
1Scientific Reports | 6:30241 | DOI: 10.1038/srep30241

www.nature.com/scientificreports

Reconstructing direct and indirect 
interactions in networked public 
goods game
Xiao Han1, Zhesi Shen1, Wen-Xu Wang1,2, Ying-Cheng Lai3 & Celso Grebogi4

Network reconstruction is a fundamental problem for understanding many complex systems with 
unknown interaction structures. In many complex systems, there are indirect interactions between 
two individuals without immediate connection but with common neighbors. Despite recent advances 
in network reconstruction, we continue to lack an approach for reconstructing complex networks with 
indirect interactions. Here we introduce a two-step strategy to resolve the reconstruction problem, 
where in the first step, we recover both direct and indirect interactions by employing the Lasso to 
solve a sparse signal reconstruction problem, and in the second step, we use matrix transformation 
and optimization to distinguish between direct and indirect interactions. The network structure 
corresponding to direct interactions can be fully uncovered. We exploit the public goods game occurring 
on complex networks as a paradigm for characterizing indirect interactions and test our reconstruction 
approach. We find that high reconstruction accuracy can be achieved for both homogeneous and 
heterogeneous networks, and a number of empirical networks in spite of insufficient data measurement 
contaminated by noise. Although a general framework for reconstructing complex networks with 
arbitrary types of indirect interactions is yet lacking, our approach opens new routes to separate direct 
and indirect interactions in a representative complex system.

Network reconstruction, the inverse problem in complex networked systems, is of utmost importance in inter-
disciplinary fields1–4. The inverse problem is fundamental for understanding many social, biological and tech-
nological systems with complex interaction structures that are difficult or unable to be directly accessed. Typical 
examples include private relationship networks5,6, gene regulatory networks7,8, debit and credit networks among 
financial institutions and etc9. Scientific communities have increasingly recognized that a complex networked 
system should be explored as a whole rather than separate it into components to understand a variety of emer-
gent phenomena10–12. Thus, network reconstruction from measurable data becomes the fundamental problem 
in the study of complex systems. Many approaches based on statistical physics, information theory and reverse 
engineering have been developed to address the problem, such as compressed sensing3,5,6,45, Pearson or Spearman 
correlation13, mutual information14, maximum entropy15,16 and Granger causality17. However, a significant chal-
lenge arises if there exists indirect interactions among nodes.

The scenario of indirect interaction is common, especially in social and economic systems, in which there may 
be indirect exchanges between two individuals without immediate connection but with common neighbors, such 
as a group of people to invest a joint project or buy the same stock18, some organizations participating in climate 
clubs to obey same rules and gain benefits together19, and the epidemic spreading among strangers because they 
participate in the party organized by their common friends20, etc. The effect of indirect interactions on individual 
states will be reflected in the measurable data in a complex manner. At present, most existent tools of network 
reconstruction are developed for the scenario without indirect interactions and we continue to lack an effective 
approach to distinguish between direct and indirect connections13–17.

Indirect interactions are typical in the public goods game (PGG) that has been a paradigm for exploring coop-
erative behaviors and social dilemmas in society and animal groups, such as global warming and economic ine-
quality21–33. We aim to reconstruct networked PGGs with arbitrary topology from measurable individual data. In 
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contrast to the networked two-player game, such as the prisoner’s dilemma game, snowdrift game and ultimatum 
game5,6, in the networked PGGs, players play the PGGs with not only their immediate neighbors but also their 
neighbors’ neighbors23. However, only direct interactions are associated with links among nodes, whereas indirect 
interactions are not. Thus, the key for achieving network reconstruction lies in distinguishing between direct and 
indirect interactions. We accomplish this goal by developing a two-step strategy. Firstly, we reconstruct a combined 
matrix composed of both direct and indirect interactions in terms of the mapping of the reconstruction problem 
into a sparse signal reconstruction problem and employ the Lasso to solve the problem34,35. Secondly, we identify all 
direct interactions (links) from the combined matrix by virtue of matrix transformation and optimization method. 
For homogeneous networks, full reconstruction can be achieved by using our method from a small amount of data. 
For heterogeneous networks, full reconstruction of networks can be achieved as well, but requires much larger 
amounts of data because of the existence of hubs. To better mimic the real situation, data measurement that is con-
taminated by noise has been used to implement reconstruction. We find that high reconstruction accuracy can be 
still achieved, demonstrating the robustness of our approaches against noise. Moreover, our method can be used to 
identify hidden node without any accessible information and reconstruct the connections among the rest nodes.

It is noteworthy that quite recently two methods, namely the silencing method and network deconvolution are 
proposed to separate direct correlation and indirect correlation to infer direct connections36,37. However, the indi-
rect interactions are different from indirect correlation that naturally presents in any complex networks. Indirect 
correlation implies similar behavior between two disconnected nodes, whereas indirect interactions mean that 
there are physical interactions between two nodes without immediate connection. In other words, two nodes can 
indirectly interact with each other through a common neighbor of them in spite of the lacking of a direct connec-
tion between them. It is imperative to distinguish between direct and indirect interactions; otherwise, fake con-
nections corresponding to indirect interactions will arise, accounting for the failure of network reconstruction. 
Although a general framework for reconstructing networked systems with arbitrary dynamics and any types of 
indirect interactions is still an open question at present, our work as the first attempt to deal with the PGG systems 
opens a route towards eventually resolve the problem in a comprehensive manner.

Results
Networked public goods games.  In the original PGG with m ≥​ 2 players, at each round, every player is 
allocated with an endowment of e points, and is required to contribute ci(0 ≤​ ci ≤​ e) points to a common pool. The 
total contribution is multiplied with an enhancement factor b (1 <​ b < m) and the result is distributed among all 
m members. Thus, the payoff of player i in the original PGG is π = − + ∑ =e c ci i

b
m j

m
j1 . In the networked PGGs, 

a player, say i, can take part in ki +​ 1 original PGGs (one self-centered and ki neighbor-centered) simultaneously, 
and contribute the same ci to all ki +​ 1 public pools. Thus, the total payoff of player i obtained from the networked 
PGGs at a given round t can be formulated as
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where Γ​i is the set of i’s neighbors and N is the number of players in the networked PGGs, adjacency matrix 
A ≡​ {aij}N×N represents direct links among players (aij =​ 1 if i and j are connected and aij =​ 0 otherwise). In Eq. (1), 
the first term on the right-hand side is the payoff of participating in the self-centered PGG, and the second term is 
the payoffs of participating in ki neighbor-centered PGGs. In the self-centered PGG, player i interacts with his/her 
direct neighbors, whereas in the neighbor-centered PGGs, player i interacts with not only his/her direct neighbors 
but also the neighbors’ neighbors, as shown in Fig. 1(a).

Figure 1(b,c) illustrate the need for distinguishing between direct and indirect interactions in the PGG. As 
shown in Fig. 1(b), the payoff of focal player 1 stems from two PGGs, one self-centered PGG and the other 
PGG centered on player 2. The indirect interaction (the dashed line) between player 1 and 3 stems from the 
fact that they both participate in the PGG centered on player 2 and their payoff is affected by the action of each 
other, although there is no direct link between them. It is necessary to accurately discern whether the interaction 
between player 1 and 3 is direct or indirect interactions; otherwise, if we fail to distinguish the interaction and 
treat the indirect interaction as a direct interaction (see Fig. 1(c)), the payoff of the focal player 1 will become 
quite different from the actual payoff. In this fake scenario, the focal player 1 participates in the self-centered 
PGG, the PGG centered on player 2 and the PGG centered on player 3, which apparently leads to a different 
payoff from the actual payoff of player 1 in Fig. 1(b). Thus, it is imperative to discern indirect interactions to suc-
cessfully reconstruct network structure. The payoff difference between the actual scenario and the fake scenario 
offers sufficient information to achieve full reconstruction.

In the evolutionary PGGs, players are allowed to update their strategies by referring to their direct neighbors’ 
information according to, for example, the learn-from-best rule, random-selection rule, Fermi rule and so on. 
Here, without loss of generality, we choose the Fermi rule as our strategy-updating rule. The strategy updating 
probability Wi←j of player i is
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where player i choose his/her neighbor j randomly in i’s neighborhood and adopts player j’s strategy with proba-
bility W, κ is characterizes the stochastic uncertainties in the game dynamics. Indeed, when κ =​ 0, player i always 
adopts the strategy of the player with better payoff with probability 1, while as κ →​ ∞​, player i updates his/her 
strategy with probability 1/2 regardless of the payoff difference. For simplicity, we set κ =​ 0.1 by following existent 
research in the literature38.

Reconstructing combined matrix.  As the first step of the two-step reconstruction strategy, we aim to 
reconstruct a combined matrix C consisting of both direct and indirect interactions. The key to the accomplish of 
the first step lies in the establishment of formula Yi =​ Φ​i · Xi (i =​ 1, 2, …​, N), in which vector Xi includes all direct 
and indirect interactions of node i, and vector Yi and matrix Φ​i can be constructed exclusively from the time series 
of individual payoff pi and strategy ci.

To simplify our description of networked PGGs, we denote G ≡​ A +​ I, where I is an identity matrix. Thus, 
Eq. (1) can be expressed as
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N

jl j1 . The reconstruction formula can be established by focusing on the payoff of player i, 
determined by Eq. (3), which for convenience can be expressed in the matrix form (see Supplementary Note 1)
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Figure 1.  The schematic illustration of playing PGGs. (a) The focal player (red node) participates in 4 
different groups of PGGs (α, β, γ and δ). Group α is centred on the focal individual and the other groups β, 
γ and δ are centered on the focal player’s neighbors, respectively. The payoff of the focal player stems from 
participating in four groups of PGGs. The solid links represent direct interactions among players. (b) The focal 
player 1 (red node) has one direct link with player 2 (blue node) and one indirect interaction (dashed line) with 
player 3 (gray node) due to their common neighbor (player 2). In this situation, the focal player 1 belongs to 
2 different groups of PGGs (one self-centered PGG and the other PGG centered on player 2) and the payoff of 
player 1 will be affected by the action of player 3. (c) If the indirect interaction between player 1 and 3 in  
(b) is changed to a direct interaction, the focal player 1 will participate in 3 different groups of PGGs (one self-
centered PGG and the other two groups centered on player 2 and 3, respectively), rendering the player 1’s payoff 
different from that in (b).



www.nature.com/scientificreports/

4Scientific Reports | 6:30241 | DOI: 10.1038/srep30241
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We can simplify the payoff of player i in an arbitrary round as follows

= .p s t s t s t GDG[ ( ), ( ), , ( )] (6)i i i iN i1 2

In the evolutionary PGG, all players play M-round games from t1 to tM with their neighbors, providing suffi-
cient information for building the reconstruction formula
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In the formula, matrix Φ​i and vector Yi can be obtained from individual strategies and payoffs of players, 
respectively, allowing us to reconstruct Xi directly from Φ​i and Yi by using the Lasso, a convex optimization 
method (see Methods for details). In a similar fashion, we can reconstruct vector Xj for node j and for all nodes as 
well, giving rise to the combined matrix

= C X X X[ , , , ], (11)N1 2

Note that C is similar to second-order transfer matrix39.

Separation between direct and indirect interactions.  Insofar as the combined matrix C is successfully 
inferred, we can distinguish between direct and indirect interactions in matrix C, giving rise to the adjacency 
matrix A, namely, the whole network structure. Specifically, according to Eqs. (10) and (11), we have

=C GDG, (12)

where C has been obtained and matrix D can be obtained in virtue of ∑​ Xi =​ di (see Supplementary Note 2). 
Therefore, in principle, matrix G =​ A +​ I can be derived based on C and D and consequently, yields network 
structure A. However, deriving G directly from Eq. (12) is still challenging, calling for mathematical techniques 
and optimization to solve G.

First, we rewrite Eq. (12) to be
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We perform similarity transformation on matrix D GD
1
2

1
2 , yielding
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We can thus formulate

= Λ− −G D P P D , (15)
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2

where P, Λ​ and PT can be obtained by similarity transformation and the optimization based on the linear least 
squares method (see Methods for detailed derivation and optimization). Then the network matrix can be directly 
inferred via
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= − .A G I (16)

An intuitive illustration of our two-step reconstruction process is shown in Fig. 2. As shown in Fig. 2(a), 
node 1 (the red node) has one direct interaction (solid line) with node 2 and two indirect interactions (dashed 
lines) with node 3 and node 7. Moreover, node 1 has a virtual self-loop (dashed lines) due to intrinsic dynamics 
of the PGGs. In fact, all nodes interact with themselves, and the self-interaction captured by the virtual self-loop 
is subject to indirect interactions, because of the absence of the self-loop in the network structure. By using the 
Lasso to optimize the reconstruction formula (Fig. 2(b)), we can reconstruct both direct and indirect interactions 
of node 1, included in vector X1. By repeating the reconstruction process shown in Fig. 2(a,b), we can obtain the 
combined matrix C (Fig. 2(c)) that includes both direct and indirect interactions of all the nodes. As shown in 
Fig. 2(d), direct interactions (solid lines) and indirect interactions (dashed lines) cannot be distinguished in this 
stage. To separate the two types of interactions and identify direct links, we decompose the combined matrix C by 
exploiting similarity transformation and the linear least squares method to solve the Eq. (15) (Fig. 2(e)), allowing 
us to obtain adjacency matrix A (Fig. 2(f)) from matrix C eventually. Compared to Fig. 2(d), the indirect inter-
actions captured by dashed lines are removed in Fig. 2(g), recovering the original network in Fig. 2(a) accurately.

Network reconstruction performance.  We numerically simulate the PGGs occurring on both homoge-
neous and heterogeneous networks, including Erdös-Rényi (ER) random networks40, Watts-Strogatz (WS) 
small-world networks41, Newman-Watts (NW) small-world networks42 and Barabási-Albert (BA) scale-free net-
works43, and several real networks. Without loss of generality, we set b =​ 1.5 and e =​ 10 in our simulations. 
Initially, each node is occupied by a player with a random contribution ci, where 0 ≤​ ci ≤​ e is an integer for simplic-
ity. In each round, all players engage in the PGGs simultaneously and update their strategies according to the 
Fermi rule (see Methods). The strategies and payoffs of all players are recorded for network reconstruction by 
employing our method. Different amounts of data (Data ≡​ M/N) are considered, where M is the length of time 
series (the number of observable rounds) and N is the network size. As shown in Fig. 3(a), for a small amount of 
insufficient data, e.g., Data =​ 0.4, elements Cij in the combined matrix C corresponding to direct interactions 
(actual links), indirect interactions and null elements (zeros in combined matrix) disperse in a wide range, ren-
dering the complete separation of the three types of elements in C and the accurate identification of actual links 
impossible. By exploiting similarity transformation and the linear least squares method, we can eliminate indirect 
interactions, giving rise to reconstructed adjacency matrix A. However, because of insufficient amounts of data, 
Aij in the reconstructed adjacency matrix A corresponding to direct interactions (actual links) and null connec-
tions (null elements) still overlap a little bit, demonstrating that a full reconstruction of network structure was not 
achieved yet. In contrast, for a relatively more data, e.g., Data =​ 0.6, as shown in Fig. 3(b), a vast gap arises between 
actual links and null elements in the reconstructed adjacency A, although the direct and indirect interactions are 
mixed in the reconstructed matrix C. Hence, full reconstruction of networks can be ensured by our method from 
sufficient amount of but sparse data that could be less than the network size N. Although direct and indirect inter-
actions cannot be distinguished in matrix C, an accurate reconstruction of matrix C is the prerequisite for imple-
menting similarity transformation and optimization to precisely reconstruct matrix A. In this regard, we 
introduce a data-based index to measure the precision of reconstructing matrix C. To be specific, we define 
Θ = − −C M C M( ) ( 1) 1, where ⋅ 1 represents L1 entrywise norm and matrix C(M) is obtained with M time 
series. The fact that Θ​ approaches zero indicates that the reconstructed matrix C becomes stable and close to the 
actual C with small difference. As shown in Fig. 3(c), we see that as the amount of data increases, the value of Θ​ 
decreases rapidly. When the value of Θ​ is very small, e.g., Θ​ <​ 0.1, the gap between the two types of interactions 
and null elements in reconstructed C emerges (e.g., Fig. 3(b)), and thus matrix C can be considered to be accu-
rately reconstructed. Insofar as C is accurately reconstructed, we can derive the degree of each node from  
ki =​ ∑​ Ci −​ 1. Consequently, the top ki values of i’s row in adjacency matrix A can be regarded as actual links. The 
predicted node degree from C thus offers criterion for determining the neighborhood size of each node, without 
relying on an additional threshold to separate actual links from null connections for each node, and the use of the 
area under the receiver operating characteristic curve (AUROC) (see Supplementary Figure S1)6,8. To verify our 
method, we use the true positive rate (TPR) and true negative rate (TNR) as explicit indices to quantify the recon-
struction performance, where TPR is defined as the average ratio of the number of successfully inferred links to 
the number of actual links for all nodes, and TNR is similarly defined for null elements in the adjacency matrix. 
If and only if both TPR and TNR reach 1, the network is said to be fully reconstructed. As shown in Fig. 3(d), for 
WS small-world networks, when the amount of data exceeds 0.3, 80% success rates for both TPR and TNR are 
achieved, which implies that most of links can be successfully inferred even for a quite small amount of data, e.g., 
Data=​0.3. When Data exceeds 0.6, full reconstruction with 100% success rates is achieved from a small amount 
of data that are still less than the network size N.

Systemic reconstruction results for different types of networks, average degree 〈​k〉​ and variance of measurement 
noise σ are shown in Table 1. We see for all the considered cases, accurate reconstruction is achieved. In particular, 
for relatively large homogeneous networks, e.g., N =​ 500 for ER, WS and NW networks, only a small amount of data 
is required to ensure full reconstruction. However, compared with homogeneous networks, larger amounts of data 
are required for reconstructing heterogeneous networks, e.g., BA networks. For heterogeneous networks, there are 
hubs with much more neighbors compared with other nodes. The hubs immediately induce much more indirect 
interactions in their neighborhoods than that in homogeneous networks. As a result, the combined matrix C of 
heterogeneous networks is usually much denser than homogeneous networks. Note that the reconstruction method 
based on the Lasso needs less data for reconstructing a sparse vector Xi. Thus, the much denser matrix C in hetero-
geneous networks accounts for the requirement of a larger amount of data to fully reconstruct heterogeneous net-
works by using the Lasso. In the presence of small measurement noise, e.g., .(0,0 05 )2 , full reconstruction can be 
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Figure 2.  Illustration of reconstructing actual links. (a) The red node (node 1) has one direct interaction with 
node 2 (solid line), and indirect interactions with node 1 and node 3 (dashed lines). Node 1 has a virtual self-
loop. The other nodes also have indirect interactions with their neighbors’ neighbors and virtual self-loops  
(for clarity, the indirect interactions and virtual self-loops of the other node are not shown in the figure). 
(b) We can build the relationships between the payoffs and strategies of the red node Y1 =​ Φ​1 · X1 from data, 
where vector X1 contains all direct and indirect interactions with the red node. If we can decode the vector X1 
accurately, the values in the first, second, third and seventh rows corresponding to interactions with nodes 1, 2, 
3 and 7 will be nonzero, while the other values are zero. (c) In the same fashion, we can build the vector Xi of all 
nodes and comprise the combined matrix C. (d) The direct interactions (solid lines) and indirect interactions 
(dashed lines) can not be distinguished directly based on the network which is derived from the combined 
matrix C. (e) To distinguish between the direct interactions and indirect interactions, adjacency matrix is 
achieved through the two equations with similarity transformation and the linear least squares method.  
(f) Compared with combined matrix, the indirect interactions and self-loops are removed, and the nonzero 
elements in adjacency matrix denote actual links. (g) The indirect interactions are removed completely and the 
original network is recovered.
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achieved by using slightly larger amounts of data compared to the results without noise, as displayed in Table 1. 
When data are contaminated by strong noise, e.g., .(0,0 5 )2 , we can still reconstruct networks quite accurately from 
a relatively large amount of data for both homogeneous and heterogenous networks. These results suggest that our 
method is of both high efficiency and strong robustness against noise for reconstructing complex networks with 
indirect interactions. Table 2 shows the performance of our method in reconstructing several real social networks. 

Figure 3.  The performance of reconstructing WS small-world networks. (a) Reconstructed values of 
elements Cij and Aij with a small amount of data, Data =​ 0.4. (b) Reconstructed values of elements Cij and Aij 
with a relatively more data, Data =​ 0.6. (c) The data-based index Θ​ of measuring the precision of reconstructing 
combined matrix C. (d) Success rate of inferring WS networks based on time series of payoffs and strategies 
from the evolutionary PGGs. The network size is 100, and average degree 〈​k〉​ =​ 4. Rewiring probability of WS 
small-world networks is 0.3. Each data point in (c,d) is obtained by averaging over 10 independent realizations. 
The error bars denote the standard deviations. The parameter λ in the Lasso is set 10−3.

N 〈k〉 σ Nh ER WS NW BA

4 0 0 0.61 0.41 0.50 0.95

4 0.05 0 0.64 0.48 0.49 1.20

100 4 0.5 0 1.35 1.80 1.74 5.02

6 0 0 0.89 0.75 0.77 1.10

8 0 0 1.06 0.97 1.03 1.15

300 4 0 0 0.24 0.2 0.25 0.71

500 4 0 0 0.20 0.15 0.19 0.46

100 4 0 1 1.81 0.77 0.51 1.51

Table 1.   The performance of reconstructing different types of artificial networks. Data amount needs to achieve 
90% success rates (SR) for four artificial network models, where SR =​ TPR ×​ TNR (SR is area under ROC with given 
threshold, see Supplementary Figure S1 for more details). ER, WS, NW and BA networks with different network size 
N, average degree 〈​k〉​ and measurement noise (Gaussian white noise σ(0, )2 ) are considered. Nh denotes the number 
of the hidden nodes. The results are obtained by averaging over 10 independent realizations. More details of the 
success rates as a function of data amount for different cases can be found in Supplementary Figures S2–S5.
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We see that precise reconstruction can be achieved for all the real-world networks, which offers additional evidence 
for the practical applicability of our reconstruction approach.

Identifying the hidden node.  In the real situation, we may miss the information of some nodes because the 
nodes are inherently inaccessible or we are not aware of their existence. We explore the robustness of our recon-
struction method against the presence of such hidden nodes to test the applicability of our method. Specifically, 
we assume a hidden node whose strategies and payoffs can not be recorded exists in the network, and our purpose 
it to identify the nodes who interact with the hidden node and reconstruct the rest nodes and their connections.

The basic idea of ascertaining and identifying the hidden node is based on missing information from the 
hidden node when attempting to reconstruct direct and indirect interactions of the network by using the first 
step in our reconstruction framework. In particular, to reconstruct the direct and indirect interactions belonging 
to the hidden node accurately, time series from the hidden node are needed to generate the matrix Φ​i and the 
vector Yi. However, no time series from the hidden node are available, leading to reconstruction inaccuracy and, 
consequently, anomalies in the predicted interaction patterns of the nodes who interact with the hidden node. It 
is then possible to detect the nodes who interact with the hidden node by identifying any abnormal interaction 
patterns3,44,45, which can be accomplished by using different data segments. If the inferred interactions of a node 
are stable with respect to different data segments, the node can be deemed to have no interaction with the hidden 
node; otherwise, if the result of inferring a node’s interactions varies significantly with respect to different data 
segments, the node is likely to interact with the hidden node. To identify the nodes who interact with the hidden 
node, we can define the standard variance of predicted interactions with respect to different data segments as 
follows:

∑ ∑α =
−

− 〈 〉
=

−

=N z
C C1

1
1 ( ) ,

(17)
i

j

N

q

z

ij
q

ij
1

1

1

( ) 2

where Cij
q( ) denotes the element value in the combined matrix C of the rest nodes inferred from the qth group of 

the data, 〈 〉 = ∑ =C Cij z q
z

ij
q1

1
( ) is the mean value of Cij, N is the network size, and z is the number of data segments. 

Figure 4(a) illustrates that a hidden node interacts with five nodes in the exemplified network. Applying Eq. (17) 
to the reconstructed combined matrices yields the results shown in Fig. 4 (b), where the values of αi associated 
with the nodes who interact with the hidden node are much larger than those of the other nodes (that are essen-
tially zero).

In the presence of a small number hidden nodes, their influence of missing their data to the reconstruction 
of the whole network is negligible. Thus, we can directly using the two-step reconstruction method by ignoring 
the hidden node to reconstruct the connections among the nodes other than the hidden node. As shown in 
Fig. 4(c), all true existent links are inferred successfully. However, there are two redundant (fake) links (marked 
as red) that stems from the influence of the hidden nod. In Fig. 4(d), as the measurable data increase, the TPR 
and TNR of reconstructing the connections among the rest nodes approach unit, indicating that the network can 
be reconstructed quite accurately in spite of the existence of a hidden node in the network. The reconstruction 
performances for different types of networks with hidden nodes are shown in Table 1. It is worth noting that in 
the presence of a large fraction of hidden nodes, ignoring the influence of the hidden nodes will lead to many fake 
links, accounting for the failure of directly using the reconstruction method. At present, how to tackle a network 
with an arbitrary fraction of hidden node is still an extremely challenging question.

Discussion
We have developed an approach with a two-step strategy to reconstruct interaction structure in networked PGGs 
with indirect interactions among nodes from measurable time series of individual strategies and payoffs. We 
first reconstruct both direct and indirect interactions among nodes by transferring the network reconstruction 
problem into a sparse signal reconstruction problem, which is solved by using the Lasso in an efficient and robust 
manner. Subsequently, we distinguish between direct and indirect links by virtue of similarity transformation and 
an optimization method based on the linear least squares. Moreover, our framework is able to locate hidden node 
and reconstruct the network structure except the hidden node. We have validated our method in terms of both 
homogeneous and heterogeneous networks, finding that high reconstruction accuracy can be achieved for all the 
studied cases. In general, less amounts of data are required for reconstructing homogeneous networks than that 

Networks N 〈k〉 Data

Karate 34 4.6 1.17

Dolphins 62 5.1 0.76

Football 115 10.7 1.14

Santa Fe 118 3.4 0.46

Jazz 198 27.7 0.97

Email 1133 9.6 0.82

Table 2.   The performance of reconstructing real social networks. Minimum data for achieving at least 90% 
success rates (SR) for several real networks. The variables represent the same meanings as Table 1. More details 
of the real networks can be found in Supplementary Figure S6 and Supplementary Table S1.
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for heterogeneous networks, due to the existence of hubs. Our method is also resilient to measurement noise and 
hidden nodes, accounting for its practical importance in real networked systems.

Our work also raises a number of questions, answers to which could improve our ability to reconstruct com-
plex networks with indirect interactions. First, with respect to a variety of indirect interactions in the real world, 
our approach cannot offer a general solution to the reconstruction problem at present, and only complex systems 
characterized by networked PGGs can be reconstructed by our framework, prompting us to wonder if a gen-
eral reconstruction framework can be developed for complex networks with any indirect interactions? Second, 
relatively large amounts of data are required to reconstruct heterogeneous networks. A practically significant 
question is how can we reduce the data amount based on the current method? Third, although we can locate a 
hidden node by identifying all its interactions, how to distinguish direct and indirect interactions between the 
hidden node and the other nodes accurately and how to locate a large fraction of hidden nodes are still open 
questions. Fourth, the empirical test of our method is still lacking in spite of our systematic numerical investiga-
tions. Our approach is expected to be available in laboratory experiments of the networked PGGs by recruiting 
subjects. From the information of subjects in the game, the network structure can be reconstructed accurately. 
Analogously, our method is also applicable to networked climate game experiments25 that is closely related with 
the PGGs. Since usually direct and indirect interactions play a joint role in the dynamics of the whole system and 
their effects are hidden in measurable data in a complicated manner, we anticipate that it is challenging to answer 

Figure 4.  Identifying the hidden node and reconstructing the connections among the other nodes. 
 (a) Illustration of a hidden node. The hidden node (node 50 in red) interacts with five nodes (in orange), 
including direct interactions (solid lines) and indirect interactions (dashed lines). For clarity, the virtual self-
loop of each node and interaction weights are not shown. The direct (red solid lines) and indirect (red dashed 
lines) interactions between the hidden node and its neighbors and neighbors’ neighbors can be inferred 
in terms of the standard variance (Equation (17)). However, the direct and indirect interactions cannot be 
distinguished because of missing the data of the hidden node. The time series of the other nodes except the 
hidden node are measurable. The interactions (orange lines) between the neighbors of the hidden node and 
the other nodes except the hidden node can be reconstructed accurately by simply ignoring the hidden node. 
However, indirect (orange dashed lines) and direct interactions (orange solid lines) still cannot be distinguished. 
The other connections (gray lines) can be accurately reconstructed and classified. (b) The standard variance of 
reconstructed interactions αi of each node. The five nodes who interact with the hidden node exhibits much 
larger values of α than the other nodes. (c) The reconstructed network except the hidden node. The gray lines 
are true existent links which are reconstructed successfully, and the red lines are false positive (fake) links 
which do not exist in the original network. (d) The success rate of reconstructing the WS small-world network 
in (c). In the WS small-world network, the network size N is 50 (including the hidden node), the average 
degree 〈​k〉​ =​ 2 and the rewiring probability is 0.1. The results are obtained by averaging over 10 independent 
realizations.
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these questions. Nonetheless, our approach as the first attempt opens a new route to solve the difficult problem 
with implications for understanding many social networked systems in a wide range of fields.

Methods
The Lasso for sparse signal reconstruction.  The Lasso is a convex optimization method to reconstruct 
a vector Xi∈​RN from linear measurements Yi and Φ​i in the form

= Φ ⋅Y X , (18)i i i

where Yi ∈​ RN and Φ​i is an M ×​ N matrix. Xi can be reconstructed by applying the Lasso for solving

λ− Φ +{ }M
Y X Xmin 1

2
,

(19)i i i i
X 2 1

i

where λ is a nonnegative regularization parameter. The sparsity of solution is assured by Xi 1
 in the Lasso accord-

ing to the compressed sensing theory46. Meanwhile, the least square term − ΦY Xi i i 2
 makes the solution more 

robust against noise in time series than L1-norm-based optimization method.

Identification of direct and indirect interactions from combined matrix C.  Notice that D CD
1
2

1
2  and 
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2  are both real symmetric matrices. Matrix D GD
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ity transformation where Λ​ =​ diag(λ1, λ2, …​, λn), and P is an N ×​ N nonsingular orthogonal matrix, which can be 
derived from similarity transformation of D CD
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where L is the number of zeros in matrix D CD
1
2

1
2 . The above equation also satisfy the formation β =​ Ψ​ · α, in 

which α =​ (λ1, λ2, , λN)T, β =  ( , , , ,0, , 0)
d d d
1 1 1 T

N1 2
, and Ψ​ is the corresponding matrix. In this situation, 

most of values in α are not zero, thus we can obtain α via the linear least squares method

β α− Ψ
α

min , (23)2

where vector α ∈​ RN from vector β ∈​ RK and matrix Ψ​(N+L)×N. The optimization also known as L2 norm minimi-
zation, a basic optimization paradigm for solving an overdetermined system of linear equations. Due to the spar-
sity of adjacency matrix, the combined matrix C also contains lots of zeros, leading to + N L N  in the matrix 
Ψ​, thus Eq. (22) can be well solved by the linear least squares method. Now we can get Λ​ via this method, then get 
D GD

1
2

1
2  via = ΛD GD P P

1
2

1
2 T, and obtain Eq. (15).
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