver 
nodes in edge controllability is unique in an arbitrary network, whereas for nodal controllability, there are many 
configurations of driver node sets in spite of the fixed number of driver nodes. The set of strongly structurally 
controllable (SSC) nodes is unique and is fully determined by the local topology of each node, whereas for nodal 
controllability, there exists no criterion to identify the SSC nodes. Secondly, interaction strengths among the edges 
play a more significant role in edge controllability than the network structure does. Particularly, there exist lower 
and upper bounds of edge controllability, which are determined by the interaction strengths. We prove rigor-
ously that the lower and upper bounds are determined by the structural switching and the unweighted switching 
matrices, respectively. In fact, there is a vast range between the bounds, in which a broad spectrum of controlla-
bility can be achieved. Thirdly, applications of our framework to real-world networks show that transcriptional 
regulatory networks and electronic circuits have higher strong structural controllability. In addition, real directed 
networks are more SSC than undirected networks, and sparser networks are more SSC than denser networks. For 
all the results concerning general edge controllability and strongly structural controllability, we provide analytic 
formula and results from extensive numerical tests. We emphasize the universal nature of our edge controllability 
framework: it is applicable to arbitrary network structure (e.g., directed or undirected, weighted or unweighted) 
and interaction strengths among the edges. In fact, we demonstrate that for directed networks with structural 
switching matrices, a number of key results reduce to those of structural edge controllability.

Results
General switchboard dynamics.  In the original switchboard dynamics38, the switching matrix Sv must 
be a structural matrix, in which all nonzero elements are independent free parameters. Instead, we release the 
restriction of structural matrix Sv and consider a general switchboard dynamics with any kind of switching matri-
ces, in which the elements capture the interaction strengths among the edges. We exemplify two typical switching 
matrices, the weighted switching matrix and the unweighted switching matrix. In the former, all nonzero ele-
ments can be any values, and in the latter, all nonzero elements are one.

For directed networks, the general switchboard dynamics (GSBD) is described by Equation (2). The adjacency 
matrix W of the line graph is of the same type as Sv of each node (Fig. 1). In contrast, for undirected networks, 
Equation (2) cannot be immediately adopted because, associated with each edge, the interaction and transmission 
are bidirectional. Two neighboring edges connecting with the same node can be the input and output of each 
other. To define GSBD for undirected networks, we split each undirected edge into two directed edges of opposite 
directions and use a pair of state variables, ′x x( , )i i , to denote such an edge, where each variable corresponds to one 
of the directed edges. The state vector of the dynamical process occurring on undirected edges is then 

= ′ … ′x x x xx ( , , , , )M M
T

1 1 . The switching matrix can be written as ∈ ×Sv
k kv v, where kv is the degree of node v. 

For the whole network, the dynamical process can still be described by Equation (2), but the dimension of the 
matrix W is doubled: ∈ ×W M M2 2 , where M is the number of undirected edges in G. The properties of W are still 
determined by Sv (see Supplementary Fig. S1 for an illustration). Our GSBD thus provides a more general charac-
terization of the dynamics occurring on edges for arbitrary networks. The focus of our study is on the effect of the 
interaction strengths in the switching matrix on edge controllability. For a general switching matrix Sv, the con-
ventional structural control theory20 is not applicable, due to the non-uniform interaction strengths among the 
edges and the undirected nature of the network structure. This calls for a more general control theory to deter-
mine/quantify the edge controllability.

Controllability framework of the GSBD.  We make use of the exact controllability theory21 developed 
recently to determine the controllability of the GSBD. By definition, the controllability of a network is measured 
by the minimum number ND of driver nodes. Prior to the identification of the driver nodes, we must ascertain the 
minimum number MD of the driven edges as determined by the matrix W − T in Equation (2). According to the 
exact controllability theory35, the damping matrix T with identical diagonal elements has no effect on the control-
lability of the network characterized by W − T, which can be proven rigorously. That is, the set of driven edges and 
driver nodes will not be affected by T, so it can be neglected. As a result, all self-loops of nodes stemming from −T 
in the line graph L(G) can be eliminated (see Fig. 1). We then determine MD of G characterized by the adjacency 
matrix W and ND of L(G), and present our key results.

Figure 1 shows two representative cases of a simple directed network with structural and unweighted switch-
ing matrices. We can prove that the former and the latter cases generate the lower and upper bounds, respectively, 
of both MD and ND for any network (see Methods). The line graph L(G) is shown in Fig. 1(b). The driven edges 
in G correspond to the driver nodes in L(G). According to the exact controllability theory and the properties of 
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line graphs, we can prove that the minimum number of driver nodes in L(G) (driven edges in G) is M − rank(W), 
where M is the number of edges in G (see Supplementary Note 1). That is, MD is the number of linearly dependent 
rows in W. For example, in the structural matrix W of Fig. 1(d), the row corresponding to x5 is linearly dependent 
on the other rows, indicating that a control signal should be applied to x5. Figure 1(g) illustrates linearly depend-
ent rows in the unweighted matrix W. Making use of a generic feature (see Methods and Supplementary Note 2) 
of line graphs, we obtain our first key result: the linearly dependent rows in W are exclusively determined by 
the linearly dependent rows in the switching matrices Si of all nodes. As shown in Fig. 1, the linearly dependent 
row (x5) in W (Fig. 1(d)) stems from Sd (Fig. 1(c)) with a null set. The other rows in W are linearly independent 
because Sa, Sb and Sc in Fig. 1(c) are row-full rank. Similarly, for the unweighted W in Fig. 1(g), the two linearly 
dependent rows x1 and x5 originate from Sa and Sd in Fig. 1(f), respectively. This key finding indicates that driven 
edges can be identified from the switching matrices Si by using the local information of nodes without relying on 
the line graph L(G), which gives

∑ ∑β= − +
= =

M M Srank( ) ,
(3)i

N

i
i

C

iD
1 1

where C is the number of connected components in G. βi = 1 if the switching matrices of all nodes in component 
i are square matrices with full rank, and βi = 0 otherwise. The second term from each connected component has 
little effect on MD. As a result, MD is determined by the rank of Si.

After the driven edges are determined, we can immediately specify the driver nodes at the tail end of the 
driven edges, ensuring that external control signals applied to the driver nodes can directly pass on to the driven 
edges. As shown in Fig. 1(e,h), the driver nodes at the tail end of the driven edges can be identified based on local 
information contained in the switching matrices in Fig. 1(c,f), which does not depend on the global structure of 
L(G). In general, according to the characteristics of the driven edges and the relation between the driven edges 
and the driver nodes, we can prove that Si associated with driver node i satisfies

< +S krank( ) , (4)i i

where +ki  is the out-degree of i. This means that, if the switching matrix of a node is not full row-rank, the node 
must be a driver node. This is the general criterion for identifying the driver nodes based only on the local infor-
mation of each node. From this result, the number ND of the driver nodes can be calculated through

∑β= +<
=

+N N ,
(5)S k

i

C

iD (rank( ) )
1

i i

where βi is the same as that in Equation (3). Analogous to the expression of MD, the second term in Equation (5) 
has little effect on ND. We refer to full row-rank as full rank in the remaining paper for simplicity.

It is worth noting that our edge controllability theory is not a trivial application of the exact controllability the-
ory to the line graphs of a network. In particular, by exploiting the unique properties of a line graph, we prove that 
the controllability of a node is determined only by its local weight structure. As a result, the set of driver nodes in 
a general network with an arbitrary distribution of interaction strengths among the edges is unique. This is our 
key result here. Moreover, we also prove that, for the upper and lower controllability bounds, the driver nodes are 
determined only by the local topology of each node, enabling readily implementable algorithms to find the driver 
nodes associated with the bounds. As presented below, this key result can also address the issue of strong struc-
tural controllability, which is important for understanding the robustness of controlling networks in the presence 
of uncertainties or variations of interaction strengths among the edges.

Universal controllability bounds.  We can prove that there exist universal upper and lower bounds for 
edge controllability for any network, and that any value of the controllability in between can be achieved by 
adjusting the interaction strengths among the edges. In particular, the upper and lower bounds are reached if Si 
of each node is an unweighted matrix and a structural matrix, respectively (see Methods for a detailed proof).

In general, it is necessary to calculate the rank(Si) of all nodes to identify the driver nodes and to obtain ND and 
MD. However, for structural or unweighted Si, we are able to identify the driver nodes and the driven edges based 
solely on their in-degrees −kv  and out-degrees +kv  without having to calculate rank(Si). As shown in Fig. 2, nodes 
in terms of their in- and out-degrees can be classified into three categories: (I) =− +k kv v , (II) >− +k kv v , and (III) 

<− +k kv v . For case (I), e.g., node a in Fig. 2(a), the structural Sa is always full rank (Fig. 2(b)), indicating that node 
a is non-essential in the sense that no external input signal is needed to control the outgoing edges of a, and that 
all the outgoing edges of a are non-essential as well. In contrast, for the unweighted Sa, rank(Sa) is always unity 
and it satisfies the inequality < +S krank( )a a , as shown in Fig. 2(c). Thus, without any external input signal applied 
to the node, only one outgoing edge can be fully controlled, regardless of the degree of a. As a result, a in this case 
must be a driver node. Moreover, its one outgoing edge that can be arbitrarily selected is a non-essential edge, 
while the other outgoing edges are driven edges. For case (II), e.g., node b in Fig. 2(d), the structural Sb is always 
full rank ( = +S krank( )b b ), indicating that node b and all of b’s outgoing edges are non-essential. This is similar to 
the structural matrix Sa in case (I), as shown in Fig. 2(e). In contrast, for the unweighted Sb, despite the inequality 

>− +k kb b , the rank of Sb is always unity and b is a driver node with a single non-essential edge among all b’s out-
going edges, as shown in Fig. 2(f). This also implies that, for an unweighted switching matrix, the associated node 
must be a driver node if >+k 1v . For case (III), e.g., node c in Fig. 2(g), both the structural Sc (Fig. 2(h)) and the 
unweighted Sc (Fig. 2(i)) satisfy the inequality < +S krank( )c c . As a result, node c is a driver node for either struc-
tural or unweighted switching matrix, with different driven edges for the two scenarios.
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From the above illustrations and arguments, we obtain our key result of identifying the driver nodes based on 
their +kv  and −kv  for the lower (structural switching matrix) and the upper (unweighted switching matrix) bounds. 
In particular, for a directed network, at the lower bound, a node with more outgoing than incoming edges must 
be a driver node. For the upper bound, a node with more than one outgoing edge must be a driver node, and a 
node without incoming edges and with a single outgoing edge must also be a driver node. For an undirected net-
work, at the lower bound, a single driver node is required for each connected component, while for the upper 
bound, a node with more than one edge must be a driver node.

According to the criterion, for identifying the driver nodes and the driven edges, ND and MD associated with 
the lower and upper bounds can be calculated, as summarized in Table 1, where the contributions from isolated 
components are included (see Methods and Supplementary Note 3). Note that, for the lower bound in directed 
networks, our results reduce to those of structural edge controllability (see Supplementary Note 4). For the other 
scenarios, the results have not been reported prior to our work to our knowledge.

Next we will verify the universal controllability bounds for both directed and undirected model networks and 
offer further analytical results. According to Liu et al.20, the nodal controllability nD can be defined as the ratio of 

Figure 2.  Classification of edges and nodes based on local information. (a) Node a with two incoming and 
outgoing edges. (b) Structural switching matrix Sa of node a and the category of node a and its outgoing edges. 
Sa is row-full rank, so the two outgoing edges are non-essential (ordinary) edges and a is a non-essential 
node. (c) Unweighted switching matrix Sa and the category of node a and its outgoing edges. In Sa, there is a 
linearly dependent row corresponding to a driven outgoing edge. Node a at the tail end of the driven edge is a 
driver node. (d) Node b with three incoming edges and two outgoing edges. (e) Structural switching matrix Sb 
with row-full rank and the category of node b and its outgoing edges. Node b and its outgoing edges are non-
essential. (f) Unweighted switching matrix Sb and the category of node b and its outgoing edges. The row-rank 
of Sb is unity, leading to one driven edge. Node b becomes a driver node with one driven edge. (g) Node c with 
two incoming edges and three outgoing edges. (h) Structural switching matrix Sc with deficient row-rank and 
the category of node b and its outgoing edges. The row-rank of Sc is 2, so there are two non-essential edges. 
Node c is a driver node with one driven edge. (i) Unweighted switching matrix Sc and the category of node c and 
its outgoing edges. The row-rank of Sc is unity, indicating one non-essential edge and two driven edges. Node c 
with two driven outgoing edges is thus a driver node. The structural switching matrices in (b), (e,h) correspond 
to the lower bound, and the unweighted switching matrices in (c), (f,i) are associated with the upper bound.

Directed Undirected

ND
U β+ + ∑ ′+> −= += =N Nkv kv kv i

C
i( 1) ( 0, 1) 1 β+ ∑ ′> =N kv i

C
i( 1) 1

ND
L β+ ∑ ″−< + =N kv kv i

C
i( ) 1 β∑ ″=i

C
i1

MD
U β− + ∑ ′−> +> =M N kv kv i

C
i( 0, 0) 1 β− + ∑ ′> =M N kv i

C
i( 0) 1

MD
L β− ∑ + ∑ ″=

− +
=M k kmin { , }i

N
i i i

C
i1 1 β∑ ″=i

C
i1

Table 1.  Numbers of driver nodes and driven edges associated with upper and lower bounds. For general 
networks (directed or undirected), ND

U and MD
U are the numbers of driver nodes and driven edges associated 

with the upper bound, respectively. Similar notations hold for ND
L and MD

L. The upper and lower bounds are 
associated with unweighted and structural switching matrices, respectively. N and M are the number of nodes 
and the number of edges in network G, respectively, and +kv  and −kv  are the out- and in-degree, respectively. The 
quantity β ′i  is unity if the i th connected component only contains nodes with = =+ −k k 1v v ; β ′ = 0i  otherwise. 
The quantity β ″i  is unity if the i th connected component is balanced ( = >+ −k k 0v v  for all nodes); β ″ = 0i  
otherwise.
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the minimum number of driver nodes to the total number of nodes, i.e., nD = ND/N. The edge controllability mD 
can be defined in a similar way as mD = MD/M, where M is the total number of edges in G. As shown in Fig. 3, the 
upper and lower bounds of nD and mD hold for both directed and undirected networks, regardless of whether the 
degree distribution is homogeneous or heterogeneous. In fact, the degree distribution has little effect on nD and 
mD. Especially for undirected networks, the values of nD and mD for different undirected networks have nearly 
overlapping upper and lower bounds. Another remarkable result is that, except for very small values of the aver-
age degree 〈k〉, the range or “distance” between the upper and lower bounds is appreciable. Any value of nD and 
mD in between the bounds is achievable by properly setting the element values in the switching matrices Si. These 
results demonstrate that interaction strengths among the edges in the switching matrices play a more important 
role in edge controllability than the network structure does, in sharp contrast to the situation of controlling nodal 
dynamics (or nodal controllability). These findings provide a deeper understanding of the controllability of edge 
dynamics.

We also find a non-monotonic behavior in the upper bound of mD for both directed and undirected networks, 
and in the lower bound of nD for undirected networks as well. Such a behavior results from the combining effect 
of the first and the second terms in Equations (3) and (5), where the second term represents the contribution from 
each isolated component. Notice that the non-monotonic phenomenon occurs in the regime of relatively small 
values of 〈k〉, for which there are a number of isolated components. As 〈k〉 increased, the contribution from the 
second term diminishes because of the reduction in the number of isolated components, whereas the contribu-
tion from the first term begins to dominate, providing an explanation for the non-monotonic behavior.

We derive the analytical results of the bounds for different networks according to the classification of nodes 
and edges from local information, as shown in Fig. 2. The results are presented in Table 2 where, except for mD of 
directed networks associated with the lower bound, closed-form formulas can be obtained (see Supplementary 
Note 5 for detailed derivations). For directed networks, the analytical results of the lower bound reduce to the 
previous results of structural edge controllability, providing further validation of our theory.

Figure 3.  Controllability bounds and strong structural controllability of model networks. For directed and 
undirected ER and SF networks, (a,b) upper and lower bounds of nD, (c,d) upper and lower bounds of mD, 
and (e,f) strong structural controllability measure nssc as a function of the average degree 〈k〉. γ is the scaling 
exponent of the SF network. The data points are numerical results and the curves represent analytical formulas. 
All the numerical results are obtained by averaging over 50 independent networks realizations. The other 
parameters are the same as in Table 1. See Methods and Supplementary Note 9 for network models.
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In addition to ER and SF networks, simulation and analytical results of model networks with an exponential 
degree distribution and with a power-law degree distribution are provided in Supplementary Note 5, Figs S2 and 
S3. The results are qualitatively the same as the results in the main text. The analytical results of some simple and 
regular networks are also provided in Supplementary Note 5 and Table S1. The transition between the upper and 
lower bounds has also been analyzed, as presented in Supplementary Note 6 and Fig. S4.

Strong structural controllability.  Strong structural controllability is a critical notion of quantification if 
the controllability of a network is robust against uncertainties or fluctuations in the interaction strengths. At pres-
ent, to establish strong structural controllability even for nodal dynamics remains to be a challenging problem. 
Remarkably, we find that, for edge dynamics, strong structural controllability can be related to the controllability 
bounds in a straightforward manner, thus allowing us to obtain a straightforward but appealing analytic criterion 
to quantify strong structural controllability.

A network is SSC if, regardless of the values of the elements in the switching matrices, the quantities nD and 
mD do not change20, 40. This means that the controllability of a fully SSC network cannot be affected by variations 
in the interaction strengths among the edges, exclusively determined by the network structure. Because the cate-
gory of a node is determined only by its local information (Fig. 2), we can determine if a node is SSC based only 
on its switching matrix. In particular, a node is SSC if the nodal and edge categories do not change for any values 
of the elements in its switching matrix. We can prove that a node with ≤+k 1v  or ≤−k 1v  is SSC for an arbitrarily 
directed network and a node with kv ≤ 1 is SSC for an arbitrary undirected network (see Methods).

The strong structural controllability of a network can be defined as the ratio of the number NSSC of the SSC 
nodes to the network size N, i.e.,

= .n N
N (6)ssc
ssc

A network with a higher value of nssc is more SSC, and a network with nssc = 1 is fully SSC. As shown in Fig. 3(e,f), 
sparse networks with small values of 〈k〉 are nearly fully SSC. This is also reflected in Fig. 3(a–d) in the regime 
of small 〈k〉, where the upper and lower bounds are equal. Observe that nssc decreases as 〈k〉 is increased, which 
means that sparser networks are generally more SSC than denser networks. The dependence of nssc on 〈k〉 can be 
analytically predicted (Supplementary Note 7).

Strong structural controllability is related with the controllability bounds, in the sense that the upper and 
lower bounds of a fully SSC network coincide with each other. This can be explained, as follows. The controlla-
bility bounds are determined by the interaction strengths. For a fully SSC network, its edge controllability is not 
affected by the interaction strengths. That is, interaction strengths do not induce any difference between the upper 
and lower bounds in an SSC network. As a result, the controllability bounds must be exactly the same in a fully 
SSC network.

Controllability properties of real-world networks.  Our theoretical framework and analytic predictions 
enable us to study the edge controllability of a variety of real directed and undirected networks. The upper and 
lower bounds of nD, mD and nssc for different types of real networks are shown in Table 3. An interesting finding 
is that electronic circuits41 and regulatory networks are more SSC, including the ownership network of US tele-
communications and media corporations42 and the transcriptional regulatory networks of Echerichia Coli41 and 
Saccharomyces cerevisiae41, 43. The values of nssc of all the networks belonging to the two types are higher than 
0.9, which are substantially larger than the mean value of nssc of other networks. Consistent with the results of 

Directed Undirected

ER

nD
U 1 − (〈k〉 + 1)e−〈k〉 + 〈k〉e−2〈k〉 − + +− −k e e1 ( 1) k k k

2
2
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L − 〈 〉− 〈 〉e I k(1 (2 ))k1

2
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〈 〉
−〈 〉 − 〈 〉e e1 (1 2 )k

k k1 2 − − +− −e e1 (1 )k
k k1 1

2
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mD
L

∑ 〈 〉
− 〈 〉
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k j j
2

1 − −n e( )k
k1

CC
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U −

ζ γ
1 1

( ) − +
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1 1
( )

1
2 ( ) ( 1)

nD
L − ζ γ

ζ γ

1
2

(2 )

2 (2 )2 nCC
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U − ζ γ

ζ γ −
1 ( )

( 1)
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ζ γ ζ γ− −
1 ( )

( 1)
1

2 ( 1)2
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L

γ γ

ζ γ ζ γ

∑ =
∞ ∑ =

∞ − + −

−
j j i i i j1 1 ( )

( ) ( 1)
nk

1
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Table 2.  Analytical results of controllability for upper and lower bounds. Formulas for nD
U and mD

U (upper 
bounds) and nD

L and mD
L (lower bounds) for directed and undirected ER and SF (κ → ∞) networks. The average 

degree is 〈k〉 = 〈kin〉 = 〈kout〉 = M/N, Ia(x) is the modified Bessel function of the first kind, ζ(x) is the Riemann 
zeta function, and nCC is the expected fraction of isolated components in the ER undirected networks. Note that 
the average degree is 〈k〉 = ζ(γ)/ζ(γ − 1) for SF networks with parameter κ → ∞ (see Supplementary Note 5 for 
details).
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structural edge controllability, we find that regulatory networks are not only well-controllable under the edge 
dynamics but their controllability is also robust against uncertainties and variations in the interaction strengths. 
Except for the two types of networks, the effect of interaction strengths among the edges can be significant in 
other real world networks. For those networks, it is necessary to consider interaction strengths, in addition to 
the network structure, to gain insights into the edge controllability, especially when the networks are undirected.

Another finding for real-world networks is that the values of the lower bound nD
L for undirected networks are 

much smaller than those for directed networks, in accordance with the results from the model networks. This 
indicates that real undirected networks have a much higher potential to be optimized for control through adjust-
ing the interaction strengths. However, the values of nssc for undirected networks are generally lower than those 
for directed networks, suggesting that undirected networks are more sensitive to perturbations of the interaction 
strengths. A trade-off thus exists between the controllability and sensitivity for undirected networks. The corre-
spondence of the value of nssc to the gap size between the upper and lower bounds in model networks also exists 

Type No. class Name N M nD
U nD

L mD
U mD

L nSSC

Regulatory

1 directed Ownership-USCorp 8497 6726 0.140 0.136 0.938 0.924 0.992

2 directed TRN-EC-2 423 578 0.246 0.220 0.879 0.829 0.946

3 directed TRN-Yeast-1 4684 15451 0.058 0.052 0.984 0.947 0.963

4 directed TRN-Yeast-2 688 1079 0.180 0.177 0.968 0.952 0.983

Trust 5 directed Prison inmate 67 182 0.821 0.403 0.692 0.319 0.478

Food Web

6 directed St.Marks 45 224 0.689 0.533 0.835 0.563 0.556

7 directed Seagrass 49 226 0.694 0.449 0.827 0.518 0.510

8 directed Grassland 88 137 0.330 0.318 0.620 0.606 0.977

9 directed Ythan 135 601 0.467 0.304 0.864 0.597 0.756

10 directed Silwood 154 370 0.208 0.188 0.897 0.797 0.942

11 directed Little Rock 183 2494 0.989 0.639 0.927 0.603 0.508

Electronic circuits

12 directed S208a 122 189 0.541 0.451 0.413 0.344 0.910

13 directed s420a 252 399 0.556 0.456 0.416 0.348 0.901

14 directed s838a 512 819 0.563 0.459 0.418 0.350 0.896

Neuronal 15 directed C. elegans 297 2359 0.909 0.549 0.886 0.374 0.253

Citation

16 directed Small World 233 1988 0.300 0.210 0.902 0.729 0.738

17 directed SciMet 2729 10416 0.525 0.360 0.862 0.623 0.689

18 directed Kohonen 3772 12731 0.343 0.230 0.877 0.715 0.779

Internet

19 directed Political blogs 1224 19090 0.819 0.619 0.956 0.525 0.472

20 directed p2p-1 10876 39994 0.380 0.334 0.877 0.591 0.715

21 directed p2p-2 8846 31839 0.376 0.344 0.883 0.628 0.732

22 directed p2p-3 8717 31525 0.376 0.343 0.884 0.625 0.726

Organizational
23 directed Freeman-1 34 695 1 0.353 0.951 0.111 0

24 directed Consulting 46 879 1 0.522 0.950 0.150 0.065

Language
25 directed English words 7381 46281 0.479 0.158 0.862 0.210 0.566

26 directed French words 8325 24295 0.329 0.157 0.736 0.216 0.747

Transportation
27 directed USair97 332 2126 0.681 0.437 0.894 0.400 0.557

28 undirected USA top-500 500 2980 0.850 1/N 0.916 1/2M 0.150

Social communication 29 undirected Facebook 4039 88234 0.981 1/N 0.977 1/2M 0.019

Internet

30 undirected Internet-1997 3015 5156 0.522 1/N 0.708 1/2M 0.478

31 undirected Internet-1999 5357 10328 0.635 1/N 0.741 1/2M 0.365

32 undirected Internet-2001 10515 21455 0.648 1/N 0.755 1/2M 0.352

Autonomous systems

33 undirected Oregon1-010331 10670 22002 0.651 1/N 0.758 1/2M 0.349

34 undirected Oregon1-010526 11174 23409 0.654 1/N 0.761 1/2M 0.346

35 undirected Oregon2-010331 10900 31180 0.704 1/N 0.825 1/2M 0.296

36 undirected Oregon2-010526 11461 32730 0.712 1/N 0.825 1/2M 0.289

37 undirected AS-733 6474 13895 0.645 1/N 0.767 1/2M 0.355

Collaboration networks

38 undirected Ca-GrQc 5242 14496 0.806 0.068 0.825 0.012 0.228

39 undirected Ca-HepTh 9877 25998 0.813 0.043 0.815 0.008 0.214

40 undirected Ca-HepPh 12008 118521 0.889 0.023 0.950 0.001 0.124

41 undirected Ca-AstroPh 18772 198110 0.939 0.015 0.953 0.001 0.068

Table 3.  Controllability of edge dynamics in real networks. For each network, its type, class, name, number N of 
nodes, number M of edges, the upper bounds (nD

U and mD
U), the lower bounds (nD

L and mD
L), and strong 

structural controllability measure nssc are shown. For data sources and references, see Supplementary Table S2.
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for real-world networks: a higher (lower) value of nssc is usually associated with a smaller (larger) gap, as shown in 
Table 3.

We also study the dependence of the controllability bounds of the real-world networks on the average degree 
〈k〉. As shown in Fig. 4(a–d), the values of nD

U and nD
L for real-world networks with different values of 〈k〉 indeed 

constitute the universal controllability bounds. Due to the small influence of network topology on controllability 
(Fig. 3), the values of nD

U and nD
L of real directed networks tend to spread in two relatively small regions, which is 

analogous to the behavior in model networks (Fig. 3). In contrast, the influence of the network topology on the 
bounds of undirected networks is much weaker than for directed networks, leading to much smaller variance 
about the theoretical estimation. Given the degree distribution, the controllability bounds can be predicted more 
precisely by eliminating the effect of the degree distribution. For each network, a good agreement is obtained 
between the analytical prediction and the simulation results, as shown in Fig. 4(e–h).

Figure 5 shows the dependence of nscc on 〈k〉 for real networks. We find that the values of nscc are primarily 
determined by 〈k〉, especially for real undirected networks, in which the degree distribution has an insignificant 
effect on nscc. In fact, the role played by the distribution is marginal in our theoretical prediction of nscc for model 
networks with an exponential degree distribution. Nonetheless, for real-world networks, their degree distribution 
can be taken into account and we obtain a reasonable agreement between the theoretically predicted and numer-
ical values of nscc for both directed and undirected networks (see Supplementary Fig. S5 for mD and Note 8 for the 
analytical results). We find that the effect of degree distribution on nssc is quite similar to that on the controllability 
bounds.

Discussion
Most existing frameworks of controllability of complex networks focus on nodal dynamical processes. In 
real-world networks, however, edge dynamics can also be important, such as the Internet, transportation and 
modern social networks. Network controllability based on edge dynamics was first addressed by Nepusz and 

Figure 4.  Controllability bounds of real-world networks. For a number of real-world directed and undirected 
networks, (a,b) upper and lower bounds of nD, respectively, (c,d) upper and lower bounds of mD, respectively, 
(e,f) numerically obtained upper bound nD

real and the theoretical prediction nD
analyse, respectively, and (g,h) 

numerically obtained lower bound nD
real and the theoretical prediction, respectively. The curves of the upper and 

lower bounds in (a–d) are analytical results of model networks with an exponential degree distribution (a) and 
with a power-law degree distribution (b–d) (see Supplementary Notes 5 and 8 for the analytical derivations).
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Vicsek38, who introduced a mathematical framework to describe generic edge processes through switchboard 
dynamics, and uncovered significant differences between network nodal and edge controllability. However, their 
framework, being fundamentally a structural controllability framework, was limited to directed networks. The 
goal of our work is to develop an edge controllability framework that is universally applicable to all types of com-
plex networks, directed or undirected, weighted (with arbitrary distributions) or unweighted. To accomplish this 
goal, we propose a class of generalized switchboard dynamics and exploit the exact controllability theory21 for 
complex networks.

Comprehensive mathematical analyses and extensive numerical tests with model and real-world networks 
have revealed a number of striking properties associated with edge controllability. For example, it is exclusively 
determined by the local topology and the interaction strengths, and this holds generally for arbitrary networks 
with any distributions of interaction strengths. This result provides a unique configuration of driver nodes, in 
stark contrast to what the nodal controllability theory can offer where it usually yields many configurations of 
the driver nodes. More strikingly, our framework is capable of providing a unique configuration of SSC nodes, 
a notion that has significant applied value for network control, whereas no structural controllability theory is 
able to offer a criterion for determining the SSC nodes. Our framework also allows us to address the challenging 
issue of upper and lower controllability bounds, and we prove that only given the local topology of each node, the 
controllability bounds of each node and those of the whole network can be completely determined. This result 
enables analytical predictions of the bounds and the SSC property based solely on the degree distribution. We also 
prove that the upper and lower bounds correspond to unweighted and structural switching matrices, respectively. 
A finding is that, for a fully SSC network, the gap between these bounds must vanish. In general, the interaction 
strengths play a more significant role in edge controllability than the network structure does, due to the typically 
large range between the controllability bounds, where an arbitrary degree of controllability in between the bounds 
can be achieved by adjusting the interaction strengths.

Applying our universal edge controllability framework to a large number of real-world networks, we find that 
transcriptional regulatory networks and electronic circuits possess the highest strong structural controllability. 
We also find that directed networks in the real world tend to be more SSC than undirected networks, and that 
sparser networks are usually more SSC than denser networks.

Our work raises a number of open questions, the answers to which would further deepen our understanding 
of the controllability of real world complex networks. For example, can a method be develop to implement target 
control for the general edge dynamics? What is the effect of the correlation between in-degrees and out-degrees 
on the edge controllability? Would it be possible to realize partial control of a subset of edges from a minimum 
number of driver nodes? Are there any approaches to optimize edge controllability through small perturbation? 
What is the energy cost in controlling general edge dynamics? Is it possible to treat nonlinear edge dynamics? 
Taken together, the framework developed here provides a base to address these questions, opening a new avenue 
towards fully controlling real networked systems in a wide range of fields.

Figure 5.  Strong structural controllability of real-world networks. (a,b) Strong structural controllability 
measure nssc as a function of the average degree 〈k〉 for real directed and undirected networks, respectively. (c,d) 
Numerically calculated nssc

real and theoretical prediction nssc
analyse, respectively. In (a,b), the curves represent 

analytical results of a model network with an exponential degree distribution (see Supplementary Notes 7 and 8 
for the analytical derivations).
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Methods
Relationship between switching matrix Sv and adjacency matrix W for line graphs.  In GSBD, 
all nonzero elements in the adjacency matrix W of the line graph L(G) come from the switching matrices in the 
original directed or undirected network G, and the nonzero elements in the identical columns (rows) stem from 
the same switching matrix. An example is shown in Fig. 1, where the nonzero elements in W of L(G) (Fig. 1(d,g)) 
correspond to the elements with the same color in the switching matrices of the original network (Fig. 1(c,f)). 
Furthermore, according to the generic property of directed line graphs, any two columns (rows) of the adjacency 
matrix W are either identical or orthogonal to each other. As a result, the contribution of a switching matrix Sv to 
the rank of W is the rank of Sv, leading to the following relation between the ranks of the switching matrices and 
the adjacency matrix:

∑=
=

W Srank( ) rank( ),
(7)i

N

i
1

where N is the number of nodes in the original network G, and the relation is rigorous for any networks (see 
Supplementary Note 2). The relation in combination with the exact controllability theory21 leads to our general 
formulas for MD (Eq. (3)) and ND (Eq. (5)).

Controllability bounds of nodes and edges.  The upper and lower bounds of controllability exist gener-
ally in a network. They can also be defined for each node in the network, as determined by the interaction 
strengths between the incoming and outgoing edges of the node. Because controllability is determined by the 
switching matrix of each node, we can ascertain the existence of the upper and lower bounds for any network by 
proving the existence of the bounds for each node. Specifically, for a node with >+k 0v  and >−k 0v , the maximum 
rank of its switching matrix is equal to the smaller value of the numbers of rows ( +kv ) and columns ( −kv ), which 
corresponds to that of the structural switching matrix. In addition, the minimum rank of the switching matrix is 
Sv = 1 if all rows (columns) are linearly dependent, which can be achieved in an unweighted switching matrix with 
identical element values. Moreover, the upper and lower bounds of a network can be reached if the corresponding 
bounds of every node are realized. We can thus conclude that the upper and lower bounds of MD and ND of a 
network correspond to unweighted and structural switching matrices, respectively.

Driven edges and driver nodes associated with multiple network components.  In a network 
with a single connected component, the driver nodes and the driven edges associated with the upper and lower 
bounds can be identified based on local topological information of nodes. An extreme case is where all nodes and 
edges are non-essential. In this case, we can randomly select a node to be a driver node on which an input signal 
is imposed, and the driver node is determined by the second term in Equation (5). In most cases, the contribution 
of the second term for a single connected component is negligible, compared with that of the first term. For a 
network consisting of a number of isolated components, the effect of each connected component on ND must be 
taken into account, especially for undirected networks. In particular, for an undirected network with structural 
switching matrices, each connected component requires a driver node because every node is non-essential in the 
component. In this case, the second term in Equation (5) cannot be neglected. Table 1 lists the complete formulas 
of ND and MD in terms of both local topology and multiple components.

Identification of SSC nodes.  A node is either SSC or weakly structurally controllable (WSC). For a WSC 
node, element values in its switching matrix Sv will affect the rank of Sv and the category that the node belongs to. 
For an SSC node, its lower and upper bounds coincide with each other so that its category is determined only by 
its local structure. As a result, whether a node is SSC can be discerned in terms of its in- and out-degrees.

More specifically, for a node with =+k 0v  or =−k 0v , there is no switching matrix and the node is SSC. For a 
node with >+k 0v  and >−k 0v , the minimum rank of its Sv is one. If =+k 1v  or =−k 1v , any change in the value of 
the nonzero elements will not affect the rank of Sv, because Sv is always unity, i.e., the minimum rank. Thus, in this 
case, the category to which the node belongs will not be affected by the element values in Sv. For a node with 

>+k 1v  and >−k 1v , the possible maximum and minimum ranks of Sv are typically different, rendering the node 
WSC. Taken together, a node is SSC if and only if ≤+k 1v  or ≤−k 1v  in a directed network and kv ≤ 1 in an undi-
rected network. (For the special case of a single component composed of non-essential nodes, the criterion for 
identifying any SSC node is the same).

Networks analyzed.  The model networks used in this paper are the Erdös-Rényi random networks44 and 
scale-free networks45. How to generate model networks is provided in Supplementary Note 9. The real networks 
are described in Supplementary Table S2.
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