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Control efficacy of complex 
networks
Xin-Dong Gao1, Wen-Xu Wang1,2 & Ying-Cheng Lai3,4

Controlling complex networks has become a forefront research area in network science and 
engineering. Recent efforts have led to theoretical frameworks of controllability to fully control a 
network through steering a minimum set of driver nodes. However, in realistic situations not every 
node is accessible or can be externally driven, raising the fundamental issue of control efficacy: if 
driving signals are applied to an arbitrary subset of nodes, how many other nodes can be controlled? We 
develop a framework to determine the control efficacy for undirected networks of arbitrary topology. 
Mathematically, based on non-singular transformation, we prove a theorem to determine rigorously 
the control efficacy of the network and to identify the nodes that can be controlled for any given driver 
nodes. Physically, we develop the picture of diffusion that views the control process as a signal diffused 
from input signals to the set of controllable nodes. The combination of mathematical theory and 
physical reasoning allows us not only to determine the control efficacy for model complex networks 
and a large number of empirical networks, but also to uncover phenomena in network control, e.g., hub 
nodes in general possess lower control centrality than an average node in undirected networks.

A frontier area of research in network science and engineering is controlling complex networks1–17. Nearly two 
decades of efforts have resulted in tremendous advances18–23 in our understanding of complex networked dynam-
ical systems, beginning from the discoveries of the small-world24 and scale-free25 topologies in a large variety of 
natural, technological, and social systems. The efforts have created a knowledge foundation based on which the 
problem of control can be investigated. Ideally, to make controlling complex networked systems practically sig-
nificant, one must consider nonlinear dynamical processes, due to the ubiquity of nonlinearity in the real world. 
However, to develop a general and mathematically rigorous control framework for complex networks hosting 
nonlinear dynamics is at present not achievable. A “stepping stone” is to consider linear dynamical processes 
on complex networks, an approach pioneered by Liu et al.4, who developed a framework based on Lin’s classic 
structural controllability theory (SCT)26. In particular, SCT answers the following question: given a complex, 
directed network, what is the minimal set of inputs (driver nodes) required to fully control the network in the 
sense that the entire network can be driven from an arbitrary initial state to an arbitrary final state in finite time? 
This was accomplished through a systematic methodology to find a minimum set of driver nodes to realize full 
control using the concept of maximum matching27–29. Subsequently, an exact controllability theory (ECT)10,14 
was developed based on the concept of maximum multiplicity30 in linear algebra to identify the minimum set 
of driver nodes required to fully control the network. The ECT is applicable to a broader class of complex net-
works: weighted, directed or undirected, with or without any loop structure, etc. These efforts stimulated a great 
deal of interest in the linear controllability and observability framework of complex networks5–17,31–33, addressing 
problems such as linear edge dynamics5,6, energy cost of control8,16,17, the role of nodal dynamics in network 
controllability34,35.

In this paper, we address a fundamental and outstanding issue in controlling complex networks: control effi-
cacy, the meaning of which can be understood and its significance can be appreciated, as follows. The SCT or ECT 
framework provides a solution of a minimum set of input signals to fully control any complex network. However, 
given an arbitrary external control signal, typically it is not possible to control the whole but only a part of the net-
work. (The need to consider an arbitrary control signal lies in the fact that, for a network in the real world, the set 
of minimum input signals from the SCT or ECT framework may be physically or experimentally unrealizable.) 
In this regard, a related concept is control centrality36 derived from the SCT, which characterizes the ability of a 
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single node to control a fraction of nodes in a directed network. Here we shall consider the more general situation 
where multiple input signals imposed on more than a single node are unable to control the entire network but 
but only a part of it, for broader classes of complex networks including weighted, undirected networks, with or 
without local loop structure. The main result is a control efficacy theorem and its proof, which provides a rigorous 
assessment of the role of an arbitrary set of nodes in partial control of the underlying network. In particular, for 
any given control inputs, our theorem gives the corresponding set of nodes in the network that are controllable. 
Our theorem of control efficacy can measure control centrality of a single node in terms of imposing a single 
external input signal on the node. The control centrality can be generally evaluated in arbitrary undirected net-
works with any distribution of link weights. We anticipate our finding to be practically significant for situations 
where the underlying network system is not fully accessible from the standpoint of delivering control signals. For 
example, for a social network, only a very limited set of nodes may be manipulated for control. For a neuronal 
network, only a small set of nodes can be perturbed externally. Our theory gives, in these realistic applications, a 
quantitative picture of what portion of the network may be controlled.

Results
Control efficacy of complex networks.  Consider an undirected network of N nodes described by the 
following linear time invariant (LTI) dynamical system37–39:

A B= ⋅ + ⋅

x x u, (1)

where the vector x ≡​ (x1, …​, xN)T represents the state of all nodes at time t,  = a( )ij  is an N ×​ N coupling matrix 
of the network with the element aij representing the weight of a directed link from node j to node i (aij =​ aji for an 
undirected network), u(t) is the input signal of m controllers: u =​ (u1, …​, um)T, and  is the N ×​ m control matrix 
with ∈bij  representing the strength of the input signal uj(t) on node i. According to the classical control the-
ory40, the controllability of the system is determined completely and uniquely by the combined matrix ( , )A B . For 
an initial state =tx x( )0 , if there exists a control input u(t) that can drive the system to the final state, say x(t1) =​ 0, 
within the finite time interval [t0, t1], we say that the state x is a controllable state of the system and denote it as x+. 
The classic Kalman rank condition40 stipulates that the linear system Eq. (1) is controllable if and only if the 
N ×​ Nm controllability matrix C B A B A B A BA B = ⋅ ⋅ … ⋅−[ , , , , ]N

( , )
2 1  has full rank. When the system is not 

fully controllable or, equivalently, when the state space is not filled entirely with the controllable states x+, there 
can still be a controllable subspace spanned by the column vectors of the Kalman controllability matrix C A B( , ). The 
dimension of the controllable subspace is the rank of C A B( , ): =R rank( )( , )C A B , which characterizes the control 
efficacy of the system.

There are two difficulties in determining the rank of the controllability matrix: (1) the task is often computation-
ally prohibitive for large networks, and (2) the controllability matrix is typically nearly singular due to the dramatic 
differences among its elements, making the numerical rank computation inaccurate or even divergent. We are thus 
led to develop a feasible and effective method to calculate the rank R. The starting point is a non-singular linear 
transformation. In particular, for an arbitrary matrix  in the system equation [Eq. (1)], there exists30 a 
non-singular matrix  such that = ⋅ ⋅ −1A P J P  or ⋅ ⋅ =−1P A P J  with    λ λ λ= …diag[ ( ), ( ), , ( )]l1 2 , 
where λi(i =​ 1, …​, l) are the distinct eigenvalues of  and  λ( )i  is the Jordan block matrix of  associated with the 
eigenvalue λi. For an undirected network, the coupling matrix  is diagonalizable and the matrix   reduces to the 
diagonal matrix with elements being all the eigenvalues41.

Applying the non-singular transformations = ⋅−y x1  and = ⋅−1Q P B, we can rewrite Eq. (1) in the fol-
lowing form:

= ⋅ + ⋅

y y u, (2)D Q

where  is a diagonal matrix (see Method). The controllability matrix  for the transformed system is

C Q D Q D Q P B P A B P B P CD Q A B= ⋅ … ⋅ = ⋅ ⋅ ⋅ … ⋅ ⋅ = ⋅− − − − − −A[ , , , ] [ , , , ] (3)N N
( , )

1 1 1 1 1 1
( , )

We can verify that the systems Eqs (1) and (2) possess the same degree of controllability in the sense that 
= ≡rank( ) rank( ) rank( )( , ) ( , )C C CD Q A B , i.e., the rank of the controllability matrix of the original system is equal 

to C D Qrank( )( , ) , which can be calculated reliably and accurately. For an arbitrary undirected network, we can 
prove that rank( )( , )C D Q  is determined by the corresponding element values in the transformed control input 
matrix Q P B= ⋅−1  associated with the distinct eigenvalues (Method). A schematic illustration of our method to 
calculate the rank for undirected networks with self loops is presented in Fig. 1, and an explicit example is given 
in Supplementary Note 1. Our key analytic results are as follows.

Single control input.  When there is only a single controller (i.e., when the control input matrix  is a column 
vector), the task of calculating rank( )  is reduced to counting the corresponding nonzero elements in the matrix 
Q P B= ⋅−1 . Letting the element corresponding to the eigenvalue λi be λx

i
 in , we have

∑η= = λ
=

R rank( ) ( ),
(4)i

l

1
i

C Q

where
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η =






≠

= .λ
λ

λ

x
x( )

1, 0,
0, 0 (5)i

i

i



For each distinct, non-degenerate eigenvalue, the corresponding nonzero elements in  contribute equally to 
the value of rank( ) . For a degenerate eigenvalue, if there are no corresponding nonzero elements in , the con-
tribution of this eigenvalue to rank( ) is zero. If the corresponding elements in  are nonzero, the degenerate 
eigenvalue contributes one to rank( )  (see Method).

Multiple control inputs.  When there are m control inputs, the matrix  has the dimension N ×​ m. In this case, 
the control efficacy is determined by the sum of the rank values of the sub-block matrices composed of the corre-
sponding rows in the transformed control input matrix  for each distinct eigenvalue (see Method). We have

C Q∑= = λ
=

R rank( ) rank( ),
(6)i

l

1
i

Control Centrality.  Given a complex network, it is often necessary to quantify the relative importance of the 
nodes with respect to a specific function. For this purpose, various kinds of centrality measures23 were proposed 
in the past, such as the degree centrality, the closeness centrality42, the betweenness centrality43, the eigenvector 
centrality44,45, and PageRank46. Control centrality has been defined in directed networks for quantifying the rel-
ative importance of nodes in effecting control36, i.e., if an external driver signal is applied to a node in a directed 
network, how many other nodes can be controlled? Our task is to extend the definition of control centrality to 
undirected networks and offer a control centrality measure.

Specifically, For node i in an undirected network, its control centrality is nothing but the dimension of the 
controllable subspace. When a single driving signal is applied to i, the corresponding control input matrix  is 
effectively reduced to a vector b(i) with a single non-zero element. For convenience, we set this element to be unity, 
let R(i) be the rank of the controllability matrix, and rewrite the system as

Figure 1.  Schematic illustration of rank calculation for undirected networks with self-loops. (a) The 
adjacency matrix  and the control input matrix  for a simple undirected network with self-loops. Each 
colored lattice point in  represents an element, where the colors from white to black correspond to element 
values from zero to one, respectively. A similar color scheme applies to the matrix . (b) Through a nonsingular 
matrix transformation, the system ( , )A B  is converted into the equivalent system D Q( , ), where  is a diagonal 
matrix. Distinct eigenvalues of  correspond to different subblocks marked with different colors. The rank of 
the controllability matrix for the transformed system ( )( , )C D Q  is equal to the sum of the rank values of the 
corresponding subblocks in the transformed control input matrix , which is identical to the rank of the 
controllability matrix of the original system A B( , ).
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= ⋅ +


ux x b , (7)i( )

where u is the strength of the input signal. The value of R(i) can be used to characterize node i’s ability to control 
the whole network. In Method, we provide a proof for the following inequality, which gives the upper bound of 
R(i):

λ≤R num( ) (8)i( )

where num(λ) is the number of the distinct eigenvalues of the matrix . If R(i) =​ N, then node i alone can control 
the whole system. However, for R(i) =​ 1, node i is not able to control any other node in the networks. A value of R(i) 
between 1 and N gives the dimension of the controllable subspace of node i. To compare the control centrality in 
networks with different size, the normalized control centrality r(i) can be defined as the ratio of R(i) to the network 
size N. Then the average value, maximum and minimum values of r(i) are

∑= = = .
=

r
R
N

r
R

N
r

R
N

,
max( )

,
min( )

(9)i

N
i i i

1

( )
max

( )
min

( )

For the networks with random weights, the control centrality and the normalized control centrality can be 
denoted by R i

W
( )  and r i

W
( )  respectively.

We employ the criteria of control efficacy to explore undirected chains. To our surprise, complex phenom-
ena associated with prime numbers emerge in the extremely simple regular network. Figure 2(a) shows, for an 
undirected chain graph of size N =​ 155 with identical link weights, that the values of the nodal control centrality 
are distributed symmetrically. For certain node (e.g., 1 or 155), the chain is fully controllable with a single input 
signal. For majority of the nodes, the control centrality measure is less than N. In fact, we can show analytically 
that the control centrality value of each node is given by (see Supplementary Note 2)

= + − + −R N i N i( 1) GCD( , 1 ) (10)i( )

Figure 2.  Control centrality of an undirected chain graph. (a) Nodal control centrality R(i) versus the node 
index for a one-dimensional undirected chain graph of size 155, where the squares denote the results from 
Eq. (4) and the blue solid circles are those from Eq. (10). (b) All the possible values of N −​ R(i) versus the system 
size N. For a fixed value of N, there are a finite number of R(i) values. (c) num(R), the number of distinct control 
centralities R(i) versus N. Each distinct value of num(R) is marked with a different color. It is remarkable that 
num(R) is related to the prime decomposition, as can be calculated from Eq. (11). For instance, the hollow 
circles represent that N +​ 1 is a prime number. (d) For the undirected chain graph with random weights, the 
corresponding control centralities R i

W
( )  versus N. According to Eq. (12), there are two periodic behavior for odd 

and even number of nodes alternately.
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where GCD(m, n) is the greatest common divisor of the positive integers m and n. Figure 2(b) shows, the distri-
bution of the control centrality values versus the network size N. Two clusters of periodic behavior of R(i) present 
as N is increased. The periodic phenomena can be verified in terms of Eq. (10).

The combination of the two clusters of periodic behavior lead to the emergence of complex control centrality 
in undirected chains. Let num(R) be the number of the distinct control centrality values in a chain with a certain 
size. The dependence of num(R) on N is shown in Fig. 2(c). Analytically, num(R) can be determined from the 
following equation where, for fixed N, num(R) is the total number of all integer solutions of fa and fb that satisfy 
fa · fb =​ N +​ 1 (see Supplementary Note 2):

+ = ⋅




= …











+ = … +




.N f f f N f N1 , 1, ,

2
1, 2, , 1

(11)a b a b

Thus, the solution of num(R) is related with prime numbers, accounting for the complex result of num(R) in 
a simple chain structure. Specifically, if N +​ 1 is a prime number, there is only one integer solution of Eq. (11): 
fa =​ 1 and fb =​ N +​ 1, leading to num(R) =​ 1 [the hollow circles in Fig. 2(c)]. When N +​ 1 is the square of a prime 
number, the integer solutions are (fa, fb) =​ (1, N +​ 1) and (fa, fb) =​  + +N N( 1 , 1 ), accounting for num(R) =​ 2, 
as shown by the red circles in Fig. 2(c). For num(R) >​ 2, the situation will become more complicated, because of 
the inequality of exchanging fa and fb. For example, if N +​ 1 is the product of two different prime number, num(R) 
will be 3. A typical case is N +​ 1 =​ 6, for which there are three integer solutions: (fa, fb) =​ (1, 6),  
(fa, fb) =​ (2, 3) and (fa, fb) =​ (3, 2). However, the scenario that N +​ 1 is cube of a prime number can result in 
num(R) =​ 3 as well. For instance, when N +​ 1 =​ 23 =​ 8, there are three integer solutions: (fa, fb) =​ (1, 8), (fa, fb) =​ (2, 4)  
and (fa, fb) =​ (4, 2). As a result, Fig. 2(c) exhibits rich behavior of num(R) as the length N of an undirected chain is 
increased.

For an undirected chain graph with random weights, the control centrality is simpler than that of a directed 
chain graph. We can as well offer theoretical results (see Supplementary Note 2). Specifically, when N =​ 2n +​ 1 is 
odd, we have








= = +

= − = .





R N i n

R N i n

, ( 1, 3, 5, , 2 1);

1, ( 2, 4, 6, , 2 ) (12)

i
W

i
W
( )

( )

When N =​ 2n is even, we have

= = + .R N i n, ( 1, 2, 3, , 2 1) (13)i
W
( )

The results are graphically shown in Fig. 2(d), which differs from the results in Fig. 2(c) with identical weights. 
The fact that random weights eliminates lots of linear correlations in the network matrix accounts for the simpli-
fication of the control centrality.

For undirected regular graphs with identical weights, the eigenvalues can be calculated analytically10,47,48, so 
can be R(i), as listed in Table 1. We see that the control centrality of the star network is either 2 or 3, and that of the 
fully connected network is 2, regardless of the network size. For a ring network, almost half of the network can be 
controlled by a single input. The results for chain networks are relatively more complicated, for which the control 
centrality values are symmetrically distributed, which can be obtained from Eq. (10) (see Supplementary Note 2). 
In general, the control centrality R i

W
( )  of the undirected regular graphs with random weights is simpler than that of 

the undirected regular graphs with identical weights, because of the elimination of linear correlation by random 
weights (see Table 1).

Figure 3(a) shows the control centrality versus a key structural parameter, the connecting probability, for 
undirected Erdös-Rényi (ER) random networks with identical link weights. We see that, regardless of the network 
size, in the regime of small values of the connecting probability p, the value of r increases monotonically with p, 
indicating that making the network more dense can on average enhance the control efficacy. However, in the 
extreme regime where p is close to unity (e.g., exceeding 0.99), r begins to decrease toward zero due to the effect 
of identical link weights. The control centrality of ER random networks associated with random link weights 
differs significantly when the network becomes very dense. Specifically, Fig. 3(a) show that r is always one, as p 

Network Eigenvalues num(λ) R(i) R i
W
( )

Star network 0(N −​ 2), 
± −N 1 (1) 3 R(1) =​ 2, R(i) =​ 3, (i =​ 2, …​, N) =R 2W

(1) , =R 3i
W
( ) , (i =​ 2, …​, N)

Fully connected network N −​ 1(1), −​1(N −​ 1) 2 R(i) =​ 2, (i =​ 1, …​, N) =R Ni
W
( ) , (i =​ 1, …​, N)

Ring network π −( )2 cos i
N

2 ( 1) 



+ 1N

2 = 



+R 1i

N
( ) 2

, (i =​ 1, …​, N) =R Ni
W
( ) , (i =​ 1, …​, N)

Undirected chain π
+( )2 cos i

N 1
N R(i) =​ (N +​ 1) −​ GCD(i, N +​ 1 −​ i), 

(i =​ 1, …​, N) =R Ni
W
( )  or N −​ 1

Table 1.   The distinct eigenvalues, their numbers num(λ), and the nodal control centrality for regular 
undirected graphs. Here, R i

W
( )  is associated with random link weights and the other variables are associated with 

identical weights. The algebraic multiplicity of the eigenvalues is indicated for the star and fully connected 
networks.
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approaches unity. The difference is as well attributed to the elimination of linear correlation by random weights, 
but such effect of random is negligible in sparse ER network.

Figure 3(b) shows, for Barabási-Albert (BA) scale free networks, r versus half of the average degree m =​ 〈​k〉​/2, 
where we see that r increases rapidly toward unity as 〈​k〉​ is increased, regardless of the number of new links asso-
ciated with the addition of a new node into the network during its growing process. We see that, qualitatively 
similar to ER networks, making a scale free network more densely connected can enhance its control efficacy. We 
also see that because of the general sparsity of the BA network, random link weights have negligible effect on r for 
m ≤​ 2 compared to identical link weights.

We characterize the control efficacy for a number of real world (empirical) networks. The results are listed in 
Table 2. (For the empirical networks with random weights, its corresponding control centrality are slightly higher 
than the origin network topology.) An issue is whether the hub nodes carry a stronger control centrality in undi-
rected networks. We find that the average control centrality of hub nodes is generally smaller than that of the 
other nodes in undirected networks, which is consistent with the finding that driver nodes avoid hubs in directed 
networks49. To demonstrate this counterintuitive phenomenon, we divide the nodes into three groups in terms of 
their degrees: low, medium and high. Figure 4(a) shows, for model ER and BA networks, that the control central-
ity is generally higher for low-degree nodes than that for the hubs. Figure 4(b) shows the mean degree of the 
nodes with the maximum control centrality versus the mean degree 〈​k〉​ of all nodes, for each empirical network 
in Table 2. We see that the values of krmax

, the degree value at which maximum control efficacy is achieved, are 
significantly smaller than or comparable to 〈​k〉​, indicating the nodes with large values of control centrality are 
generally not hubs. To provide further evidence for the determining role of nodal degree in the control efficacy, 
we randomize each empirical network by converting it into an ER random network, keeping the network size N 
and its diameter L unchanged. As shown in Fig. 4(c), for some networks there is no correlation between the values 
of r for the original and randomized networks, indicating that the full randomization process has effectively elim-
inated any topological features of the original network that determine the control efficacy. We then apply a 

Figure 3.  Control centrality of undirected model networks. (a) Average control centrality r versus the 
connecting probability p for Erdös-Rényi (ER) random networks. (b) r versus half of the average degree m =​ 〈​k〉​/2 
for Barabási-Albert (BA) scale-free networks. IW and RW represent identical link weights and random link 
weights, respectively. All the networks are undirected with symmetric coupling matrices. The data points are 
averaged over 50 independent network realizations. The representative network sizes are N =​ 300, 500 and 1000.

Data Sets Nodes Edges r rmax rmin rW rWmax rWmin

Adjnoun56 112 425 0.97377 0.98214 0.97321 0.97481 0.98214 0.97321

Dolphins57 62 159 0.96878 0.98387 0.96774 0.97633 0.98387 0.96774

Football58 115 615 1 1 1 1 1 1

karate club59 34 78 0.69983 0.73529 0.67647 0.80536 0.82353 0.79412

Lesmis60 77 254 0.61899 0.63636 0.61039 0.84702 0.85714 0.84416

Netscience56 1589 2742 0.04060 0.16174 0.00063 0.07580 0.26306 0.00063

Polbooks61 105 441 1 1 1 1 1 1

Power24 4941 6594 0.84098 0.84739 0.80935 0.87344 0.88241 0.82372

Hep-th62 8361 15751 0.39915 0.57218 0.00012 0.45460 0.65184 0.00012

Email63 1133 5451 0.96125 0.96204 0.96028 0.96163 0.96293 0.96117

Jazz64 198 2742 0.96500 0.96970 0.96464 0.96740 0.96970 0.96465

USAir65 332 2126 0.76639 0.77410 0.76205 0.76944 0.77410 0.76506

Table 2.   Control centrality of empirical networks. For each network, its size, the total number of links, 
the average value, its maximum and minimum values for identical link weights and random link weights, are 
given. The structural data of all the networks are available online (see Supplementary Table 1). Superscript W 
represents random weights.
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degree-preserving procedure4,50,51 that randomly rewires the links but keeps the degree of each node unchanged. 
Contrary to the case of full randomization [Fig. 4(c)], when the nodal degrees are preserved, there is little change 
in the value of r, indicating strongly that degree is the key characteristic that determines the control efficacy.

Identification of controllable nodes.  For an arbitrary undirected network, given a control input matrix, 
we can obtain the dimension of the controllable subspace by calculating the control efficacy. An issue of practical 
importance is how to identify the actual set of nodes that can be controllable, i.e., the set of controllable nodes for 
a given control input configuration. Here, we offer a general method based on network diffusion dynamics to 
address this issue. Specifically, note that the N ×​ Nm controllability matrix C B A B A B A BA B = ⋅ … −[ , , , , ]N

( , )
2 1  

can be expressed iteratively as

= ⋅ ⋅ ⋅ … ⋅ ⋅ .−[ , , ( ), , (( ) )] (14)N
( , )

2C B A B A A B A A BA B

For the N ×​ N matrix s, between any pair of nodes (e.g., i and j), there exists a path of length s:

 ∑= … ≠ .
… −

−
a a( ) 0s

ij
k k

ik k j
, , s

s
1 1

1 1

Regarding the nonzero elements of  as sources of diffusion, the controllability matrix C A B( , ) can be viewed as 
being formed by a diffusion process from the nodes with control matrix  to all the controllable nodes in the 
network in (N −​ 1) time steps, generating the corresponding diffusion mode for each column of C A B( , ). At time 
step s, the matrix product ⋅−s 1A B is a linear combination of the mode at the s step and the modes from all prior 
forward steps. The rank of ( , )C A B  is determined by the number of the distinct modes of diffusion. In general, 
unless C A B( , ) has a full rank, there is interdependence among its columns. Using this fact, we can prove that, for 
fixed  = rrank( ) , the distinct diffusion modes are fully contained in the former r iteration steps (Supplementary 
Note 3). Consequently, we can implement the following elementary column transformation on the controllability 
matrix to obtain

= ⋅ … ⋅ ⋅ … … ⋅ … ⋅− − −b b b b b b b b b[ , , , ; , , , ; ; , , , ] (15)r
r r

m m
r

m1 1
1

1 2 2
1

2
1C A A A A A A

Figure 4.  Role of hubs on control centrality in model and empirical networks. (a) The average control 
centrality (bars) for the low-, medium- and high-degree nodes in ER and SA networks of size N =​ 500 and 
average degree 〈​k〉​ =​ 2, where the control centrality of hubs is generally less than that for smaller degree nodes. 
The results are averaged over 500 network realizations. For the ER networks, different connected components 
are considered separately. (b) Mean degree of the nodes with the maximum control centrality rmax as compared 
with the mean degree of all nodes for a number of empirical networks. It can be seen that for these real-world 
networks the nodes with relatively large values of the control centrality are not hub nodes, which is consistent 
with the results in (a). (c) For randomized empirical networks and (d) for the randomized networks but with 
the degrees preserved, the values of r in comparison with these from the original networks.
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so that the controllable nodes correspond to the maximal linearly independent group of the rows. To illustrate the 
method explicitly, we present a concrete example, as shown in Fig. 5, where the diffusion process can be seen by 
noting the newly appeared diffusion mode (color marked) at each time step. We next perform the elementary 
column transformation on  to obtain its column canonical form that reveals the linear dependence among the 
rows, where the rows that are linearly independent of other rows correspond to the controllable nodes. Note that 
the configuration of drivers is not unique as it depends on the order with which the elementary transform is 
implemented. While there are many possible choices of the linearly dependent rows, the number of controllable 
nodes is fixed and determined solely by = rrank( ) . Our procedure of finding the driver nodes is rigorous, as 
guaranteed by our theory of control efficacy and the column canonical form associated with the matrix rank.

Discussion
For complex networks in the real world, from the standpoint of control not every node is externally accessible. 
Often, control signals can be applied to a limited set of nodes or just a few nodes. If the network structure is 
known, theoretically it is possible to determine a specific set of nodes to apply the control signals, e.g., through 
identification of maximum matching in SCT. However, the set of control nodes so determined may not overlap 
with the set of externally accessible nodes. Under these circumstances it is not possible to control the whole net-
work. Nonetheless, there are situations where full control of the entire network is not necessary. A fundamental 
question is then, if control is applied to a few nodes or even a single node, what fraction of the network can be 
controlled? That is, for a complex network of arbitrary structure, what is the control efficacy or, equivalently, the 
dimension of the controllable subspace of the underlying network?

Figure 5.  Illustration of our method to identify the set of controllable nodes. Take as an example a simple 
undirected network with self-loops. (a) A step by step illustration of the diffusion process over the network from 
the driver node, where a control signal is applied at node 1. The newly appeared mode at each step is marked 
with different colors. At step 7, the iteration column vector A B6  can be expressed as a linear combination of the 
former modes, so the corresponding value of the control efficacy is 6. (b) For the controllability matrix C A B( , ), its 
column canonical form generated by the elementary column transformation. For a fixed value of the control 
efficacy measure r, the column canonical form can be performed only for r iterations of the column vector. 
(c) There is a one-to-one correspondence between the controllable nodes and the rows that are linearly 
dependent upon others in the column canonical form. In the specific case shown, there are four distinct 
configurations of the controllable nodes (marked in blue). Nevertheless, the number of controllable nodes is 
fixed and solely determined by C A Brank( )( , ) .
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The issue of control efficacy (or control centrality if control is applied at a single node) was addressed in a 
previous work36 but for directed networks. The contribution of the present paper is a rigorous framework based 
on the theory of exact controllability10,14 to determine, for undirected complex networks of arbitrary structure 
(regular, random, or scale-free, weighted or unweighted, with or without self loops, etc.), their control efficacy. 
From the mathematical control theory, the control efficacy is given by the rank of the Kalman controllability 
matrix, the determination of which is computationally prohibitive for large networks. Utilizing the non-singular 
similarity transformation, we discovered a mathematical theorem that enables us to convert rank calculation 
into a counting problem in terms of the block matrices associated with the distinct eigenvalues of the network 
coupling matrix. The framework allows us to determine, rigorously, the control efficacy of not only model com-
plex networks, but also a large number of real world networks. Physically, we developed the picture of diffusion, 
i.e., to view the control process as a signal originated from the driver node and diffused through the controllable 
subnetwork. The powerful combination of rigorous mathematical theorem and physical reasoning leads to the 
discovery of striking phenomena in controlling complex networks. For example, more densely connected net-
works in general have stronger control efficacy, regardless of their topology, and nodal degree is key to control 
efficacy. However, hub nodes in general have low values of control centrality as compared with majority of the 
nodes in the network.

From the perspective of fundamental science, our framework of control efficacy represents an important step 
forward in understanding, quantitatively, the controllability of complex networks at the detailed level of indi-
vidual nodes. (Extension of our control efficacy framework to analyzing the efficacy of observability of complex 
networks is straightforward - see Supplementary Note 5). Practically, our theory provides a method and algo-
rithms that can be used to identify efficiently the nodes that possess the strongest possible control centrality. This 
can have significant applications. For example, given a social network, our framework allows the nodes with the 
largest control efficacy, i.e., the nodes that can control the largest possible fraction of the network, to be identified. 
Similarly, for a complex infrastructure network, we can determine a small set of critical nodes to obtain maximum 
possible control of the network to achieve the highest possible energy efficiency.

Despite our initial success as reported in the present paper, many outstanding issues remain. For example, in 
real world networks the estimated link weights are not exactly known, which will lead to errors in determining the 
control efficacy. A mathematical uncertainty or error analysis is needed, but at the present a rigorous treatment 
seems difficult. Also, our framework of control efficacy relies on complete knowledge of the network structure. 
What if there is missing information about nodes, links and/or their weights? - at the present we do not have a 
theory to deal with this practically important issue. Last but not least, our entire theory is based on hypothesizing 
the underlying complex network as a linear and time invariant dynamical systems. Although much effort has 
been dedicated to controlling complex networks with nonlinear dynamics52–54, a general approach for meas-
uring control efficacy remains to be an outstanding problem55. The main challenge stems from the fact that the 
control efficacy is determined by both network structure and dynamics, in contrast to the network governed by 
linear dynamics. Much further effort is called for in the extremely rapidly developing field of controlling complex 
networks.

Methods
For an undirected network with arbitrary link weights [Eq. (1)], the matrix  is symmetric and so is diagonaliz-
able: there exists an orthogonal matrix   and a diagonal matrix  such that = ⋅ ⋅ = ⋅ ⋅ −T 1A P D P P D P  with 
   = …λ λ λdiag( , , , )

l1 2
, where λi’s (i =​ 1, …​, l) are the distinct eigenvalues of  and λi

 is the diagonal 
block matrix of  associated with λi. The size of λi

  is given by the multiplicity of λi. We write
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For a linear dynamical system, its controllability is invariant under any non-singular transform. The control 
efficacy of the original system can then be determined by calculating the rank of the transformed Kalman matrix 
P C A B⋅−1

( , ) [Eq. (3)].

Single control input.  When the system is subject to a single control input, the control matrix  and the 
transformed control matrix = ⋅ = …− q q[ , , ]N

1
1

TQ P B  is an N ×​ 1 column vector. If  has zero element, the 
corresponding row in the the transformed Kalman matrix ⋅−1

( , )P C A B  is zero. For the nonzero elements in , the 
corresponding eigenvalues can be of two types.

(i)� � Case I: Distinct eigenvalues. An illustrative example for this case is shown in Fig. 1(a), where the values of q1, 
q2 and q3 are assumed to be nonzero, corresponding to the eigenvalues λ1, λ2 and λ3, respectively. The corre-
sponding row of (q1, q2, q3) in ⋅−1

( , )P C A B  is a Vandermonde matrix, whose rows are linearly independent. In 
this case, the rank of the controllability matrix is nothing but the number of the nonzero elements corre-
sponding to distinct eigenvalues of .

(ii) ��Case II: Degenerate eigenvalues. When there is eigenvalue multiplicity, the rows of P C A B⋅−1
( , ) are linearly 

dependent upon each other. An example of the controllability matrix is
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where the rows of q4 and q6 are linearly dependent. If the linearly dependent rows in  have nonzero elements, 
they together contribute one to the rank of the controllability matrix.

For a single control input, the calculation of the rank of ( , )C A B  is thus equivalent to counting the corresponding 
nonzero elements in . We have

C P C QA B A B ∑η= = ⋅ = λ
−

=
R rank( ) rank( ) ( )

(18)i

l

( , )
1

( , )
1

i

Since the control matrix  has a single column, the control centrality of the input node is given by

λ≤R num( ), (19)i( )

where the num(λ) is the number of the distinct eigenvalues of .

Multiple control inputs.  With multiple control input signals, the transformed control matrix  has the 
dimensional N ×​ m. To illustrate our method of rank calculation explicitly, we consider the first two columns in 
. The matrices  and  can be written as
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Adjusting the order of the original column vectors appropriately, we can convert the transformed Kalman 
matrix ⋅−1

( , )P C A B  into a form in which two single controller inputs are applied sequentially, i.e.,

λ λ λ λ

λ λ λ λ

λ λ λ λ

λ λ λ λ

⋅ =




















… … …

… … …

… … …

… … …




















.−

+ + + + + +

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

q q q q q q

q q q q q q

q q q q q q

q q q q q q

(21)

N N

l l l
N

l l l
N

l l l
N

l l l
N

l l l
N

l l l
N

1
( , )

11 11 1 11 1 21 21 1 21 1

1 1 1 1 1 2 2 1 2 1

1 1 1 1 2 1 1 2 2 1 2 1 2 2 1 2

1 1 2 1 2 2 2 2 2 2

1 1 1 1 1 1

1 1 1 1 1 1

2 2 2 2 2 2

P C A B

For the case where the control matrix  has distinct eigenvalues, if certain rows of the transformed control matrix 
 contain nonzero elements, the corresponding rows of the transformed Kalman matrix P C⋅−1  must be linearly 
independent of each other. The matrix P C A B⋅−1

( , ) can be organized into a block matrix form, where each block 
corresponds to one distinct eigenvalue and its dimension is the multiplicity of the eigenvalue. The rank of such a 
matrix is the sum of the rank values of the sub-block matrices. In particular, letting the algebraic multiplicity of 
the eigenvalue λ1 be l1, we have
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In general, for multiple control inputs, the control efficacy = ⋅−rank( ) rank( )1
( , )C P C A B  is the sum of the rank 

values of the sub-block matrices:

C Q∑= = .λ
=

R rank ( ) rank( )
(23)i

l

1
i
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