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1 Stability analysis of rock-paper-scissors system

1.1 Uniform intraspecific competitions

For uniform intraspecific competitions: pa = pb = pc = p, the ODE model of the RPS system is given by

da

dt
= a

[
µ(1− ρ)− σc− p

2
a
]
,

db

dt
= b

[
µ(1− ρ)− σa− p

2
b
]
, (S1)

dc

dt
= c

[
µ(1− ρ)− σb− p

2
c
]
.

There are three types of possible states: extinction (type p1), coexistence of two species (type p2), and co-
existence of all three species (type p3). The corresponding fixed point solutions are listed in Supplementary
Tab. S1. To be concrete, we set σ = 1 and µ = 1. The system has three fixed points of type p1, which are
unstable for p > 0. For the p2 type, three fixed points exist for p > 2 and p2 + 4p − 4 > 0 but they are
unstable with a positive eigenvalue λ2 > 0, as listed in Supplementary Tab. S1. For p3, an unstable fixed
point exists for p < 1 but it becomes stable for p > 1.

For 0 < p < 1, the three fixed points of type p1 constitute a heteroclinic cycle, whose stability can be
evaluated [S1]. Since they have identical eigenvalues, the corresponding eigenvalue ratios are identical as
well

Vi = −λ1s/λu =
2− p
p

. (S2)

The product V of the ratios is

V =
3∏

i=1

Vi =

(
2− p
p

)3

> 1. (S3)

The heteroclinic cycle signifies coexistence but it is physically unstable as random perturbations will land
the system into one of the extinction states. For p ≥ 1, a typical trajectory converges to the stable fixed point
p3. Supplementary Fig. S1 shows a bifurcation diagram and representative trajectories of the system.

1.2 Nonuniform intraspecific competitions

With nonuniform intraspecific competitions, the system becomes

da

dt
= a

[
(1− ρ)− c− pa

2
a
]
,

db

dt
= b

[
(1− ρ)− a− pb

2
b
]
, (S4)

dc

dt
= c

[
(1− ρ)− b− pc

2
c
]
.

There are three types of fixed points:

p1 :

(
2

2 + pa
, 0, 0

)
,

(
0,

2

2 + pb
, 0

)
,

(
0, 0,

2

2 + pc

)
, (S5)

p2 : w4(pb, pa − 2, 0), w5(pc − 2, 0, pa), w6(0, pc, pb − 2), (S6)

p3 : (a∗, b∗, c∗), (S7)
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where

w4 = 2/(papb + 2(pa + pb)− 4),

w5 = 2/(papc + 2(pa + pc)− 4),

w6 = 2/(pbpc + 2(pb + pc)− 4),

a∗ = 2(pb(pc − 2) + 4)/Γ,

b∗ = 2(pc(pa − 2) + 4)/Γ,

c∗ = 2(pa(pb − 2) + 4)/Γ,

Γ = papbpc + 2(papb + pbpc + pcpa)− 4(pa + pb + pc) + 32.

The three fixed points of type p1 are unstable:

λ1 = −1, λ2 =
pa − 2

2 + pa
, λ3 =

pa
2 + pa

.

We summarize the existence and stability conditions of the three fixed points of type p2 in Supplementary
Tab. S2.

To study the effect of nonuniform intraspecific competitions on coexistence, we consider three concrete
scenarios: (1) fixing the values of the intraspecific competition rate for two species and varying the third,
(2) fixing one rate and varying the remaining two, and (3) fixing the sum of the three rates (p1 + p2 + p3 =

α) and varying the value of the sum. For the first scenario, for fixed pa = pb and value of pc open,
we find coexistence states. In particular, for pa = pb < 2, as pc is increased, global attractors such as
stable heteroclinic cycles can arise, as well as coexisting state p3 of all three species and the two-species
coexistence state p2, as shown in Supplementary Fig. S2. In this case, the existence range and the stabilities
of the fixed points of types p2 and p3 depend on the value of pc. If we decrease the value of pa = pb, the
existence interval of the fixed point p3 as a globally stable attractor strictly increases, but that of the stable
heteroclinic cycle decreases. For sufficiently large values of pc, a fixed point of type p2 exists and is stable.
That is, two species can coexist, which is not possible when the intraspecific competitions are uniform. For
pa = pb > 2, coexistence of all three species is stable for any value of pc.

For the second scenario, we fix the value of pa and vary pb and pc. Supplementary Fig. S3 shows the
emergence and disappearance of various survival states. Specifically, we observe a decrease in the parameter
region for a stable heteroclinic cycle and one of fixed points of type p2 (AC), but the region for the survival
state of species B and C does not change, as detailed in Supplementary Tab. S2. That is, fixed points of
type p2 have emerged. We also observe that for an increased value of pa, varying pb and pc can expand the
parameter regions for the fixed point p3. In general, nonuniform intraspecific competitions can induce new
survival states and/or disappearance of previous survival states.

For the third scenario, we vary pa, pb, pc ≥ 0 while keeping their sum α fixed. Supplementary Fig. S4
shows the various survival states in the 2-simplex plane for several α values ranging from 0.6 to 60. We use
different colors to denote different states: a stable heteroclinic cycle (white), three different fixed points of
type p2 (red, blue and yellow for coexisting species AB, AC and BC, respectively), and the fixed point p3

for stable coexistence of all species (black). Specifically, for α < 2, a stable heteroclinic cycle constituting
three saddle fixed points of type p1 is the global attractor of the system, whereas fixed points of type p2 do
not exist and the fixed point p3 exists but it is unstable. For α > 2, a dramatic change in the survival states
occurs: depending on the rates of the intraspecific competitions, a coexisting state of two species emerges,
which has not been observed in previous studies of the RPS system. In general, the coexistence states p2
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and p3 begin to emerge from the three vertices of the 2-simplex plane pa + pb + pc = α. As α is increased,
the parameter region of p3 expands toward the center of the 2-simplex from each of the three vertices and
merge into a larger region, as can be seen in the top two rows in Supplementary Fig. S4. The two-species
coexistence states p2 are born from the vertices of the 2-simplex and expand following its edges. From the
bottom two rows in Supplementary Fig. S4, we see that, for a sufficiently large value of α, the interior of the
2-simplex is fully covered by the two distinct coexistence states p2 and p3. For α ≥ αh ≈ 3.7, the stable
heteroclinic cycle no longer exists. As the value of α is increased further, the ratio of the area of three basins
for p2 to the total area of the 2-simplex plane increases until when α ≤ αc ≈ 5.9 and then decreases for
α > αc.

We numerically calculate the existence boundaries for each attractor for α = 5 with parameters pa, pb
and pc from the 2-simplex plane, as shown in Supplementary Fig. S5. Exploiting the existence condition
of the fixed points of type p2 as listed in Supplementary Tab. S2, we can derive each boundary curve
analytically. For example, setting pb = 4/(2− pc), we can obtain the parameter boundary of the coexisting
state of two species (B and C - yellow region in Supplementary Fig. S5). In particular, we have

pa +
4

2− pc
+ pc = α (α > 2),

which implies

pa = α− 4

2− pc
− pc = α− p2c − 2pc − 4

pc − 2
.

To further study the difference in the characteristics between coexistence of two and three species, we study
the dynamical behaviors of the system for two parameter settings located above and below the boundary
in Supplementary Fig. S5: (1) (pa, pb, pc) = (1.7, 2.8, 0.5) for p2 and (2) (pa, pb, pc) = (1.7, 2.7, 0.6) for
p3. We see that species A becomes extinct under parameter setting (1), while it survives under setting (2).
To understand this behavior, we note that, for setting (1), although the intraspecific competitions within A
and B are stronger than that of species C, it is A that becomes extinct. Supplementary Fig. S6 shows the
densities of the three species from the lattice simulation, and we obtain essentially the same patterns from
the corresponding PDE model (data not shown). How interspecific and intraspecific competitions as well as
reproduction affect the densities can also be seen from Supplementary Fig. S6.

A possible dynamical process leading to the coexistence of two species is as follows. A decrease in the
population of species B subject to strong intraspecific competitions can be beneficial to its prey (species C),
leading to an increase in the prey population. As a result, species A will be at a disadvantage because it is
the prey of C. It can happen that reproduction of A is not sufficient to sustain the population decrease due to
interactions with C, leading to extinction of A. That is, an increase in self-competition within one species
can cause the extinction of other species.

For parameter setting (2), species A survives even if its population is much reduced, as shown in Sup-
plementary Fig. S7. This behavior is quite different from that under setting (1), indicating the emergence of
a critical borderline between the two settings. This may have implications for population control. For ex-
ample, under setting (2), intraspecific competitions within speciesB are stronger than those within the other
two species, leading to an increase in their populations, which in turn causes their predators’ populations to
increase.
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2 Extended rock-paper-scissors system

For the five-species, extended rock-paper-scissors (ERPS) system, in the absence of intraspecific compe-
titions, there are three possible states [S2]: the coexistence state of all five species, states in which two
non-interacting species survive, and extinction states of only one surviving species. As demonstrated in the
main text, with nonuniform intraspecific competitions all possible coexistence states can arise.

2.1 ODE based stability analysis

The ODE model of the ERPS system is

da

dt
= a

[
µ(1− ρ)− σe− pa

2
a
]
,

db

dt
= b

[
µ(1− ρ)− σa− pb

2
b
]
,

dc

dt
= c

[
µ(1− ρ)− σb− pc

2
c
]
, (S8)

dd

dt
= d

[
µ(1− ρ)− σc− pd

2
d
]
,

de

dt
= e

[
µ(1− ρ)− σd− pe

2
e
]
.

To be concrete, we fix σ = µ = 1. There are five types of fixed points. The first type, denoted by q1,
corresponds to various extinction states:(

2

2 + pa
, 0, 0, 0, 0

)
,

(
0,

2

2 + pb
, 0, 0, 0

)
,

(
0, 0,

2

2 + pc
, 0, 0

)
, (S9)(

0, 0, 0,
2

2 + pd
, 0

)
,

(
0, 0, 0, 0,

2

2 + pe

)
.

The second type q2 specifies states in which only two species coexist. Five of such fixed points are

2

papc + 2(pa + pc)
(pc, 0, pa, 0, 0), (S10)

2

papd + 2(pa + pd)
(pd, 0, 0, pa, 0), (S11)

2

pbpd + 2(pb + pd)
(0, pd, 0, pb, 0), (S12)

2

pbpe + 2(pb + pe)
(0, pe, 0, 0, pb), (S13)

2

pcpe + 2(pc + pe)
(0, 0, pe, 0, pc), (S14)
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which are unstable. The third type q3 signifies the coexistence state of three species. The possibly stable
fixed points of this type are

2(pbpd, pd(pa − 2), 0, papb, 0)

papbpd + 2(papb + papd + pbpd)− 4pd
, (S15)

2(pcpd, 0, papd, pa(pc − 2), 0)

papcpd + 2(papc + papd + pcpd)− 4pa
, (S16)

2(pc(pe − 2), 0, pape, 0, papc)

papcpe + 2(papc + pape + pcpe)− 4pc
, (S17)

2(0, pcpe, pe(pb − 2), 0, pbpc)

pbpcpe + 2(pbpc + pbpe + pcpe)− 4pe
, (S18)

2(0, pdpe, 0, pbpe, pb(pd − 2))

pbpdpe + 2(pbpd + pbpe + pdpe)− 4pb
. (S19)

The fourth type q4 describes the state in which four species coexist and only one species is extinct. For
example, one such fixed point, denoted as (a∗, 0, c∗, d∗, e∗), is given by

a∗ =
2(pc(pd(pe − 2) + 4)− 8)

Σ4
, c∗ =

papdpe
Σ4

, d∗ =
2pape(pc − 2)

Σ4
, (S20)

e∗ =
2pa(pc(pd − 2) + 4)

Σ4
,

where

Σ4 = papcpdpe + 2(papcpd + papcpe + papdpe + pcpdpe)− 4(papc + pape + pcpd) + 8(pa + pc)− 16.

The last type q5 corresponds to the state in which all five species survive, i.e., (a∗, b∗, c∗, d∗, e∗), where

a∗ =
2(pbpcpdpe − 2pbpcpd + 4pbpc − 8pb + 16)

Σ5
,

b∗ =
2(papcpdpe − 2pcpdpe + 4pcpd − 8pc + 16)

Σ5
,

c∗ =
2(papbpdpe − 2papdpe + 4pdpe − 8pd + 16)

Σ5
, (S21)

d∗ =
2(papbpcpe − 2papbpe + 4pape − 8pe + 16)

Σ5
,

e∗ =
2(papbpcpd − 2papbpc + 4papb − 8pa + 16)

Σ5
,

and

Σ5 = papbpcpdpe + 2(papbpcpd + papbpcpe + papbpdpe + papcpdpe + pbpcpdpe)

− 4(papbpc + papbpe + pbpcpd + papdpe + pcpdpe) + 8(papb + pbpc + pape + pcpd + pdpe)

− 16(pa + pb + pc + pd + pe) + 192.

To assess the stabilities of the fixed points, we fix (pa, pb, pd, pe) = (1.9, 2, 1.3, 0.7) and vary the parameter
pc. For pc > 0, there are fixed points of types q1 and q2 which are unstable. For pc > 2, the fixed point (S16)
of type q3 can exist and the fixed point (S20) of type q4 emerges for 3.5 ≤ pc < 5.8. For 0 < pc < 2.6,
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although the fixed points of types q1, q2, q3 and q5 exist, only the cycles consisting of the heteroclinic
orbits connecting saddle fixed points of type q2 are numerically observable. For 2.6 ≤ pc < 5.6, the fixed
point q5 becomes stable in which all species coexist. However, this fixed point no longer exists for pc ≥ 5.6.
For pc ≥ 5.8, the fixed points (S20) disappear. For pc ≥ 5.8, the three-species coexisting fixed points (S16)
become stable and approach the two-species fixed points (S11) as pc → ∞. Thus, for large values of pc,
the coexistence states of two species are numerically observable, as shown in the bifurcation diagram and
a spatial snapshot (Figs. 3 and 4, respectively) in the main text. In general, as the intraspecific competition
parameter is increased, a variety of coexistence states can emerge.

2.2 PDE model

Taking into account the spatial dimension, we obtain a set of PDEs:

∂a(x, t)

∂t
= M∆a(x, t) + µa(x, t)[1− ρ(x, t)]− σe(x, t)a(x, t)− pa

2
a(x, t)a(x, t),

∂b(x, t)

∂t
= M∆b(x, t) + µb(x, t)[1− ρ(x, t)]− σa(x, t)b(x, t)− pb

2
b(x, t)b(x, t),

∂c(x, t)

∂t
= M∆c(x, t) + µc(x, t)[1− ρ(x, t)]− σb(x, t)c(x, t)− pc

2
c(x, t)c(x, t), (S22)

∂d(x, t)

∂t
= M∆d(x, t) + µd(x, t)[1− ρ(x, t)]− σc(x, t)d(x, t)− pd

2
d(x, t)d(x, t),

∂e(x, t)

∂t
= M∆e(x, t) + µe(x, t)[1− ρ(x, t)]− σd(x, t)e(x, t)− pe

2
e(x, t)e(x, t),

where a(x, t), b(x, t), c(x, t), d(x, t), and e(x, t) denote the densities of the five species at site x = (x1, x2)

and time t on a square domain with periodic boundary conditions.

3 Rock-paper-scissors-lizard-spock system

For the rock-paper-scissors-lizard-spock (RPSLS) system of five species, in the absence of intraspecific
competitions, three types of distinct dynamical states can arise [S3] [S4]: the coexistence state of all five
species, states in which three species having a sub-cyclic interacting structure coexist, and extinction states
of only one surviving species. In the main text, we demonstrate that intraspecific competitions can induce
coexistence states of any possible number of surviving species.
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3.1 ODE based Stability analysis

Similar to the ERPS system, the coupled ODE model for the RPSLS system is

da

dt
= a

[
µ(1− ρ)− σe− σc− pa

2
a
]
,

db

dt
= b

[
µ(1− ρ)− σa− σd− pb

2
b
]
,

dc

dt
= c

[
µ(1− ρ)− σb− σe− pc

2
c
]
, (S23)

dd

dt
= d

[
µ(1− ρ)− σc− σa− pd

2
d
]
,

de

dt
= e

[
µ(1− ρ)− σd− σb− pe

2
e
]
.

There are different types of fixed points with different numbers of surviving species. For σ = µ = 1, fixed
points of different types are listed below.

The first type, denoted as r1, describes the extinction states:(
2

2 + pa
, 0, 0, 0, 0

)
,

(
0,

2

2 + pb
, 0, 0, 0

)
,

(
0, 0,

2

2 + pc
, 0, 0

)
, (S24)(

0, 0, 0,
2

2 + pd
, 0

)
,

(
0, 0, 0, 0,

2

2 + pe

)
.

The second type r2 represents states in which only two species survive. For example, two of the ten possible
fixed points are

2(pc − 2, 0, pa, 0, 0)

papc + 2(pa + pc)− 4
, and

2(0, 0, pd, pc − 2, 0)

pcpd + 2(pc + pd)− 4
, (S25)

which are unstable. The third type, denoted by r3, corresponds to three coexisting species. In this case,
there are ten such fixed points, three of which are

2(0, pc(pd − 2) + 4, pd(pb − 2) + 4, pb(pc − 2) + 4, 0)

∆31
, (S26)

2(0, 0, pd(pe − 2) + 4, pe(pc − 2) + 4, pc(pd − 2) + 4)

∆32
, (S27)

and
2((pc − 2)(pe − 2), 0, pa(pe − 2), 0, papc)

∆33
, (S28)

where

∆31 = pbpcpd + 2(pbpc + pbpd + pcpd)− 4(pb + pc + pd) + 32,

∆32 = pcpdpe + 2(pcpd + pcpe + pdpe)− 4(pd + pe + pc) + 32,

∆33 = papcpe + 2(papc + pape + pcpe)− 4(pa + pc + pe) + 8.

Fixed points such as those in (S28) have a non-sub-cyclic structure and can be stable in certain parameter
ranges, while other five points including (S26)-(S27) with a sub-cyclic structure are always unstable as the
eigenvalues of the underlying Jacobian matrices under the existence condition are positive. For example, for
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the fixed point (S26), we have

λ1 = −1, λ2 =
(pb − 2)(pc(pd − 2) + 4)

∆31
, λ3 =

pd(pb(pc − 2) + 4)

∆31
, (S29)

λ4,5 = [128− 80(pc + pd) + 8(p2c + p2d) + 56pcpd − 8pcpd(pc + pd) + 2p2cp
2
d

−pb(pc(−56 + 52pd − 6p2d) + 8(10− 7pd + p2d) + p2c(8− 6pd + p2d))

−p2b(−2(pd − 2)2 + pc(8− 6pd + p2d) + p2c(−2 + pd + p2d))

±{(∆31)
2(p2b(2− pc + pd)2 + (pd − 2)(4pc(pd − 2) + p2c(pd − 2) + 4(pd + 6))

−2pb(p
2
c(pd − 2) + pc(8− 6pd + p2d) + 2(−4 + 4pd + p2d)))}

1
2 ]/(∆31)

2,

and λ3 is positive because of the inequality pb(pc − 2) + 4 > 0. An illustration of the classification of the
structures of the fixed points of type r3 is presented in Supplementary Fig. S8.

The fourth fixed-point type r4 corresponds to states in which four species coexist and one species is
extinct. One such fixed point, for example (a∗, b∗, c∗, 0, e∗), is given by

a∗ =
2(pbpcpe + 4(pb + pc + pe)− 2pb(pc + pe)− 8)

∆4

b∗ =
2(papcpe + 4(pc + pe)− 2pcpe − 8)

∆4
(S30)

c∗ =
2(pe − 2)(pa(pb − 2) + 4)

∆4
, e∗ =

2pc(pa(pb − 2) + 4)

∆4
,

where

∆4 = papbpcpe + 2(papbpc + papbpe + papcpe + pbpcpe)

− 4(papb + papc + pbpc + pape + pbpe + pcpe) + 32(pc + pe) + 8(pa + pb)− 64.

The last fixed-point type, r5, characterizes the coexistence state of all five species, which is given by
(a∗, b∗, c∗, d∗, e∗)/∆5, where

a∗ = 2{16− 8(pb + pc + pd) + 4(pbpc + pbpd + pcpd + pdpe)− 2(pbpcpd + pbpdpe) + pbpcpdpe},
b∗ = 2{16− 8(pc + pd + pe) + 4(pcpd + pape + pcpe + pdpe)− 2(papcpe + pcpdpe) + papcpdpe},
c∗ = 2{16− 8(pa + pd + pe) + 4(papb + papd + pape + pdpe)− 2(papbpd + papdpe) + papbpdpe},
d∗ = 2{16− 8(pa + pb + pe) + 4(papb + pbpc + pape + pbpe)− 2(papbpe + pbpcpe) + papbpcpe},
e∗ = 2{16− 8(pa + pb + pc) + 4(papb + papc + pbpc + pcpd)− 2(papbpc + papcpd) + papbpcpd},

(S31)

and

∆5 = papbpcpdpe + 2(papbpcpd + papbpcpe + papbpdpe + papcpdpe + pbpcpdpe)

− 4(papbpc + papbpd + papcpd + pbpcpd + papbpe + papcpe + pbpcpe + papdpe + pbpdpe + pcpdpe)

+ 32(papb + pbpc + pcpd + pape + pdpe) + 8(papc + papd + pbpd + pbpe + pcpe)

− 64(pa + pb + pc + pd + pe) + 224.

To analyze the stabilities of all the fixed points, we set (pa, pb, pc, pd) = (0.3, 1.1, 2.5, 0.7) and vary the
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parameter pe. For pe ≥ 0, there are five fixed points of type r1, fixed points (S25) of type r2, points (S26)
and (S27) of type r3, and points (S31) of type r5. For pe ≥ 2.1, fixed points (S28) and (S30) of types r3
and r4, respectively, are created. For 0 < pe < 1.8, all existing fixed points of types r1, r2, r3, and r5
are unstable. We find a stable cycle consisting of heteroclinic orbits among saddle fixed points of types r1
and r2. For 1.8 < pe < 2.4, the type r5 exists as a stable attractor, while the other fixed points are always
unstable. For 2.4 ≤ pe < 8, the global coexistence state of five species no longer exists but the fixed point
(S30) becomes stable in which four species coexist. For pe ≥ 8, the fixed points (S30) disappear and the
fixed points (S28) become stable in which three species survive. Even though the fixed points (S28) are
stable, they will converge to the fixed points (S25) of type r2 for pe → ∞. It is thus possible to observe a
coexistence state of two species for large values of pe. The results of the stability analysis and numerical
simulations are illustrated in the bifurcation diagram and spatial snapshots in the main text (Figs. 3 and 5,
respectively).

The extinction state (S24) can be obtained from a different parameter setting such as (pa, pb, pc, pd) =

(0.01, 1.1, 2.5, 0.7). By varying pe, the stable fixed point (S28) converges to the extinction state of type r1
because of the simultaneous decrease in the populations of the two species C and E, as shown in Fig. 5 in
the main text.

3.2 PDE model

Similarly to the ERPS system, we obtain the PDE model for the RPSLS game as

∂a(x, t)

∂t
= M∆a(x, t) + µa(x, t)[1− ρ(x, t)]− σe(x, t)a(x, t)

−γa(x, t)c(x, t)− pa
2
a(x, t)a(x, t),

∂b(x, t)

∂t
= M∆b(x, t) + µb(x, t)[1− ρ(x, t)]− σa(x, t)b(x, t)

−γb(x, t)d(x, t)− pb
2
b(x, t)b(x, t),

∂c(x, t)

∂t
= M∆c(x, t) + µc(x, t)[1− ρ(x, t)]− σb(x, t)c(x, t)

−γc(x, t)e(x, t)− pc
2
c(x, t)c(x, t), (S32)

∂d(x, t)

∂t
= M∆d(x, t) + µd(x, t)[1− ρ(x, t)]− σc(x, t)d(x, t)

−γa(x, t)d(x, t)− pd
2
d(x, t)d(x, t),

∂e(x, t)

∂t
= M∆e(x, t) + µe(x, t)[1− ρ(x, t)]− σd(x, t)e(x, t)

−γb(x, t)e(x, t)− pe
2
e(x, t)e(x, t).
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4 Supplementary Tables

Type p1 p2 p3

(w1, 0, 0) w2(p, p− 2σ, 0)
Fixed point (0, w1, 0) w2(p− 2σ, 0, p) w3(1, 1, 1)

(0, 0, w1) w2(0, p, p− 2σ)

λ1 = −1 λ1 = −1 λ1 = −1

λi λ2 = p−2
2+p λ2 = (p−1)2+3

p2+4p−4 λ2 = (1−p)±
√
3i

8+p

λ3 = p
2+p λ3 = p(2−p)

p2+4p−4 λ3 = λ2

Existence always p > 2σ always
p2 + 4µp− 4µσ > 0

Stability unstable unstable unstable, if p < 1
stable, if p > 1

Supplementary Table S1: Existence and stabilities of all existing fixed points of RPS system (S1). For
uniform intraspecific competitions, the RPS system admits three types of fixed points: w1 = 2µ/(2µ + p),
w2 = 2µ/(p2 + 4µp− 4µσ), and w3 = 2µ/(6µ+ 2σ + p).

Species AB AC BC

Fixed point w4(pb, pa − 2, 0) w5(pc − 2, 0, pa) w6(0, pc, pb − 2)

w4(pa(pb − 2) + 4)/2 w5(pc(pa − 2) + 4)/2 w6(pb(pc − 2) + 4)/2
λi −w4pb(pa − 2)/2 −w5pa(pc − 2)/2 −w6pc(pb − 2)/2

−1 −1 −1

pa > 2 pa > 0 pb > 2
Existence pb > 0 pc > 2 pc > 0

pb >
4−2pa
pa+2 pa >

4−2pc
pc+2 pc >

4−2pb
pb+2

Stable pa(pb − 2) + 4 < 0 pc(pa − 2) + 4 < 0 pb(pc − 2) + 4 < 0
Condition pa >

4
2−pb , pb < 2 pc >

4
2−pa , pa < 2 pb >

4
2−pc , pc < 2

Supplementary Table S2: Summary of existence and stability conditions of fixed points of type p2

for RPS system (S4). For nonuniform intraspecific competitions, the RPS system allows three different
fixed points of type p2: w4 = 2/(papb + 2(pa + pb) − 4), w5 = 2/(papc + 2(pa + pc) − 4), and w6 =
2/(pbpc + 2(pb + pc)− 4) for σ = 1 and µ = 1.
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6 Supplementary Figures

Supplementary Figure S1: Bifurcation diagram of the RPS system (S1). For 0 ≤ p < 1, an asymp-
totically stable heteroclinic cycle exists and the fixed point of type p3 in which all three species coexist is
unstable (red dotted line). For p > 1, the heteroclinic cycle loses its stability and the fixed point p3 becomes
stable (red straight line). Blue dotted lines represent the unstable fixed point p1. The insets illustrate the
behaviors of a typical trajectory (black), the heteroclinic cycle (connected magenta lines), and the fixed point
p3 (red dot).
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Supplementary Figure S2: Bifurcation diagrams of the RPS system (S4). For pa = pb, the values of
parameter pa from (a) to (d) are fixed at 0.5, 1.0, 1.5 and 2.1, respectively. Grey, red and black indicate
three different states, p1, p2 and p3, respectively. Dotted and solid lines indicate unstable and stable fixed
points, respectively. (a-c) As pc is increased, after the stable heteroclinic cycles (ellipses) lose their stability,
coexistence of all three species emerges, after which the coexistence state of two species is persistent. (d)
For sufficiently large values of pa > 2, the fixed point p3 is always stable, indicating persistent coexistence
of three species.
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Supplementary Figure S3: Parameter regions of different attractors for fixed pa. (a-f) For values of pa
fixed at 0.5, 1.0, 1.5, 2.0, 2.1 and 2.5, respectively, parameter regions of stable fixed points of type p3 and a
stable heteroclinic cycle (black and blank regions, respectively). Red, blue and yellow areas indicate three
different states of type p2 as stable attractors: AB, AC, and BC, respectively.
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Supplementary Figure S4: Parameter basin versus total intraspecific competition rate α = pa+pb+pc
on 2-simplex. Each edge of the 2-simplex represents the parameters pa, pb and pc, and its length is α. Black
and blank regions indicate the parameter regions of the stable fixed point p3 and a stable heteroclinic cycle,
respectively. Red, blue and yellow areas indicate three different states of type p2 as stable attractors: AB,
AC, and BC, respectively.
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Supplementary Figure S5: Parameter basin and boundary curves for pa + pb + pc = 5. Red, blue
and yellow lines in (b) indicate the corresponding boundaries of the regions shown in (a). For instance, the
yellow boundary is drawn from the equation pa + 4/(2− pc) + pc = 5.

Supplementary Figure S6: Behaviors of densities from lattice simulation of RPS. For pa = 1.7, pb =
2.8, pc = 0.5, and fixed mobility M = 10−3, (a) densities of three species corresponding to extinction of
species A and coexistence of species B and C. Red, blue and yellow lines indicate the densities of species
A, B, and C, respectively. (b-d) Behaviors of species densities as a result of three types of interactions:
interspecific competition (blue), intraspecific competition (red), and reproduction (green).
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Supplementary Figure S7: Densities from lattice simulation of RPS system. For pa = 1.7, pb = 2.7,
pc = 0.6, and fixed mobilityM = 10−3, (a) densities of three species corresponding to extinction of species
A and coexistence of speciesB andC. Red, blue and yellow lines indicate the densities of speciesA,B, and
C, respectively. (b-d) Behaviors of species densities as a result of three types of interactions: interspecific
competition (blue), intraspecific competition (red), and reproduction (green).

Supplementary Figure S8: Classification of fixed points of type r3 in RPSLS system (S23). There are
ten fixed points of type r3. (a) Five possibly stable fixed points with a non-sub-cyclic structure, (b) other
fixed points having a sub-cyclic structures, which are always unstable under the existence condition.
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Supplementary Figure S9: Survival probability associated with each stable phase for different cyclic
game systems. (a-c) For RPS, ERPS, and RPSLS systems, respectively, the survival probabilities for two
different values of the mobility: M = 10−5 (left) andM = 10−3 (right). In each simulation, a square lattice
of 500 × 500 sites is used and the survival probability is evaluated from 100 independent realizations. For
each system, the thresholds of robust stable phases are consistent with those from the bifurcation analysis of
the underlying ODE model.
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