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The relation between flux and fluctuation is fundamental to complex physical systems that support and
transport flows. A recently obtained law predicts monotonous enhancement of fluctuation as the average
flux is increased, which in principle is valid but only for large systems. For realistic complex systems of small
sizes, this law breaks down when both the average flux and fluctuation become large. Here we demonstrate
the failure of this law in small systems using real data and model complex networked systems, derive
analytically a modified flux-fluctuation law, and validate it through computations of a large number of
complex networked systems. Our law is more general in that its predictions agree with numerics and it
reduces naturally to the previous law in the limit of large system size, leading to new insights into the flow
dynamics in small-size complex systems with significant implications for the statistical and scaling
behaviors of small systems, a topic of great recent interest.

A
basic and important quantity characterizing a large variety of complex dynamical systems in the real

world is flow or flux. For example, in a transportation network traffic flux is the main quantity of interest;
in the Internet the flux of packets is key to information propagation and spreading; in an electrical power

grid the normal flow of electricity is indication of system’s designed operation; and in a neuronal network the flux
of electrical pulses is responsible for information processing and ultimately for all kinds of biological functions.
Due to the complex nature of the systems and inevitable presence of noise, in general the flux tends to fluctuate
about its average in time intervals in which the system may be regarded as stationary.

In the study of complex dynamical systems, a fundamental question of continuous interest is whether there
exists a universal law between the average flux and the fluctuation1–7. In this regard, an early work revealed a
power-law (algebraic) relation between the two with the exponent taking on a finite set of discrete values, such as
1/2 or 11. Subsequently it was suggested3 that the power-law exponent can assume continuous values in the range
[1/2, 1]. Quite recently, the notion of power-law scaling between the fluctuation and the average flux was refuted
and a non-algebraic type of relation between the two quantities was obtained6, with support from both model
simulations and data from a realistic communication network system. In particular, let Æfiæ be the average flux and
si be the amount of fluctuation, the non-algebraic type of flux-fluctuation law is given by6

si~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fih iza2 fih i2

q
, ð1Þ

where a:sext= Mh i is a single parameter determined by the property of the external driving M(t) only, sext and
ÆMæ are the standard deviation and the expectation value of M(t), respectively. The discovery of Eq. (1) is
important as it reveals a simple but definite relation between the flux and fluctuations, in spite of the complex
nature of the underlying physical system.

In spite of the success of Eq. (1) in explaining the flux-fluctuation relation observed from certain real systems,
there exists a paradox. In particular, Eq. (1) implies that, as the flux increases continuously, so would the
fluctuation. Consider, for example, a complex network of small size, where the total amount of traffic, or flux,
is finite. In such a system, the traffic flow through various nodes will exhibit different amount of fluctuations,
depending on the corresponding flux. In the special but not unlikely case where most of the traffic flow passes
through a dominant node in the network, the flux is large but the fluctuation observed from it must be small, since
the total amount of traffic is fixed. For other nodes in the network the opposite would occur. Thus, in a strict sense,
Eq. (1) is applicable only to physical systems of infinite size with less flux heterogeneity. An example of the failure
of Eq. (1) for a small system is demonstrated in Fig. 1 panels (a) and (b), where the flux-fluctuation relation
obtained from a real Microchip system1 is shown. We see that, on a logarithmic scale [see panel (a)], the flux-
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fluctuation behavior from the real data (open diamonds) appears to
mostly agree with the prediction of Eq. (1) (dashed curve). However,
as indicated in panel (b), on a linear scale there is substantial devi-
ation of the real behavior from the prediction of Eq. (1). A careful
examination of the flux-fluctuation relation for model network sys-
tems, especially for small systems with weak external driving or those
with a high nodal flux heterogeneity, reveals that the deviation from
the theoretical prediction is systematic. Curiosity demands that we

ask the following question: in small complex physical system, is there
a general flux-fluctuation law?

In this paper, we uncover a universal flux-fluctuation law in small
systems. Taking into account realistic physical effects such as the
contribution of internal randomness and combined effects of mul-
tiple external driving, we may obtain more accurate flux-fluctuation
relation agreeing well to real data and numerical results (dotted and
solid curves in Fig. 1). A key to our success lies in distinguishing the

Figure 1 | Empirical and numerical evidences for the breakdown of the previous flux-fluctuation law Eq. (1). Nodal flux fluctuation si versus the

average flux Æfiæ, (a) and (b) for real data from microchips1, and (c,d) and (e,f) for the numerical data from heterogeneous networks on logarithmic and

linear scales, respectively. The dashed and solid curves are the predictions of the previous flux-fluctuation law Eq. (1) and our new theory Eq. (2),

respectively. And the dotted curves in (a,b) are fitting of real data which can be explained by our theory. Numerical simulations are realized on scale-free

networks of size N 5 2000 and mean degree Ækæ 5 2, under constant external driving M 5 4000. The networks of (c,e) and (d,f) are schematically

illustrated in (g) and (h), respectively.
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external driving from the intrinsic fluctuations in terms of their
respective contributions to the interplay between flux and fluc-
tuation, where the former represents the systematic or random per-
turbation upon the system from the outside world and determines
the total flux of the system in any given time period. For example, in a
river network, the external drive can be the precipitation in the basin
region; for Internet or the urban traffic systems, external drive can be
the daily rhythmic behavior of human activities8, such as the traffic in
a city introduced by human’s commuting between place of residence
and place of work. Intrinsic fluctuations of the system, however, are
generated by randomness in processes such as package generating,
source-destination selection, path selection, and asymmetry of the
underlying network topology, etc. We show that, for a small system,
the effects of internal randomness on the flux-fluctuation interplay
must be included and treated properly, and this leads to a nontrivial
correction to Eq. (1) and results in a new law that is generally applic-
able to complex systems of small size and reduces to Eq. (1) in the
limit of large system size. Since realistic physical systems are finite,
especially considering that the statistical physics of small systems are
of great recent interest9–11, we expect our result to be appealing to the
broader scientific community.

Results
Here we give the numerical evidence of systematic breakdown of Eq.
(1) and validity of new flux-fluctuation law,

s2
i ~ fih iz a2{

1
Mh i

� �
fih i2, ð2Þ

with the theoretical analysis of which given in Sec. Methods.
Compared with the previously obtained1–7 flux-fluctuation law [Eq.
(1)], Eq. (2) has the additional term 2Æfiæ2/ÆMæ, which accounts for
the contribution to the fluctuations by the internal randomness.

Flux-fluctuation law in scale-free networks. To provide more
evidence for the breakdown of Eq. (1) in physical systems, we con-
sider scale-free networks12 and implement packet-flow dynamics13,14.
At time step t, the system generates M(t) packets. Each packet is
assigned a pair of randomly selected source and destination.
Packets are delivered step-by-step through the respective shortest
paths from their sources to destinations. Here, the external drive
can be characterized by M(t). We firstly consider the simple case
of constant external drive M (i.e., sext 5 0), under which Eqs. (1)
and (2) correspond to s2

i ~ fih i and s2
i ~ fih i{ fih i2

�
Mh i, respect-

ively. The constant external drive is ubiquitous in real systems, e.g.,
the river flow replenished by the confined groundwater, and stable
flow on Internet introduced by the pre-installed task processing
programs (which are not restricted to the daily surfing rhythm of
users). Effective constant drive also takes place in the networked
system composed of nodes with limited delivery capacity. For
example, a node with saturated flow will deliver a constant number
of packets at each time step, which thus acts as a constant external
drive to the downstream subsystem. Constant external drive also
exists in closed traffic systems, such as the blood circulation
systems of animals and water heating system for buildings.
Furthermore, the large observation time scale to traffic systems3–7

also give rise to the situation of a constant external drive, in case
that the window size exceeds the characteristic period and thus the
detailed temporal information of the traffic flow is bypassed
effectively.

Figure 1(c) shows, on a logarithmic scale, the fluctuation si versus
the average flux Æfiæ for various nodes, where M 5 4000, the network
size is N 5 2000, the dashed line is from Eq. (1), the solid curve is
from our theory, and the open circles are from simulation.
Figure 1(e) shows the same data but on a linear scale. For the simu-
lation results, the error bars associated with the points obtained from
different realizations of the dynamics are smaller than the symbol

size. One typical realization of the network structure is shown in
Fig. 1(g). We see that the failure of Eq. (1) mainly occurs in the large
Æfiæ regime. To further illustrate the deviation, we consider the
extreme case where most of the network traffic is through a super-
hub node so that Æfiæ < M. The resulting flux-fluctuation relation is
shown in Figs. 1(d) and (f), and the corresponding network structure
is shown in Fig. 1(h). We see that the data point specifying the flux-
fluctuation of the super-hub node, marked by a star, deviates signifi-
cantly from Eq. (1) in that the fluctuation amount is small, but it still
falls on our theoretical curve. Intuitively, this can be understood by
noting that, because the external drive is constant, flux fluctuations
are caused entirely by the intrinsic randomness that is minimal for
the super-hub node. In a realistic physical system, the components
bearing relatively large amounts of flux tend to have small fluctua-
tions due to the boundedness of the total amount of flux in the
system, a feature that Eq. (1) fails to incorporate.

Flux-fluctuation law in small systems. We next test networked
systems of much smaller size, which are ubiquitous in the physical
world such as functional biological networks composed of a few
proteins, quantum communication networks of a limited number
of quantum repeaters, and local ad hoc computer/communication
networks supporting a small group of users. For a variety of
combinations of (small) network size and mean degree, we obtain
essentially the same results as in Fig. 1: large deviations from the
previous flux-fluctuation law [Eq. (1)] and excellent agreement
with our theory. Representative examples are shown in Fig. 2 for a
number of networked systems, all of N 5 50 nodes but with different
structural parameters. A constant external drive with parameter M 5

4000 and the shortest path-length routing protocol are used. Plotted
in each panel in Fig. 2 are predictions from Eq. (1) (dashed curves)
and from our theory Eq. (2) (solid curves), as well as simulation
results (open circles). We see that, for small systems, the
disagreement between numerics and Eq. (1) becomes more drastic,
especially for smaller mean-degree value. However, in all cases, our
new law [Eq. (2)] agrees excellently with the corresponding
numerical results, indicating the importance and necessity of
including our correctional term [2Æfiæ2/ÆMæ] in the flux-fluctuation
law for small sparse networked systems.

Validity of Eq. (2) with respect to network topologies and routing
schemes. To demonstrate the general applicability Eq. (2), we carry
out numerical simulations of packet-flow dynamics13,14 under a large
number of combinations of complex-network topologies and routing
schemes. Specifically, we use scale-free12, random15, and small-
world16 networks, and routing protocols such as those based on
shortest path-length, random-walk, and efficient-path scheme
(EPS)17. In all cases considered, there is excellent agreement
between the numerics and Eq. (2). For example, Fig. 3 shows the
results from random and small-world networks under the shortest
path-length routing protocol. The small-world networks are
generated by adding 5 links randomly on a regular one-
dimensional ring lattice of size N 5 100 and mean degree c 5 4.
Interestingly, notwithstanding the intrinsic homogeneity underlying
this standard class of small-world network model16, there is still wide
spread of flux due to the inhomogeneous distribution of traffic flow
caused by shortest path-length routing. Figure 4 shows the results of
efficient-path routing scheme on scale-free and random networks. In
this scheme, node i in the network is weighted by wi~kc

i , where ki is
i’s degree and c is a turnable parameter characterizing the routing
strategy. A packet from source j1 to destination j2 will choose a route
with the minimum sum of weights:

X
i[sj1 j2

kc
i , where sj1j2 denotes

the path from j1 to j2. By varying the parameter c, we can select
certain subsets of nodes on the packet-transport path, such as hubs
or small-degree nodes. From Fig. 4, we see that, while different
routing schemes lead to large spread in the range of the flux
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values, the flux-fluctuation relations all collapse into the single curve
predicted by our theory.

In all cases examined, we find that, insofar as the flux in the system
is heterogeneous, regardless of the source of heterogeneity (e.g., net-
work topology or routing scheme), our correctional term in Eq. (2) is
absolutely necessary to account for the numerically calculated flux-
fluctuation relations.

Time-dependent external driving. To further demonstrate the
general validity of Eq. (2), we present examples of time-dependent
random external driving M(t), i.e., with nonzero s2

ext. Figure 5 shows,
for three cases where ÆMæ 5 4000 but s2

ext~0, 10034, and 49923,
numerically obtained flux-fluctuation relations and the corre-
sponding theoretical predictions from both Eqs. (1) and (2). Again,
there is excellent agreement between our theory and the numerics.
For the case where the external driving is more random, the
contribution of the internal randomness [the first and third terms

in Eq. (2)] is relatively small. In this case, the previous theory [Eq. (1)]
agrees reasonably well with the numerics, as it is particularly suitable
for situations where the external driving is highly fluctuating. Our
theory is more general as it accurately includes the effects of both
intrinsic and external randomness and is thus more broadly
applicable. We have also considered flux through links and found
that the link flux fij also renders applicable Eq. (2).

Our formula, Eq. (2), also makes possible a detailed understanding
of the effect of random external drive. Consider, for example, the
special case where the sequence of the external driving M(t) follows a
Poisson distribution so that s2

ext~ Mh i. In this case, Eq. (2) gives
s2

i ~ fih i. As the external driving has s2
ext shifts away from ÆMæ, no

matter how small, the nodal fluctuation immediately becomes a non-
linear function of the average flux. For s2

extw Mh i s2
extv Mh i

� �
, fluc-

tuations at the large-flux nodes are relatively larger (smaller), with
the quadratic coefficient in Eq. (2) being positive (negative). We note
that, in the previous formula Eq. (1), the coefficient in the quadratic

Figure 2 | Flux-fluctuation relationship in small systems. Nodal flux fluctuation si versus the average flux Æfiæ for small networks of size N 5 50.

The mean degree is Ækæ 5 4 for (a,b) and Ækæ 5 2 for (c,d). Panels (e,f) are results from a modified network of mean degree Ækæ 5 2 but with a super-hub

node. In panels (a,c,e) the flux-fluctuation relations are plotted on a logarithmic scale while in panels (b,d,f), a linear scale is used. The dashed curves are

obtained from Eq. (1) and the solid curves are predictions from our modified flux-fluctuation law Eq. (2). All systems are under a constant external drive

defined by M 5 4000.
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term is always positive, whereas in our formula [Eq. (2)], this coef-
ficient can take on either positive or negative values, depending on
the degree of randomness of the external driving. An example of
negative coefficient from real-world systems is shown in Figs. 1(a)(b).

Discussion
To summarize, we argue and demonstrate that the previously
obtained flux-fluctuation law is valid but in principle only for large
complex physical systems. Especially, among others it predicts con-
tinuously enhanced fluctuations as the average flux is increased, a
situation that cannot occur in small physical systems under finite
external drive. The failure of this law is demonstrated using both real
and model systems. By analyzing the validity of the mathematical
assumption for the probability distribution of the flow dynamics, we
derive a general flux-fluctuation law, which correctly predicts the

possible maximized fluctuation for intermediate flux. Our law
includes the previously obtained flux-fluctuation law as a special
case, and it is universally applicable to all kinds of complex dynamical
systems, large or small, homogeneous or heterogeneous. One imme-
diate application of our flux-fluctuation law is to understand the
dynamics of extreme events on complex systems18,19, where sim-
ultaneous occurrence of many extreme events can have devastating
consequences on the functions of the corresponding networks. The
flux-fluctuation law can be used to forecast the number of extreme
events on the network, providing guidance to articulating control
strategies to suppress extreme events19. The flux-fluctuation relation
is a fundamental characteristic of any complex system. The new law
presented in this paper can provide insights into the various dynam-
ical processes on small complex systems, and this can be important in
view of the growing recent interest in the statistical mechanics of
small systems in physics, chemistry, and biology9–11.

Figure 4 | Flux-fluctuation relationship under different routing schemes. Nodal flux fluctuation si versus the average flux Æfiæ for (a) scale-free

networks and (b) small-world networks of size N 5 100 and mean degree Ækæ 5 4 under efficient-path routing schemes. The dashed and solid curves are

predictions of Eq. (1) and Eq. (2), respectively. The constant external drive has strength M 5 4000. The subgraphs are the respective magnifications of the

small-flux regions.
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Methods
Here, we derive a general flux-fluctuation law for small physical systems. The
probability for one given packet to visit node i with ki links is pi 5 ki/2E in the
stationary regime6, where E is the total number of links and

X
ipi~1. If the

system is under a constant external drive M, the expectation value of the flux at i
is Æfiæ 5 Mpi. In the previous derivation of Eq. (1), the probability of fi 5 n is
assumed to follow the Poisson distribution Pp n,lið Þ~e{li ln

i

�
n! with li 5 Mpi.

We note, however, that this assumption is not proper for heterogeneous, small size
systems where the probability distribution is actually binomial. The Poisson dis-
tribution is an asymptotic form of the binomial distribution in the limit of M R ‘

for fixed Mpi. Here, pi is related to the heterogeneity and the size N of the system.
For example, for a highly heterogeneous networked system, the value of pi

associated with super-hubs can be large. For small networks, all nodes are with
relatively large values of pi. In both cases, the assumption of Poisson distribution
cannot be properly justified. Our hypothesis is then that, the probability that node
i gets n packets obeys a binomial distribution: Pp n,Mð Þ~Cn

M pn
i 1{pið ÞM{n , where

M is the total number of packets in the system. For the case where the external
driving is time-dependent, the number M itself follows some probability distri-
bution, denoted by Pext(M). We thus have

Pfi nð Þ~
X?
M~0

Pp n, Mð ÞPext Mð Þ

~
X?
M~0

Cn
M pn

i 1{pið ÞM{nPext Mð Þ:

The average flux is given by

fih i~
X?
n~0

nPfi nð Þ~
X?
n~0

n
X?
M~0

Pp n, Mð ÞPext Mð Þ

~
X?
M~0

X?
n~0

nPp n, Mð Þ
" #

Pext Mð Þ~pi Mð Þ,

where Mh i~
X?

M~0
MPext Mð Þ and M2

� 	
~
X?

M~0
M2Pext Mð Þ are respectively

the first and second moments of the external drive. The second-order moment of the
flux is

f 2
i

� 	
~
X?
n~0

n2Pfi nð Þ~
X?
M~0

X?
n~0

n2Pp n,Mð Þ
" #

Pext Mð Þ

~ pi{p2
i

� �
Mh izp2

i M2
� 	

:

The flux fluctuation of node i can then be calculated as

s2
i : f 2

i

� 	
{ fih i2

~ pi{p2
i

� �
Mh izp2

i M2
� 	
 �

{ pi Mh ið Þ2

~ fih iz fih i2s2
ext

�
Mh i2{ fih i2

�
Mh i:

where s2
ext: M2

� 	
{ Mh i2 is the variance of the external driving. With a:sext= Mh i,

we obtain Eq. (2).
Equation (2) can be generalized to the situations where complex system is

driven by multiple external inputs MJ (t) (J 5 1, 2, …). Take the system with two
external drives M1(t) and M2(t) as an example, the flux on one given node i is n 5

n1 1 n2, i.e., the sum of the two fluxes n1 and n2 due to the two external drives.
The temporal behaviors of n1 and n2 on node i are determined by the sequences of
M1(t) and M2(t), as well as the respective fractions of the fluxes distributed on
node i, denoted by {pi1} and {pi2} with i g [1, N]. The variance of the total flux
can be written as

sn
2: n2
� 	

{ nh i2

~sn1
2zsn2

2z2sn1 sn2 C12:
ð3Þ

where the two variances sn1
2 and sn2

2 are given by Eq. (2) with the respective
parameters of external drives, aJ and ÆMJæ (J 5 1, 2). In Eq. (3), C12 is the Pearson
correlation coefficient between n1 and n2 defined as

C12: n1n2h i{ n1h i n2h i½ �=sn1 sn2 : ð4Þ

For the case of independent n1 and n2, we have C12 5 0 and so sn
2~sn1

2zsn2
2.

For the extreme case of C12 5 1, e.g., n1 5 n2, we have sn
2~4sn1

2. For the other
case C12 5 21, e.g., n1 1 n2 5 const., we get sn

2 5 0.
The correlation between n1 and n2 are intimately related to the correlation

between the external drives M1(t) and M2(t). Independent M1(t) and M2(t)
lead to independent n1 and n2 (i.e., C12 5 0). In this case, Eq. (3) can be written
as

s2
n~s2

n1
zs2

n2

~ n1h iz a2
1{

1
M1h i

� �
n1h i2z n2h iz a2

2{
1

M2h i

� �
n2h i2

~ M1h ipi1z
s2

ext1

M1h i2
{

1
M1h i

� �
M1h ipi1ð Þ2z M2h ipi2z

s2
ext2

M2h i2
{

1
M2h i

� �
M2h ipi2ð Þ2:

ð5Þ

In the following, we present a number of examples with independent M1(t) and
M2(t), for which analytical formulas relating sn

2 and Ænæ can be derived.

Independently and identically distributed external drives with identical values of
{pi}. If M1(t) and M2(t) are independently and identically distributed (IID) and pi1 5

pi2, we have s2
ext1

~s2
ext2

, ÆM1æ 5 ÆM2æ, and Ænæ 5 2Æn1æ, leading to

sn
2~ n1h iz n2h iz

s2
ext1

M1h i2
1

M1h i

� �
: n1h i2z n2h i2

 �

~ nh iz 1
m
: s2

ext1

M1h i2
{

1
M1h i

� �
nh i2,

ð6Þ

where m 5 2 is the number of external drives. Equation (6) in fact gives the general
flux-fluctuation law for the system under m g N IID external drives. However, the
identical distribution of external drives is not a necessary condition to obtain Eq. (6).
Insofar as the external drives have the identical values of s2

ext and ÆMæ (identical first
and second moments), Eq. (6) can be obtained.

Multiple independent drives with one constant drive. Suppose that M2(t) 5 M2 is a
constant drive but its value of {pi} is identical to that of the time-dependent drive
M1(t). We can then write Eq. (5) as

s2
n~ M1h ipi1z

s2
ext1

M1h i2
{

1
M1h i

� �
M1h ipi1ð Þ2

zM2pi2{
1

M2
M2pi2ð Þ2

~ nh iz
s2

ext1

M1h izM2½ �2
{

1
M1h izM2½ �

" #
nh i2,

ð7Þ

which is similar to case of a single external drive as described by Eq. (2), with
s2

ext~s2
ext1

z0, and ÆMæ 5 ÆM1æ 1 M2. From Eqs. (6) and (7), we see that the case with
{pi1} 5 {pi2} preserves the form of our flux-fluctuation law.

Independent drives with different {pi}. The situation of external drives with non-
identical parameters, {pi1} ? {pi2}, becomes slightly more complicated. For example,
from Eq. (5) we see that, if ÆM1æ 5 ÆM2æ, all nodes receiving the same amount of
driving (pi1 1 pi2) will have identical average flux Ænæ, but the contributions of s2

ext1

and s2
ext2

to the nodal fluctuations of these nodes will depend on the relative values of
pi1 and pi2. The nodes with identical value of Ænæ may have different values of sn

2.
From this simple example, we can see that, the single-valuedness of the relation
between fluctuation and average flux cannot be guaranteed for external drives with
{pi1} ? {pi2}.

Here, we consider a special case for which a single-valued flux-fluctuation relation
can be analytically obtained. Suppose M2(t) 5 M2 is a constant external drive pro-
viding a background flux to all the nodes, i.e., it distributes the flux homogeneously
among nodes with probability pi2 5 1/N. We can rewrite Eq. (5) as

sn
2~ n1h iz

s2
ext1

M1h i2
{

1
M1h i

� �
n1h i2z

M2

N
{

M2

N2

~b nh iza mh i2zc,

ð8Þ

where

nh i~ n1h iz
M2

N
,

a~
s2

ext1

M1h i2
{

1
M1h i ,

b~1{2
s2

ext1

M1h i2
{

1
M1h i

� �
M2

N
,

c~
s2

ext2

M1h i2
{

1
M1h i

� �
M2

N

� 
2

{
M2

N2
,

ð9Þ

and the constant external drive M2 distributes flux to all the nodes with equal prob-
ability. It not only adds a constant term to the mean flux of the nodes, but also
introduces fluctuation to each node.

For the deterministic case where the drive M2 contributes M2/N amount of flux but
without fluctuation to each node, we have
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sn
2~ n1h iz

s2
ext1

M1h i2
{

1
M1h i

� �
n1h i2

~b nh iza nh i2zc’,

ð10Þ

where

c’~
s2

ext1

M1h i2
{

1
M1h i

� �
M2

N

� 
2

{
M2

N
: ð11Þ

We see that, the stable background flux introduces a nonzero constant term c (or c9)
into the flux-fluctuation law. Also, the linear coefficient b is no longer limited to unity.
In this case, the functional form of sn

2 versus Ænæ has three coefficients, where the
number of system parameters, i.e., s2

ext1
, ÆM1æ, and M2, are also three. In a real traffic

system under identical background input to each node and a time-varying external
drive, the parameters of the drives can be derived according to the values of a, b, and c
or c9, which can be obtained from a parabolic fit to the actual flux-fluctuation data.

In addition, the behavior of flux fluctuation from real data, such as the multiple-
valued function of average flux, or a single-valued function with c ? 0 or b ? 1,
implies some kind of ‘‘cooperation’’ among the external drives with different values of
{pi}. As a specific example, the flux-fluctuation behavior observed in the microchip
system shown in Fig. 1 with a 5 20.427, b 5 0.667, and c 5 0 can be interpreted as
due to the system’s being under multiple external drives with different values of {pi}.

In real physical systems, correlations among the external drives MJ may improve
the complexity of the flux fluctuation relationship. For example, both atmospheric
precipitation and ice/snow melting can contribute to the flow of a river, but both
drives may depend on the temperature. An urban traffic system can be driven by
public traffic and other specific traffic demands, both being affected by the daily
rhythmic behavior of human activities. From a more general perspective, the external
drives with large positive correlation can be regarded as one effective single drive M

with MJ being the weight to combine {piJ}, i.e., pi~
X

J piJ MJ

.X
J MJ , where pi

characterizes the share of the whole drive M~
X

J MJ on node i.
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