
1SCIENTIFIC REPORTS | 7: 7465  | DOI:10.1038/s41598-017-07911-4

www.nature.com/scientificreports

Emergence of unusual coexistence 
states in cyclic game systems
Junpyo Park1, Younghae Do2, Bongsoo Jang1 & Ying-Cheng Lai3

Evolutionary games of cyclic competitions have been extensively studied to gain insights into one of 
the most fundamental phenomena in nature: biodiversity that seems to be excluded by the principle 
of natural selection. The Rock-Paper-Scissors (RPS) game of three species and its extensions [e.g., the 
Rock-Paper-Scissors-Lizard-Spock (RPSLS) game] are paradigmatic models in this field. In all previous 
studies, the intrinsic symmetry associated with cyclic competitions imposes a limitation on the 
resulting coexistence states, leading to only selective types of such states. We investigate the effect of 
nonuniform intraspecific competitions on coexistence and find that a wider spectrum of coexistence 
states can emerge and persist. This surprising finding is substantiated using three classes of cyclic game 
models through stability analysis, Monte Carlo simulations and continuous spatiotemporal dynamical 
evolution from partial differential equations. Our finding indicates that intraspecific competitions 
or alternative symmetry-breaking mechanisms can promote biodiversity to a broader extent than 
previously thought.

Fundamental to species coexistence and biodiversity are competitions. In ecosystems there are two types of com-
petitions: interspecific (competitions among individuals from different species) and intraspecific (competitions 
among individuals in the same species), where both types can either promote or hinder species coexistence1, 2. The 
purpose of this paper is to demonstrate, through a systematic study of several models of cyclic evolutionary game, 
that intraspecific competitions can induce unusual states of coexistence that have not been reported previously. 
Intraspecific competitions may thus be more fundamental to biodiversity than previously thought.

A natural and typical mechanism for interspecific competitions is predator-prey interaction, while intraspe-
cific competitions occur because individuals in the same species compete for essential life-sustaining resources 
such as food, water, light, and opposite sex. A well known type of intraspecific competitions is cannibalism 
or intraspecific predation3–10, which can occur with high likelihood especially when there is lack of sufficient 
resources. Such competitions can also occur when individuals fight each other for mating opportunities, which 
were observed for side-blotched lizards in California11. In the past decade there were studies of the effect of 
intraspecific competitions on biodiversity12–16, with results such as the experimental finding that the compe-
titions tend to drive disruptive selection12, enhanced host survival through intraspecific competition between 
co-infecting parasite strains13, and directional selection of certain fish species15, 16.

To understand coexistence and biodiversity, the approach of mathematical modeling has proven to be useful, 
providing fundamental insights into the various mechanisms underlying species coexistence at both the mac-
roscopic, population17–19 and the microscopic, individual competition levels20–23. Historically, the theoretical 
approach began with mathematically modeling growth and competitions through dynamical equations at the 
population level17–19. In the past fifteen years or so, microscopic models at the level of individual interactions were 
extensively studied based on the mathematical paradigm of evolutionary games24–53. A milestone result22, 26 is the 
elucidation of the role of species mobility in coexistence, which traditionally had been regarded as detrimental 
to coexistence. In particular, utilizing the framework of three cyclic competing species, the rock-paper-scissors 
(RPS) model, the authors22, 26 demonstrated robust coexistence in the weak mobility regime, providing a reso-
lution to the paradox that macroscopic models exclude coexistence of mobile species but, in realistic ecologi-
cal processes ranging from bacteria run and tumble to animal migration, coexistence is ubiquitous. The basic 
dynamical structure supporting the coexistence of mobile species was identified to be spiral wave patterns that 
emerge and evolve with time in the physical space22, which are robust against noise26. Other issues that have 
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been investigated include the stability of spatial patterns24, 29, 39, 52, 54–57, the role of conservation laws27, 44, pairwise 
and group-level interactions53, basins of the coexistence states30, 31, and the effects of a wide array of behaviors/
quantities on coexistence such as long range migration38, 45, uniform intraspecific competition32, local habitat 
suitability46, multi-strategy competition49, inhomogeneous reaction rates28, 33, 40, 47, 48, epidemic spreading34, and 
spatial extent and population size25, 36, 41. While most of these works were for three cyclic competing species, there 
were studies extending the model to arbitrary number of species42, 43, 53 and addressing the role of competition at 
the mesoscopic (i.e., group) level in coexistence52. Here extinction means no coexistence and only one surviving 
species in the system.

In previous works, a well established result is that only a certain type of coexistence states can exist. For exam-
ple, in a system of three cyclically competing species (RPS game), the only coexistence state is one that involves all 
three species: it is not possible for a state of two coexisting species22, 26 to be stable. Likewise, in a cyclic system of 
five species, there are two distinct coexistence states with either three or five species - there cannot be coexistence 
states with two or four species52. The reason for the selective coexistence states lies in the intrinsic symmetry of 
the system, as the competing species are at the same footing. Intuitively, symmetry breaking can possibly lead to 
more diverse coexistence states. The purpose of this paper is to demonstrate and establish that realistic intraspe-
cific competitions that generically break the intrinsic symmetry of cyclic competitions, can lead to all possible 
coexisting states. In particular, in the real world the degree of intraspecific competition in general depends on the 
particular species. To describe symmetry-breaking in a concrete way, we use a parameter, e.g., the rate of intraspe-
cific competition. The rate can then be nonuniform for different species, which can have a significant effect on the 
game dynamics33, 58–61. At the microscopic level, the species are thus no longer on the equal footing - effectively 
introducing symmetry breaking into the system. As a result, coexisting states without a global symmetry at the 
macroscopic level can arise. We establish this striking result through extensive computations and mathematical 
analyses of cyclically competing systems with different number of species.

Results
Models and mathematical representations. To investigate the dynamical evolutions of cyclically com-
peting species in the presence of intraspecific competitions, we study three game systems: the classic RPS model, 
the extended RPS (ERPS) model of five species, and the rock-paper-scissors-lizard-spock (RPSLS) model. The 
dynamical interacting rules of the three models are shown in Fig. 1. At the microscopic level, each model can be 
described by evolutionary dynamics on a lattice system, while at the macroscopic level the model can be approxi-
mated by a set of ordinary differential equations (ODEs). In addition, partial differential equations (PDEs) can be 
used to study the spatiotemporal evolution of the population densities.

For convenience, we employ a square lattice with periodic boundary conditions to host a cyclic game system 
at the microscopic level, where an individual occupies a lattice site. Given the interspecific competition rate σ, 
species reproduction rate µ, intraspecific competition rate p, and movement rate ε, interactions among the indi-
viduals can be described by

→ ∅ ∅ → → ∅ →
σ µ εXY X X XX XX X XZ ZX, , , , (1)p

where X and Y represent two cyclically interacting species, ∅ denotes an empty site, and Z stands for either an 
individual from the same species or an empty site, and the quantity ε is defined to be ε ≡ 2MN with M being the 
individual mobility parameter and N being the total number of individuals. In the evolutionary game system, 
each site can be occupied by an individual from one of the species or left empty. At each time step, a randomly 
selected individual can compete, reproduce, or move into one of its nearest neighbors at random, provided that 
the corresponding interaction rule as specified in Eq. (1) is satisfied.

Under the mean field approximation where the population size is large: N → ∞, the system can be described 
by the rate equations governing the time evolution of the species densities (ODEs). Let a(t), b(t), and c(t) be the 
densities of the three species A, B, and C at time t, respectively. The RPS game model can be described by

Figure 1. Cyclic games with intraspecific competitions. (a) Rock-paper-scissors (RPS) game of three species, 
(b) Extended Rock-Paper-Scissors (ERPS) game of five species, and (c) Rock-Paper-Scissors-Lizard-Spock 
(RPSLS) game of five species. Straight and looped arrows indicate interspecific and intraspecific competitions, 
respectively.
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where ρ(t) ≡ a(t) + b(t) + c(t) is the total density of the three species. In each equation, the first and second terms 
describe reproduction of a species at rate µ and a decrease in the species density by invasion at rate σ, respec-
tively. The third term represents the decrease in the density due to intraspecific competition of rates pa, pb, or pc 
for species A, B and C, respectively, where the factor 1/2 associated with the rate accounts for the two-way inter-
actions between two individuals in the same species. (ODE models for ERPS and RPSLS games are provided in 
Supplementary Information).

The ODE model ignores the effects of the spatial domain in which the interactions occur. To take into account 
the spatial dimension, a PDE model can be derived. In particular, consider a square domain of linear size L with 
periodic boundary conditions, where L2 = N. We normalize the domain to the unit square so that the distance 
between two nearest neighbors is δ = =x N L1/ (1/ ). The densities of subpopulations A, B, and C at time t and 
site x = (x1, x2) are denoted as a(x, t), b(x, t), and c(x, t), respectively. For interspecific and intraspecific competi-
tions as well as reproduction, the dynamical equations for these quantities only involve neighbors located at 
x ± δx · ei, where {ei}i=1,2 are the base vectors of the lattice. For the RPS game, we obtain the following evolutionary 
equations:
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where = εM N(1/ )2
2. (The corresponding PDEs for ERPS and RPSLS games are provided in Supplementary 

Information).
To be concrete, in this paper we fix the rates of interspecific competition and reproduction to be σ = 1 and 

µ = 1, respectively.

Coexistence states in the RPS system. Figure 2 illustrates the possible coexistence states in the RPS 
system, where the middle column represents a state in which two species coexist - a previously unknown coexist-
ence state. Specifically, a stability analysis of the corresponding ODE system with respect to systematic changes 
in a intraspecific competition parameter, say pa, with fixed pb = 1 and pc = 0.5, reveals the following phenomena. 
Firstly, for weak intraspecific competition, i.e., 0 < pa ≤ 1.5, coexistence is physically not possible due to the exist-
ence of a heteroclinic cycle, where only one species can survive. Secondly, for moderate intraspecific competition, 
i.e., 1.5 < pa ≤ 4, for each species reproduction and death are counter-balanced, so all three species can coexist, as 
indicated by the left column in Fig. 2. Thirdly, for stronger intraspecific competition, i.e., pa > 4, the new coexist-
ence state of two species emerges, as indicated by the middle column in Fig. 2. The striking consequence is that, in 
this case, the nature of the interaction between the two surviving species has become the predator-prey type as a 
result of the balance between prey’s reproduction and predator’s death from competitions among its own individ-
uals. In the limit of infinitely strong intraspecific competition, i.e., pa → ∞, the predator becomes extinct, leaving 
the prey as the only surviving species, as shown in the right column of Fig. 2. Figure 3(a) presents a bifurcation 
diagram of these behaviors (see Methods for more details).

The spatial patterns associated with distinct coexisting states can be revealed by numerical solutions of the 
lattice and PDE models, Eqs (1) and (3), respectively. Figure 2(c–e) show, for M = 10−3, nine representative 
snapshots of the spatial patterns in the long time regime for different values of pa, where the three species are 
denoted by red, blue, and yellow, respectively. Specifically, the three columns (from left to right) are associated 
with pa = 2.5, 5.2 and 100, respectively, the two top rows [Fig. 2(c,d)] are from lattice models of size L = 100 × 100 
and 500 × 500, respectively, and the bottom row is from the PDE model. We see that, all possible coexistence 
states can occur and, as the intraspecific competition parameter is increased, physical coexistence states for which 
the number of survival species is in the order 1 → 3 → 2 → 1 emerge, which is consistent with the results from 
the bifurcation analysis of the ODE model. Further, we find that the thresholds between different stable phases 
from lattice simulations are consistent with those from the bifurcation analysis of the ODE model, as supported 
by a calculation of the survival probability Psurv from 100 sampled parameter values (see Fig. S9 in Supplementary 
Information). The middle column shows the patterns of the coexistence state of two species in the spatial domain, 
which has not been observed previously in the cyclic game of three species. Previous studies also revealed that 
the coexistence state of three species is supported by spiral waves in the domain22, 26. In general, spiral waves can 
be stable, unstable or convectively unstable even in the absence of intraspecific competitions54–56. However, with 
intraspecific competition induced symmetry breaking at the microscopic level, various coexistence states can 
arise but no spiral wave patterns can form.

Coexistence states in the ERPS system. There are five competing species in the ERPS system, as shown 
in Fig. 1(b). To be concrete, we consider a fixed set of parameter values: pa = 1.9, pb = 2, pd = 1.3, and pe = 0.7. A 
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bifurcation analysis of the underlying ODE model (Supplementary Information) leads to the following results on 
the role of intraspecific competition in coexistence. Firstly, for weak intraspecific competition, i.e., 0 ≤ pc < 2.6, 
mathematically all species can coexist but small perturbations can lead to extinction, physically excluding coex-
istence. Secondly, for a moderate level of intraspecific competition, i.e., 2.6 ≤ pc < 5.6, all species can physically 
coexist. Thirdly, in the regime of strong intraspecific competition, i.e., 5.6 < pc < 5.8, coexistence states of four 
species can emerge, breaking the cyclic symmetry. Fourthly, for stronger intraspecific competition, i.e., pc ≥ 5.8, 
three species can coexist, exhibiting a predator-prey relation. For pc → ∞, the predator populations diminish and 
only two species can coexist. Figure 3(b) presents a bifurcation diagram of these behaviors.

Figure 2. All possible coexistence states in RPS game. Red, blue and yellow colors indicate different species and 
blank denotes empty sites. (a) Three different types of surviving species. The left column corresponds to pa = 2.5, 
where (b) shows the density evolution from the ODE model, (c) and (d) present typical snapshots obtained 
from Monte Carlo simulations of lattice size N = 100 × 100 and 500 × 500, respectively, and (e) is a snapshot 
obtained from the PDE model. The middle and right columns are for pa = 5.2 and pa = 100, respectively. Other 
parameters are pb = 1.0 and pc = 0.5.
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The emergence of all possible coexistence states, especially the unusual states of three and four coexisting 
species, can be substantiated by resorting to the lattice and PDE models (see Supplementary Information for the 
PDE model of the ERPS system). To be concrete, we set the simulation parameters to be pa = 1.9, pb = 2, pd = 1.3, 
pe = 0.7, and M = 10−3. Figure 4(c–e) show fifteen snapshots of the spatial patterns in the long time regime from 
the lattice and PDE models for a number of different values of pc, where the five species are denoted by red, blue, 
green, yellow and pink, respectively. The panels are organized into rows and columns, where columns 1–4 (from 
left to right) are associated with pc = 3.3, 5.65, 6.5 and 100, and column 5 is for pc = 100 but with a different param-
eter setting (pa = 1.9, pb = 2, pd = 0.01, and pe = 0.7). The two top rows [Fig. 4(c,d)] are the results from lattices of 
size L = 100 × 100, 500 × 500, respectively, and the bottom row represents the results from the PDE model. These 
results are consistent with those from the stability analysis of the corresponding ODE system in that coexistence 
states of all possible numbers of species can occur. The most striking phenomenon is the coexistence of four and 
three species (corresponding to the second and third columns, respectively), which have not been reported pre-
viously for the ERPS system. Similar to the RPS system, with intraspecific competitions the coexistence states are 
not supported by spiral wave patterns in the spatial domain.

Coexistence states in the RPSLS system. For the five-species RPSLS system, for a representative set 
of fixed parameter values, e.g., pa = 0.3, pb = 1.1, pc = 2.5, and pd = 0.7, but varying pe, a stability analysis reveals 
the following phenomena. Firstly, in the regime of weak intraspecific competition, i.e., 0 ≤ pe < 1.8, coexistence 
is physically not possible. Secondly, for 1.8 ≤ pe < 2.4, coexistence of all five species is physically realizable and 
robust. Thirdly, for 2.4 ≤ pe < 8, coexistence of five species is no longer possible. Instead, coexistence states of 
four species can emerge, breaking the cyclic symmetry. Fourthly, for pe ≥ 8, only three species, which do not 

Figure 3. Bifurcation with intraspecific parameter. Solid lines and ellipses indicate stable fixed points and 
heteroclinic cycles, respectively, and dots are for unstable fixed points. Different fixed points are distinguished 
by colors. (a) For the RPS game, the survival states of three and two species (black and red lines), respectively. 
(b) For the ERPS game, black, blue and red lines indicate the survival states of five, four, and three species, 
respectively. (c) For the RPSLS game, black, blue and red lines specify the survival states of five, four and three 
species, respectively.
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exhibit a sub-cyclic structure, can coexist and, for pe → ∞, two of the three species can survive in a predator-prey 
relation. Figure 3(c) presents a bifurcation diagram of these behaviors. Detailed simulations from the lattice and 
PDE (Supplementary Information) models give consistent results. For example, for pa = 0.3, pb = 1.1, pc = 2.5, 
and pd = 0.7, various coexistence states can emerge for different values of pe, as shown by the spatial patterns in 
Fig. 5(c–e). The results shown in the second and fourth columns, which indicate the coexistence states of four 
and two species, are surprising as such states have not been uncovered previously in the study of RPSLS system52. 
We also find that, associated with the coexistence of three species [c.f., Fig. 5(a)], there is absence of any cyclic 
interaction structure among the three survived species. This is in fact a non-sub-cyclic interacting structure which, 
to our knowledge, has not been reported previously in the studies of interspecific interaction models52, 62. For the 
ten distinct cases of three survived species among five, the coexistence states with such a non-sub-cyclic structure 
are stable. Interestingly, the conventional coexistence states with a sub-cyclic structure among the three surviving 
species are unstable (See Supplementary Information for more details). It is also apparent that, dynamically, the 
coexistence states are not supported by spiral wave patterns.

Role of intraspecific competition in promoting diverse coexistence states - a qualitative under-
standing. To understand the effect of intraspecific competition on coexistence qualitatively, we investigate the 
population change for each species i as a result of interspecific and intraspecific competitions as well as reproduc-
tion at time t, denoted as Ci(t), Ii(t) and Ri(t) (scaled by the lattice size N), respectively. From the fact that the 
populations are determined by the balance between reproduction and competition, we find it useful to define two 
quantities: Hi(t) = Ri(t) − Ci(t) and Si(t) = Ri(t) − Ci(t) − Ii(t). We then have Hi(t) − Si(t) = Ii(t) ≥ 0 and the popu-
lation at time t can be written as ∫= +P t P S k dk( ) ( )i i

t
i

0
0

 for a given initial population Pi
0. For Si(t) > 0, species i 

can survive as its population tends to increase with time, which will cause a decrease in the population of the next 
species in the cycle (prey of species i) as a result of interspecific competitions, leading to possible extinction. For 
Si(t) < 0, the population of species i decreases and possibly becomes extinct. These simple observations imply that, 

Figure 4. Coexistence states in ERPS game. (a) Five different types of surviving species, where each color 
denotes a different species (blank for empty site). The four columns from left correspond to four different values 
of the intraspecific competition rate of one species: pc = 3.3, 5.65, 6.5 and 100, respectively, with fixed parameters 
pa = 1.9, pb = 2.0, pd = 1.3, and pe = 0.7. For example, in the left most column, (b) is the density evolution from 
the ODE model, (c,d) are typical snapshots obtained from Monte Carlo simulations of lattice size N = 100 × 100 
and 500 × 500, respectively, and (e) is a snapshot obtained from the PDE model. The right most column is for 
pa = 1.9, pb = 2.0, pc = 100, pd = 0.01, and pe = 0.7.
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in order for multiple species to survive, Si(t) must fluctuate about zero. Equivalently, for surviving species i, its 
population fluctuations can be described by a normal diffusion process: ~S t t( )i

2 .
For the case of the coexistence of three species in the RPS system, Fig. 6(a) shows the time evolution of Hi(t) 

and Si(t). We observe that Hi(t) > 0 but Si(t) fluctuates about zero, which indicates that, without intraspecific com-
petitions, the corresponding populations tend to increase with time due to Hi(t) > 0. However, intraspecific com-
petition can reduce the populations, because Si ≈ 0. This implies that a possible balance between the increasing 
and decreasing trends can be attained, stabilizing the populations. For the case of species extinction [Fig. 6(b,c)], 
we find that Hi can be positive initially but becomes negative due to the decrease in the reproduction as a result of 
strong intraspecific competitions.

For the cyclic system of three species (A → B → C → A), we note that each pair of species constitutes a 
predator-prey system. To examine the process leading to the coexistence of two species, we assume a decrease 
in the population of predator (A) from its initial population due to strong intraspecific competitions, which will 
immediately reduce the interspecific competition with its prey (B). As a result, the prey population can increase 
due to reproduction. The change in the population of species (B) will in turn enhance the interspecific competi-
tion with its prey (C), leading to a decrease in its population and possibly to its extinction. This chain of interac-
tions indicates that intraspecific competition of a species can have a dramatic effect on the populations of other 
interacting species, potentially generating a distinct equilibrium state. To provide theoretical support, we identify 
the critical level of intraspecific competition leading to qualitative changes in the species populations through a 
mathematical analysis of the existence and the stability conditions of the equilibrium states listed in Table 1 (see 
Methods and Supplementary Information).

In the three species system, the coexistence state of two species is characteristic of that of a predator-prey sys-
tem. Intuitively, the classic Lotka-Volterra model can be used to describe such a situation, where the populations 
can exhibit periodic oscillations with time (or a limit cycle in the phase space). We find that, however, in the pres-
ence of intraspecific competitions, the populations of the coexisting species do not exhibit periodic oscillations 

Figure 5. Coexistence states in RPSLS game. (a) Five different types of surviving species, where each color 
denotes a different species (blank for empty site). The four columns from left correspond to four different values 
of the intraspecific competition rate of one species: pe = 2.2, 3.3, 9.3 and 100, respectively, with fixed parameters 
pa = 0.3, pb = 1.1, pc = 2.5 and pd = 0.7. For example, in the left most column, (b) is the density evolution from 
the ODE model, (c,d) are typical snapshots obtained from Monte Carlo simulations of lattice size N = 100 × 100 
and 500 × 500, respectively, and (e) is a snapshot obtained from the PDE model. The right most column is for 
pa = 0.01, pb = 1.1, pc = 2.5, pd = 0.7, and pe = 100.
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but steady states, as shown in Fig. 2(b). Thus, intraspecific competitions can either enhance coexistence and 
induce diverse coexistence states, or break the equilibrium and lead to extinction.

Discussion
In the classic three- or five-species cyclic games, the species are on the equal footing in the sense that no particular 
species is superior or inferior to any other species. This intrinsic symmetry imposes a restriction on the survival 
or coexistence states of the system. For example, for the classic RPS game, either only one species survives as a 
result of interspecific interactions in which the end result is the disappearance of such competitions, or all three 
species can sustain and coexist20–23. For this reason the coexistence state of two species has never been reported 
before in the literature. Likewise, for the five-species RPSLS game, the known coexistence states contain a sole 
surviving species, three species, or all five species52. It is conceivable that, when the intrinsic symmetry among the 
competing species is broken, more diverse types of coexistence states can emerge.

Nonuniform intraspecific competitions represent one mechanism that can break the symmetry: they put the 
species on unequal footings. For example, if competitions among individuals in a species are stronger than those 
in another species, the former requires more resources to reproduce in order to survive and is therefore effectively 
“inferior” to the latter. As a result, a predator-prey type of behavior can emerge on the macroscopic scale where 
intraspecific competitions associated with the predator are stronger than those with the prey to reach a new equi-
librium state in which the two surviving species are no longer on equal footing. Mathematically, it is not necessary 

Figure 6. Qualitative indicator of effect of intraspecific competition on coexistence in RPS game. Each column 
shows the quantities Hi (blue) and Si (red) for each species, where the corresponding coexistence states are 
indicated by three, two and one from left to right. (a) There is a gap between blue and red quantities all time. (b) 
The gap between the two quantities of a species (bottom panel) is reduced and finally disappears. The top and 
bottom panels of the third column in (c) show the collapsed gap between the two quantities.

Species AB AC BC
Fixed point w1(pb, pa − 2, 0) w2(pc − 2, 0, pa) w3(0, pc, pb − 2)

λi

w1(pa(pb − 2) + 4)/2 w2(pc(pa − 2) + 4)/2 w3(pb(pc − 2) + 4)/2
−w1pb(pa − 2)/2 −w2pa(pc − 2)/2 −w3pc(pb − 2)/2
−1 −1 −1

Existence

pa > 2 pa > 0 pb > 2
pb > 0 pc > 2 pc > 0

>
−

+
pb

pa
pa

4 2
2 >

−

+
pa

pc
pc

4 2
2 >

−

+
pc

pb
pb

4 2
2

Stable Condition
pa(pb − 2) + 4 < 0 pc(pa − 2) + 4 < 0 pb(pc − 2) + 4 < 0

>
−

pa pb

4
2

, pb < 2 >
−

pc pa

4
2

, pa < 2 >
−

pb pc

4
2

, pc < 2

Table 1. Existence and stability conditions of fixed points of type p2 in the RPS game.
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for such a state to possess any intrinsic symmetry. The consequence is that coexistence states involving any num-
ber of species (insofar the number is less than or equal to the total number of species in the system) can arise.

The contributions of this paper are mathematical analyses, physical understanding, and comprehensive 
numerical tests that symmetry breaking can lead to more diverse coexistence states than previously reported. 
To accomplish this goal, we systematically studied three classes of cyclic game systems with either three or five 
species, subject to nonuniform, species dependent, intraspecific competitions. For each system, we focus on the 
asymptotic dynamical states (i.e., the coexistence states) of the system utilizing three approaches: ODE based 
stability analysis, microscopic Monte-Carlo simulation of the lattice model, and spatiotemporal evolution of the 
corresponding PDE model. A detailed bifurcation analysis of the ODE model reveals that, as the strength of the 
intraspecific competition for one species is systematically varied (while keeping the intraspecific competition 
strengths for the other species fixed), coexistence states of any number of species can arise in different parame-
ter regimes. The occurrence of these states is further supported by both lattice and PDE simulations. A distinct 
feature is that the coexistence states here are not associated with any spiral wave patterns that were previously 
established as the underlying spatiotemporal dynamical structure supporting the coexistence of multiple species 
in cyclic game systems22, 26. Our findings suggest that symmetric breaking with nonuniform intraspecific compe-
titions across the species may be more beneficial to biodiversity.

Methods
Numerical methods. All PDE models are solved by the standard spectral method and lattice simulations are 
of the Monte Carlo type. Lattice sizes vary from 100 × 100 to 500 × 500.

Stability analysis of RPS game. In the classic RPS game in the absence of intraspecific competitions (i.e., 
pi = 0), there are two possible states: one in which all three species coexist and another with only one surviving 
species. In the presence of intraspecific competitions, a new type of states in which two species coexist can arise, 
which can be seen by finding the fixed points of the ODE model, Eq. (2), and analyzing their stabilities. The first 
type of fixed points, denoted by p1, correspond to an extinction state:

⎛

⎝
⎜⎜⎜⎜ +

⎞

⎠
⎟⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜ +

⎞

⎠
⎟⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜ +

⎞

⎠
⎟⎟⎟⎟⎟
.

p p p
2

2
, 0, 0 , 0, 2

2
, 0 , 0, 0, 2

2 (4)a b c

The second type p2 is for states in which two species coexist and one species is extinct:

−w p p( , 2, 0), (5)b a1

−w p p( 2, 0, ), (6)c a2

−w p p(0, , 2), (7)c b3

where w1 = 2/(papb + 2(pa + pb) − 4), w2 = 2/(papc + 2(pa + pc) − 4), and w3 = 2/(pbpc + 2(pb + pc) − 4). The exist-
ence and stability conditions of type p2 fixed points are summarized in Table 1. The last type p3 corresponds to the 
state in which all three species survive, i.e., (a*, b*, c*), where

= − + Γ = − + Γ = − + Γ⁎ ⁎ ⁎a p p b p p c p p2( ( 2) 4)/ , 2( ( 2) 4)/ , 2( ( 2) 4)/ , (8)b c c a a b

and Γ = papbpc + 8 + 2[papb + pbpc + pcpa − 2(pa + pb + pc) + 12]. For a more detailed analysis of stability and exist-
ence of fixed points, see Supplementary Information.

To assess the stabilities of these different types of fixed points in a concrete way, we fix (pb, pc) = (1, 0.5) and 
vary the parameter pa. For pa ≥ 0, there are three fixed points of type p1 and one fixed point of type p3. However, 
for pa ≥ 2, only one fixed point of type p2 [Eq. (5)] exists. The three fixed points of type p1 are saddles for pa ≥ 0. 
While for 0 < pa ≤ 1.5 all fixed points are unstable, and there is an asymptotically stable heteroclinic cycle con-
stituting three heteroclinic orbits connecting any two saddle fixed points (all of the p1 type). Since the cycle is 
arbitrarily close to the saddle fixed points, a small perturbation can cause a trajectory to diverge from the cycle, 
leading to extinction. For 1.5 < pa ≤ 4, the fixed point of the type p3 [Eq. (8)] becomes stable, in which all species 
coexist. We note that, for pa ≥ 2, fixed points of the type p2 [Eq. (5)] are created and are unstable. For pa > 4, the 
fixed points given by Eqs (5) and (8) become stable and unstable, respectively, indicating the emergence of the 
coexistence state of two species. In this case, the fixed point given by Eq. (5) is globally stable. As pa is increased 
further, this fixed point approaches an extinction state:

+ + −
− → → ∞.

p p p p
p p p2

2( ) 4
( , 2, 0) (0, 2/3, 0) as

a b a b
b a a

Figure 3(a) presents a bifurcation diagram of these behaviors.
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1 Stability analysis of rock-paper-scissors system

1.1 Uniform intraspecific competitions

For uniform intraspecific competitions: pa = pb = pc = p, the ODE model of the RPS system is given by

da

dt

= a

h
µ(1� ⇢)� �c� p

2
a

i
,

db

dt

= b

h
µ(1� ⇢)� �a� p

2
b

i
, (S1)

dc

dt

= c

h
µ(1� ⇢)� �b� p

2
c

i
.

There are three types of possible states: extinction (type p1), coexistence of two species (type p2), and co-
existence of all three species (type p3). The corresponding fixed point solutions are listed in Supplementary
Tab. S1. To be concrete, we set � = 1 and µ = 1. The system has three fixed points of type p1, which are
unstable for p > 0. For the p2 type, three fixed points exist for p > 2 and p

2 + 4p � 4 > 0 but they are
unstable with a positive eigenvalue �2 > 0, as listed in Supplementary Tab. S1. For p3, an unstable fixed
point exists for p < 1 but it becomes stable for p > 1.

For 0 < p < 1, the three fixed points of type p1 constitute a heteroclinic cycle, whose stability can be
evaluated [S1]. Since they have identical eigenvalues, the corresponding eigenvalue ratios are identical as
well

Vi = ��

1
s/�u =

2� p

p

. (S2)

The product V of the ratios is

V =
3Y

i=1

Vi =

✓
2� p

p

◆3

> 1. (S3)

The heteroclinic cycle signifies coexistence but it is physically unstable as random perturbations will land
the system into one of the extinction states. For p � 1, a typical trajectory converges to the stable fixed point
p3. Supplementary Fig. S1 shows a bifurcation diagram and representative trajectories of the system.

1.2 Nonuniform intraspecific competitions

With nonuniform intraspecific competitions, the system becomes

da

dt

= a

h
(1� ⇢)� c� pa

2
a

i
,

db

dt

= b

h
(1� ⇢)� a� pb

2
b

i
, (S4)

dc

dt

= c

h
(1� ⇢)� b� pc

2
c

i
.

There are three types of fixed points:

p1 :

✓
2

2 + pa
, 0, 0

◆
,

✓
0,

2

2 + pb
, 0

◆
,

✓
0, 0,

2

2 + pc

◆
, (S5)

p2 : w4(pb, pa � 2, 0), w5(pc � 2, 0, pa), w6(0, pc, pb � 2), (S6)

p3 : (a
⇤
, b

⇤
, c

⇤), (S7)

2



where

w4 = 2/(papb + 2(pa + pb)� 4),

w5 = 2/(papc + 2(pa + pc)� 4),

w6 = 2/(pbpc + 2(pb + pc)� 4),

a

⇤ = 2(pb(pc � 2) + 4)/�,

b

⇤ = 2(pc(pa � 2) + 4)/�,

c

⇤ = 2(pa(pb � 2) + 4)/�,

� = papbpc + 2(papb + pbpc + pcpa)� 4(pa + pb + pc) + 32.

The three fixed points of type p1 are unstable:

�1 = �1, �2 =
pa � 2

2 + pa
, �3 =

pa

2 + pa
.

We summarize the existence and stability conditions of the three fixed points of type p2 in Supplementary
Tab. S2.

To study the effect of nonuniform intraspecific competitions on coexistence, we consider three concrete
scenarios: (1) fixing the values of the intraspecific competition rate for two species and varying the third,
(2) fixing one rate and varying the remaining two, and (3) fixing the sum of the three rates (p1 + p2 + p3 =
↵) and varying the value of the sum. For the first scenario, for fixed pa = pb and value of pc open,
we find coexistence states. In particular, for pa = pb < 2, as pc is increased, global attractors such as
stable heteroclinic cycles can arise, as well as coexisting state p3 of all three species and the two-species
coexistence state p2, as shown in Supplementary Fig. S2. In this case, the existence range and the stabilities
of the fixed points of types p2 and p3 depend on the value of pc. If we decrease the value of pa = pb, the
existence interval of the fixed point p3 as a globally stable attractor strictly increases, but that of the stable
heteroclinic cycle decreases. For sufficiently large values of pc, a fixed point of type p2 exists and is stable.
That is, two species can coexist, which is not possible when the intraspecific competitions are uniform. For
pa = pb > 2, coexistence of all three species is stable for any value of pc.

For the second scenario, we fix the value of pa and vary pb and pc. Supplementary Fig. S3 shows the
emergence and disappearance of various survival states. Specifically, we observe a decrease in the parameter
region for a stable heteroclinic cycle and one of fixed points of type p2 (AC), but the region for the survival
state of species B and C does not change, as detailed in Supplementary Tab. S2. That is, fixed points of
type p2 have emerged. We also observe that for an increased value of pa, varying pb and pc can expand the
parameter regions for the fixed point p3. In general, nonuniform intraspecific competitions can induce new
survival states and/or disappearance of previous survival states.

For the third scenario, we vary pa, pb, pc � 0 while keeping their sum ↵ fixed. Supplementary Fig. S4
shows the various survival states in the 2-simplex plane for several ↵ values ranging from 0.6 to 60. We use
different colors to denote different states: a stable heteroclinic cycle (white), three different fixed points of
type p2 (red, blue and yellow for coexisting species AB, AC and BC, respectively), and the fixed point p3

for stable coexistence of all species (black). Specifically, for ↵ < 2, a stable heteroclinic cycle constituting
three saddle fixed points of type p1 is the global attractor of the system, whereas fixed points of type p2 do
not exist and the fixed point p3 exists but it is unstable. For ↵ > 2, a dramatic change in the survival states
occurs: depending on the rates of the intraspecific competitions, a coexisting state of two species emerges,
which has not been observed in previous studies of the RPS system. In general, the coexistence states p2

3



and p3 begin to emerge from the three vertices of the 2-simplex plane pa + pb + pc = ↵. As ↵ is increased,
the parameter region of p3 expands toward the center of the 2-simplex from each of the three vertices and
merge into a larger region, as can be seen in the top two rows in Supplementary Fig. S4. The two-species
coexistence states p2 are born from the vertices of the 2-simplex and expand following its edges. From the
bottom two rows in Supplementary Fig. S4, we see that, for a sufficiently large value of ↵, the interior of the
2-simplex is fully covered by the two distinct coexistence states p2 and p3. For ↵ � ↵h ⇡ 3.7, the stable
heteroclinic cycle no longer exists. As the value of ↵ is increased further, the ratio of the area of three basins
for p2 to the total area of the 2-simplex plane increases until when ↵  ↵c ⇡ 5.9 and then decreases for
↵ > ↵c.

We numerically calculate the existence boundaries for each attractor for ↵ = 5 with parameters pa, pb
and pc from the 2-simplex plane, as shown in Supplementary Fig. S5. Exploiting the existence condition
of the fixed points of type p2 as listed in Supplementary Tab. S2, we can derive each boundary curve
analytically. For example, setting pb = 4/(2� pc), we can obtain the parameter boundary of the coexisting
state of two species (B and C - yellow region in Supplementary Fig. S5). In particular, we have

pa +
4

2� pc
+ pc = ↵ (↵ > 2),

which implies

pa = ↵� 4

2� pc
� pc = ↵� p

2
c � 2pc � 4

pc � 2
.

To further study the difference in the characteristics between coexistence of two and three species, we study
the dynamical behaviors of the system for two parameter settings located above and below the boundary
in Supplementary Fig. S5: (1) (pa, pb, pc) = (1.7, 2.8, 0.5) for p2 and (2) (pa, pb, pc) = (1.7, 2.7, 0.6) for
p3. We see that species A becomes extinct under parameter setting (1), while it survives under setting (2).
To understand this behavior, we note that, for setting (1), although the intraspecific competitions within A

and B are stronger than that of species C, it is A that becomes extinct. Supplementary Fig. S6 shows the
densities of the three species from the lattice simulation, and we obtain essentially the same patterns from
the corresponding PDE model (data not shown). How interspecific and intraspecific competitions as well as
reproduction affect the densities can also be seen from Supplementary Fig. S6.

A possible dynamical process leading to the coexistence of two species is as follows. A decrease in the
population of species B subject to strong intraspecific competitions can be beneficial to its prey (species C),
leading to an increase in the prey population. As a result, species A will be at a disadvantage because it is
the prey of C. It can happen that reproduction of A is not sufficient to sustain the population decrease due to
interactions with C, leading to extinction of A. That is, an increase in self-competition within one species
can cause the extinction of other species.

For parameter setting (2), species A survives even if its population is much reduced, as shown in Sup-
plementary Fig. S7. This behavior is quite different from that under setting (1), indicating the emergence of
a critical borderline between the two settings. This may have implications for population control. For ex-
ample, under setting (2), intraspecific competitions within species B are stronger than those within the other
two species, leading to an increase in their populations, which in turn causes their predators’ populations to
increase.

4



2 Extended rock-paper-scissors system

For the five-species, extended rock-paper-scissors (ERPS) system, in the absence of intraspecific compe-
titions, there are three possible states [S2]: the coexistence state of all five species, states in which two
non-interacting species survive, and extinction states of only one surviving species. As demonstrated in the
main text, with nonuniform intraspecific competitions all possible coexistence states can arise.

2.1 ODE based stability analysis

The ODE model of the ERPS system is

da

dt

= a

h
µ(1� ⇢)� �e� pa

2
a

i
,

db

dt

= b

h
µ(1� ⇢)� �a� pb

2
b

i
,

dc

dt

= c

h
µ(1� ⇢)� �b� pc

2
c

i
, (S8)

dd

dt

= d

h
µ(1� ⇢)� �c� pd

2
d

i
,

de

dt

= e

h
µ(1� ⇢)� �d� pe

2
e

i
.

To be concrete, we fix � = µ = 1. There are five types of fixed points. The first type, denoted by q1,
corresponds to various extinction states:

✓
2

2 + pa
, 0, 0, 0, 0

◆
,

✓
0,

2

2 + pb
, 0, 0, 0

◆
,

✓
0, 0,

2

2 + pc
, 0, 0

◆
, (S9)

✓
0, 0, 0,

2

2 + pd
, 0

◆
,

✓
0, 0, 0, 0,

2

2 + pe

◆
.

The second type q2 specifies states in which only two species coexist. Five of such fixed points are

2

papc + 2(pa + pc)
(pc, 0, pa, 0, 0), (S10)

2

papd + 2(pa + pd)
(pd, 0, 0, pa, 0), (S11)

2

pbpd + 2(pb + pd)
(0, pd, 0, pb, 0), (S12)

2

pbpe + 2(pb + pe)
(0, pe, 0, 0, pb), (S13)

2

pcpe + 2(pc + pe)
(0, 0, pe, 0, pc), (S14)
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which are unstable. The third type q3 signifies the coexistence state of three species. The possibly stable
fixed points of this type are

2(pbpd, pd(pa � 2), 0, papb, 0)

papbpd + 2(papb + papd + pbpd)� 4pd
, (S15)

2(pcpd, 0, papd, pa(pc � 2), 0)

papcpd + 2(papc + papd + pcpd)� 4pa
, (S16)

2(pc(pe � 2), 0, pape, 0, papc)

papcpe + 2(papc + pape + pcpe)� 4pc
, (S17)

2(0, pcpe, pe(pb � 2), 0, pbpc)

pbpcpe + 2(pbpc + pbpe + pcpe)� 4pe
, (S18)

2(0, pdpe, 0, pbpe, pb(pd � 2))

pbpdpe + 2(pbpd + pbpe + pdpe)� 4pb
. (S19)

The fourth type q4 describes the state in which four species coexist and only one species is extinct. For
example, one such fixed point, denoted as (a⇤, 0, c⇤, d⇤, e⇤), is given by

a

⇤ =
2(pc(pd(pe � 2) + 4)� 8)

⌃4
, c

⇤ =
papdpe

⌃4
, d

⇤ =
2pape(pc � 2)

⌃4
, (S20)

e

⇤ =
2pa(pc(pd � 2) + 4)

⌃4
,

where

⌃4 = papcpdpe + 2(papcpd + papcpe + papdpe + pcpdpe)� 4(papc + pape + pcpd) + 8(pa + pc)� 16.

The last type q5 corresponds to the state in which all five species survive, i.e., (a⇤, b⇤, c⇤, d⇤, e⇤), where

a

⇤ =
2(pbpcpdpe � 2pbpcpd + 4pbpc � 8pb + 16)

⌃5
,

b

⇤ =
2(papcpdpe � 2pcpdpe + 4pcpd � 8pc + 16)

⌃5
,

c

⇤ =
2(papbpdpe � 2papdpe + 4pdpe � 8pd + 16)

⌃5
, (S21)

d

⇤ =
2(papbpcpe � 2papbpe + 4pape � 8pe + 16)

⌃5
,

e

⇤ =
2(papbpcpd � 2papbpc + 4papb � 8pa + 16)

⌃5
,

and

⌃5 = papbpcpdpe + 2(papbpcpd + papbpcpe + papbpdpe + papcpdpe + pbpcpdpe)

� 4(papbpc + papbpe + pbpcpd + papdpe + pcpdpe) + 8(papb + pbpc + pape + pcpd + pdpe)

� 16(pa + pb + pc + pd + pe) + 192.

To assess the stabilities of the fixed points, we fix (pa, pb, pd, pe) = (1.9, 2, 1.3, 0.7) and vary the parameter
pc. For pc > 0, there are fixed points of types q1 and q2 which are unstable. For pc > 2, the fixed point (S16)
of type q3 can exist and the fixed point (S20) of type q4 emerges for 3.5  pc < 5.8. For 0 < pc < 2.6,
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although the fixed points of types q1, q2, q3 and q5 exist, only the cycles consisting of the heteroclinic
orbits connecting saddle fixed points of type q2 are numerically observable. For 2.6  pc < 5.6, the fixed
point q5 becomes stable in which all species coexist. However, this fixed point no longer exists for pc � 5.6.
For pc � 5.8, the fixed points (S20) disappear. For pc � 5.8, the three-species coexisting fixed points (S16)
become stable and approach the two-species fixed points (S11) as pc ! 1. Thus, for large values of pc,
the coexistence states of two species are numerically observable, as shown in the bifurcation diagram and
a spatial snapshot (Figs. 3 and 4, respectively) in the main text. In general, as the intraspecific competition
parameter is increased, a variety of coexistence states can emerge.

2.2 PDE model

Taking into account the spatial dimension, we obtain a set of PDEs:

@a(x, t)

@t

= M�a(x, t) + µa(x, t)[1� ⇢(x, t)]� �e(x, t)a(x, t)� pa

2
a(x, t)a(x, t),

@b(x, t)

@t

= M�b(x, t) + µb(x, t)[1� ⇢(x, t)]� �a(x, t)b(x, t)� pb

2
b(x, t)b(x, t),

@c(x, t)

@t

= M�c(x, t) + µc(x, t)[1� ⇢(x, t)]� �b(x, t)c(x, t)� pc

2
c(x, t)c(x, t), (S22)

@d(x, t)

@t

= M�d(x, t) + µd(x, t)[1� ⇢(x, t)]� �c(x, t)d(x, t)� pd

2
d(x, t)d(x, t),

@e(x, t)

@t

= M�e(x, t) + µe(x, t)[1� ⇢(x, t)]� �d(x, t)e(x, t)� pe

2
e(x, t)e(x, t),

where a(x, t), b(x, t), c(x, t), d(x, t), and e(x, t) denote the densities of the five species at site x = (x1, x2)
and time t on a square domain with periodic boundary conditions.

3 Rock-paper-scissors-lizard-spock system

For the rock-paper-scissors-lizard-spock (RPSLS) system of five species, in the absence of intraspecific
competitions, three types of distinct dynamical states can arise [S3] [S4]: the coexistence state of all five
species, states in which three species having a sub-cyclic interacting structure coexist, and extinction states
of only one surviving species. In the main text, we demonstrate that intraspecific competitions can induce
coexistence states of any possible number of surviving species.
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3.1 ODE based Stability analysis

Similar to the ERPS system, the coupled ODE model for the RPSLS system is

da

dt

= a

h
µ(1� ⇢)� �e� �c� pa

2
a

i
,

db

dt

= b

h
µ(1� ⇢)� �a� �d� pb

2
b

i
,

dc

dt

= c

h
µ(1� ⇢)� �b� �e� pc

2
c

i
, (S23)

dd

dt

= d

h
µ(1� ⇢)� �c� �a� pd

2
d

i
,

de

dt

= e

h
µ(1� ⇢)� �d� �b� pe

2
e

i
.

There are different types of fixed points with different numbers of surviving species. For � = µ = 1, fixed
points of different types are listed below.

The first type, denoted as r1, describes the extinction states:
✓

2

2 + pa
, 0, 0, 0, 0

◆
,

✓
0,

2

2 + pb
, 0, 0, 0

◆
,

✓
0, 0,

2

2 + pc
, 0, 0

◆
, (S24)

✓
0, 0, 0,

2

2 + pd
, 0

◆
,

✓
0, 0, 0, 0,

2

2 + pe

◆
.

The second type r2 represents states in which only two species survive. For example, two of the ten possible
fixed points are

2(pc � 2, 0, pa, 0, 0)

papc + 2(pa + pc)� 4
, and

2(0, 0, pd, pc � 2, 0)

pcpd + 2(pc + pd)� 4
, (S25)

which are unstable. The third type, denoted by r3, corresponds to three coexisting species. In this case,
there are ten such fixed points, three of which are

2(0, pc(pd � 2) + 4, pd(pb � 2) + 4, pb(pc � 2) + 4, 0)

�31
, (S26)

2(0, 0, pd(pe � 2) + 4, pe(pc � 2) + 4, pc(pd � 2) + 4)

�32
, (S27)

and
2((pc � 2)(pe � 2), 0, pa(pe � 2), 0, papc)

�33
, (S28)

where

�31 = pbpcpd + 2(pbpc + pbpd + pcpd)� 4(pb + pc + pd) + 32,

�32 = pcpdpe + 2(pcpd + pcpe + pdpe)� 4(pd + pe + pc) + 32,

�33 = papcpe + 2(papc + pape + pcpe)� 4(pa + pc + pe) + 8.

Fixed points such as those in (S28) have a non-sub-cyclic structure and can be stable in certain parameter
ranges, while other five points including (S26)-(S27) with a sub-cyclic structure are always unstable as the
eigenvalues of the underlying Jacobian matrices under the existence condition are positive. For example, for
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the fixed point (S26), we have

�1 = �1, �2 =
(pb � 2)(pc(pd � 2) + 4)

�31
, �3 =

pd(pb(pc � 2) + 4)

�31
, (S29)

�4,5 = [128� 80(pc + pd) + 8(p2c + p

2
d) + 56pcpd � 8pcpd(pc + pd) + 2p2cp

2
d

�pb(pc(�56 + 52pd � 6p2d) + 8(10� 7pd + p

2
d) + p

2
c(8� 6pd + p

2
d))

�p

2
b(�2(pd � 2)2 + pc(8� 6pd + p

2
d) + p

2
c(�2 + pd + p

2
d))

±{(�31)
2(p2b(2� pc + pd)

2 + (pd � 2)(4pc(pd � 2) + p

2
c(pd � 2) + 4(pd + 6))

�2pb(p
2
c(pd � 2) + pc(8� 6pd + p

2
d) + 2(�4 + 4pd + p

2
d)))}

1
2 ]/(�31)

2
,

and �3 is positive because of the inequality pb(pc � 2) + 4 > 0. An illustration of the classification of the
structures of the fixed points of type r3 is presented in Supplementary Fig. S8.

The fourth fixed-point type r4 corresponds to states in which four species coexist and one species is
extinct. One such fixed point, for example (a⇤, b⇤, c⇤, 0, e⇤), is given by

a

⇤ =
2(pbpcpe + 4(pb + pc + pe)� 2pb(pc + pe)� 8)

�4

b

⇤ =
2(papcpe + 4(pc + pe)� 2pcpe � 8)

�4
(S30)

c

⇤ =
2(pe � 2)(pa(pb � 2) + 4)

�4
, e

⇤ =
2pc(pa(pb � 2) + 4)

�4
,

where

�4 = papbpcpe + 2(papbpc + papbpe + papcpe + pbpcpe)

� 4(papb + papc + pbpc + pape + pbpe + pcpe) + 32(pc + pe) + 8(pa + pb)� 64.

The last fixed-point type, r5, characterizes the coexistence state of all five species, which is given by
(a⇤, b⇤, c⇤, d⇤, e⇤)/�5, where

a

⇤ = 2{16� 8(pb + pc + pd) + 4(pbpc + pbpd + pcpd + pdpe)� 2(pbpcpd + pbpdpe) + pbpcpdpe},
b

⇤ = 2{16� 8(pc + pd + pe) + 4(pcpd + pape + pcpe + pdpe)� 2(papcpe + pcpdpe) + papcpdpe},
c

⇤ = 2{16� 8(pa + pd + pe) + 4(papb + papd + pape + pdpe)� 2(papbpd + papdpe) + papbpdpe},
d

⇤ = 2{16� 8(pa + pb + pe) + 4(papb + pbpc + pape + pbpe)� 2(papbpe + pbpcpe) + papbpcpe},
e

⇤ = 2{16� 8(pa + pb + pc) + 4(papb + papc + pbpc + pcpd)� 2(papbpc + papcpd) + papbpcpd},
(S31)

and

�5 = papbpcpdpe + 2(papbpcpd + papbpcpe + papbpdpe + papcpdpe + pbpcpdpe)

� 4(papbpc + papbpd + papcpd + pbpcpd + papbpe + papcpe + pbpcpe + papdpe + pbpdpe + pcpdpe)

+ 32(papb + pbpc + pcpd + pape + pdpe) + 8(papc + papd + pbpd + pbpe + pcpe)

� 64(pa + pb + pc + pd + pe) + 224.

To analyze the stabilities of all the fixed points, we set (pa, pb, pc, pd) = (0.3, 1.1, 2.5, 0.7) and vary the
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parameter pe. For pe � 0, there are five fixed points of type r1, fixed points (S25) of type r2, points (S26)
and (S27) of type r3, and points (S31) of type r5. For pe � 2.1, fixed points (S28) and (S30) of types r3

and r4, respectively, are created. For 0 < pe < 1.8, all existing fixed points of types r1, r2, r3, and r5

are unstable. We find a stable cycle consisting of heteroclinic orbits among saddle fixed points of types r1
and r2. For 1.8 < pe < 2.4, the type r5 exists as a stable attractor, while the other fixed points are always
unstable. For 2.4  pe < 8, the global coexistence state of five species no longer exists but the fixed point
(S30) becomes stable in which four species coexist. For pe � 8, the fixed points (S30) disappear and the
fixed points (S28) become stable in which three species survive. Even though the fixed points (S28) are
stable, they will converge to the fixed points (S25) of type r2 for pe ! 1. It is thus possible to observe a
coexistence state of two species for large values of pe. The results of the stability analysis and numerical
simulations are illustrated in the bifurcation diagram and spatial snapshots in the main text (Figs. 3 and 5,
respectively).

The extinction state (S24) can be obtained from a different parameter setting such as (pa, pb, pc, pd) =
(0.01, 1.1, 2.5, 0.7). By varying pe, the stable fixed point (S28) converges to the extinction state of type r1

because of the simultaneous decrease in the populations of the two species C and E, as shown in Fig. 5 in
the main text.

3.2 PDE model

Similarly to the ERPS system, we obtain the PDE model for the RPSLS game as

@a(x, t)

@t

= M�a(x, t) + µa(x, t)[1� ⇢(x, t)]� �e(x, t)a(x, t)

��a(x, t)c(x, t)� pa

2
a(x, t)a(x, t),

@b(x, t)

@t

= M�b(x, t) + µb(x, t)[1� ⇢(x, t)]� �a(x, t)b(x, t)

��b(x, t)d(x, t)� pb

2
b(x, t)b(x, t),

@c(x, t)

@t

= M�c(x, t) + µc(x, t)[1� ⇢(x, t)]� �b(x, t)c(x, t)

��c(x, t)e(x, t)� pc

2
c(x, t)c(x, t), (S32)

@d(x, t)

@t

= M�d(x, t) + µd(x, t)[1� ⇢(x, t)]� �c(x, t)d(x, t)

��a(x, t)d(x, t)� pd

2
d(x, t)d(x, t),

@e(x, t)

@t

= M�e(x, t) + µe(x, t)[1� ⇢(x, t)]� �d(x, t)e(x, t)

��b(x, t)e(x, t)� pe

2
e(x, t)e(x, t).
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4 Supplementary Tables

Type p1 p2 p3

(w1, 0, 0) w2(p, p� 2�, 0)
Fixed point (0, w1, 0) w2(p� 2�, 0, p) w3(1, 1, 1)

(0, 0, w1) w2(0, p, p� 2�)
�1 = �1 �1 = �1 �1 = �1

�i �2 =
p�2
2+p �2 =

(p�1)2+3
p2+4p�4 �2 =

(1�p)±
p
3i

8+p

�3 =
p

2+p �3 =
p(2�p)

p2+4p�4 �3 = �2

Existence always p > 2� always
p

2 + 4µp� 4µ� > 0
Stability unstable unstable unstable, if p < 1

stable, if p > 1

Supplementary Table S1: Existence and stabilities of all existing fixed points of RPS system (S1). For
uniform intraspecific competitions, the RPS system admits three types of fixed points: w1 = 2µ/(2µ + p),
w2 = 2µ/(p2 + 4µp� 4µ�), and w3 = 2µ/(6µ+ 2� + p).

Species AB AC BC

Fixed point w4(pb, pa � 2, 0) w5(pc � 2, 0, pa) w6(0, pc, pb � 2)
w4(pa(pb � 2) + 4)/2 w5(pc(pa � 2) + 4)/2 w6(pb(pc � 2) + 4)/2

�i �w4pb(pa � 2)/2 �w5pa(pc � 2)/2 �w6pc(pb � 2)/2
�1 �1 �1

pa > 2 pa > 0 pb > 2
Existence pb > 0 pc > 2 pc > 0

pb >
4�2pa
pa+2 pa >

4�2pc
pc+2 pc >

4�2pb
pb+2

Stable pa(pb � 2) + 4 < 0 pc(pa � 2) + 4 < 0 pb(pc � 2) + 4 < 0
Condition pa >

4
2�pb

, pb < 2 pc >
4

2�pa
, pa < 2 pb >

4
2�pc

, pc < 2

Supplementary Table S2: Summary of existence and stability conditions of fixed points of type p2

for RPS system (S4). For nonuniform intraspecific competitions, the RPS system allows three different
fixed points of type p2: w4 = 2/(papb + 2(pa + pb) � 4), w5 = 2/(papc + 2(pa + pc) � 4), and w6 =
2/(pbpc + 2(pb + pc)� 4) for � = 1 and µ = 1.
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6 Supplementary Figures

Supplementary Figure S1: Bifurcation diagram of the RPS system (S1). For 0  p < 1, an asymp-
totically stable heteroclinic cycle exists and the fixed point of type p3 in which all three species coexist is
unstable (red dotted line). For p > 1, the heteroclinic cycle loses its stability and the fixed point p3 becomes
stable (red straight line). Blue dotted lines represent the unstable fixed point p1. The insets illustrate the
behaviors of a typical trajectory (black), the heteroclinic cycle (connected magenta lines), and the fixed point
p3 (red dot).
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Supplementary Figure S2: Bifurcation diagrams of the RPS system (S4). For pa = pb, the values of
parameter pa from (a) to (d) are fixed at 0.5, 1.0, 1.5 and 2.1, respectively. Grey, red and black indicate
three different states, p1, p2 and p3, respectively. Dotted and solid lines indicate unstable and stable fixed
points, respectively. (a-c) As pc is increased, after the stable heteroclinic cycles (ellipses) lose their stability,
coexistence of all three species emerges, after which the coexistence state of two species is persistent. (d)
For sufficiently large values of pa > 2, the fixed point p3 is always stable, indicating persistent coexistence
of three species.
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Supplementary Figure S3: Parameter regions of different attractors for fixed pa. (a-f) For values of pa
fixed at 0.5, 1.0, 1.5, 2.0, 2.1 and 2.5, respectively, parameter regions of stable fixed points of type p3 and a
stable heteroclinic cycle (black and blank regions, respectively). Red, blue and yellow areas indicate three
different states of type p2 as stable attractors: AB, AC, and BC, respectively.
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Supplementary Figure S4: Parameter basin versus total intraspecific competition rate ↵ = pa+pb+pc

on 2-simplex. Each edge of the 2-simplex represents the parameters pa, pb and pc, and its length is ↵. Black
and blank regions indicate the parameter regions of the stable fixed point p3 and a stable heteroclinic cycle,
respectively. Red, blue and yellow areas indicate three different states of type p2 as stable attractors: AB,
AC, and BC, respectively.
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Supplementary Figure S5: Parameter basin and boundary curves for pa + pb + pc = 5. Red, blue
and yellow lines in (b) indicate the corresponding boundaries of the regions shown in (a). For instance, the
yellow boundary is drawn from the equation pa + 4/(2� pc) + pc = 5.

Supplementary Figure S6: Behaviors of densities from lattice simulation of RPS. For pa = 1.7, pb =
2.8, pc = 0.5, and fixed mobility M = 10�3, (a) densities of three species corresponding to extinction of
species A and coexistence of species B and C. Red, blue and yellow lines indicate the densities of species
A, B, and C, respectively. (b-d) Behaviors of species densities as a result of three types of interactions:
interspecific competition (blue), intraspecific competition (red), and reproduction (green).
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Supplementary Figure S7: Densities from lattice simulation of RPS system. For pa = 1.7, pb = 2.7,
pc = 0.6, and fixed mobility M = 10�3, (a) densities of three species corresponding to extinction of species
A and coexistence of species B and C. Red, blue and yellow lines indicate the densities of species A, B, and
C, respectively. (b-d) Behaviors of species densities as a result of three types of interactions: interspecific
competition (blue), intraspecific competition (red), and reproduction (green).

Supplementary Figure S8: Classification of fixed points of type r3 in RPSLS system (S23). There are
ten fixed points of type r3. (a) Five possibly stable fixed points with a non-sub-cyclic structure, (b) other
fixed points having a sub-cyclic structures, which are always unstable under the existence condition.
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Supplementary Figure S9: Survival probability associated with each stable phase for different cyclic
game systems. (a-c) For RPS, ERPS, and RPSLS systems, respectively, the survival probabilities for two
different values of the mobility: M = 10�5 (left) and M = 10�3 (right). In each simulation, a square lattice
of 500 ⇥ 500 sites is used and the survival probability is evaluated from 100 independent realizations. For
each system, the thresholds of robust stable phases are consistent with those from the bifurcation analysis of
the underlying ODE model.
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