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The remarkable phenomenon of chimera state in systems of non-locally coupled, identical oscillators has
attracted a great deal of recent theoretical and experimental interests. In such a state, different groups of
oscillators can exhibit characteristically distinct types of dynamical behaviors, in spite of identity of the
oscillators. But how robust are chimera states against random perturbations to the structure of the
underlying network? We address this fundamental issue by studying the effects of random removal of links
on the probability for chimera states. Using direct numerical calculations and two independent theoretical
approaches, we find that the likelihood of chimera state decreases with the probability of random-link
removal. A striking finding is that, even when a large number of links are removed so that chimera states are
deemed not possible, in the state space there are generally both coherent and incoherent regions. The regime
of chimera state is a particular case in which the oscillators in the coherent region happen to be synchronized
or phase-locked.

he collective dynamics of complex systems are often multifold and much more complicated than the

dynamics of individual oscillators. For example, when a large number of oscillators, each possessing very

simple dynamics, are coupled together, the collective behaviors of all the oscillators can be highly nontrivial.
In the classic Kuramoto network’, each oscillator is coupled with every other oscillator - the configuration of a
globally coupled network. Each individual oscillator is a simple rotation of certain frequency, and the dynamics of
the oscillators differ only in their frequencies. The coupling function is also a simple mathematical function, such
as a sinusoidal type of function. For relatively weak coupling the motions of the oscillators are incoherent, due to
the heterogeneity in their frequencies, but as the coupling parameter increases through a critical value, coherence
can emerge and persist in the form of partial or complete synchronization'™. There is now a large body of
literature on synchronization in the Kuramoto network, due to its relevance to many physical, chemical, and
biological phenomena’.

While the emergence of synchronous behavior as the coupling is strengthened is intuitively reasonable and
anticipated in any coupled oscillator network, complex systems often present us with unexpected and sometimes
quite surprising phenomena. A striking example is the occurrence of chimera state®** in non-locally coupled
networks of identical oscillators, where different subsets of the oscillators can exhibit completely distinct dynam-
ical behaviors. For example, for a simple form of chimera state, there are two distinct types of behavior among all
oscillators in the network: one group of oscillators is nearly perfectly synchronous but the oscillators in the
complementary group are completely incoherent. These two types of behaviors emerge as one state of the
networked system, in contrast to the phenomenon of multiple coexisting attractors in nonlinear dynamical
systems®>*¢, each with its own basin of attraction. In such a system, while the attractors coexist in the phase
space, starting from a single initial condition the system approaches asymptotically to only one attractor of certain
characteristics, which can be a stable fixed point, a limit cycle, a quasiperiodic state, or even a chaotic attractor, but
from the same initial condition the system cannot simultaneously possess more than one of these traits.
Signatures of chimera states were first observed from the spatiotemporal evolution of a system of coupled
nonlinear oscillators and the phenomenon was named “domain-like spatial structure””. Chimera states in highly
regular and non-locally coupled networks of identical oscillators are thus a quite remarkable type of collective
dynamics. We note that nonlocal coupling is relevant to physical systems such as the Josephson-junction arrays>®
and to chemical oscillators> as well.

The paradigmatic setting in which chimera states have been studied theoretically and computationally is that of
non-locally coupled phase oscillators®'*. A fundamental question is how robust chimera states are with respect to
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perturbations. That is, when the system details deviate from those of
the paradigmatic setting or when noise is present, can chimera states
still emerge and sustain? In this regard, the issue of noise has been
successfully addressed, as chimera states have been experimentally
observed in a chemical® and an optical® systems that are intrinsically
noisy. An outstanding issue is then how random perturbations to the
network structure affect the chimera states. In this paper, we address
this structural robustness issue that is fundamental to our under-
standing of chimera states. In particular, starting from the standard
setting of a non-locally coupled array of identical phase oscillators,
we remove links systematically but randomly according to the
removal probability p, and investigate whether and to what extent
chimera states can persist as p is increased from zero. For a fixed
value of p, for an infinite network there are an infinite number of
possible configurations. For a realistic network of finite size, the
number of configurations can still be extremely large. Due to the
randomness in the network structure, the persistence of chimera
states can be characterized but in a statistical sense. In particular,
given p, certain fraction of the network configurations would permit
chimera states, while others would not. One can thus define a prob-
ability for chimera states, denoted by F(p), where F(p) — 1 for p— 0
and in general we expect F(p) to be a decreasing function of p. Our
extensive computations reveal that chimera states can persist for a
range of p values in the sense that F(p) maintains values close to unity
even when p is appreciably away from zero, strongly suggesting that
the exotic dynamical states are robust with respect to random struc-
tural perturbations to the underlying network. We then resort to two
independent theoretical approaches, one based on self-consistency
and another based on the spectral theory for collective dynamics on
networks®>*. Both give results that are consistent with those from
direct numerical computations. A surprising finding is that, even for
relatively large values of p for which a large number oflinks have been
removed and chimera state is deemed unlikely, the division of oscil-
lators into coherent and incoherent groups persists. The commonly
recognized chimera state, which occurs for smaller values of p, is
nothing but a particular case in which the coherent oscillators hap-
pen to be synchronized or phase-locked.

Results
We consider an array of N non-locally coupled phase oscillators,
mathematically described by

0 (x;) 27

TP N . c,-jG(x,«—xj)sin[(b(x,-)—d)(xj)—i—oc], (1)
j=1

where ¢(x;) is the phase of the ith oscillator at position x;. The oscil-
lators are located on a ring, so the range of the space variable is [—,
7] and the boundary condition is periodic. Since the oscillators are
assumed to be identical, the natural frequency and phase parameters,
o and a, respectively, are chosen to be constant and they do not
depend on the spatial location of the oscillator. Without loss of
generality, we set @ = 0 and choose o < /2. The kernel G(x) = [1
+ A cos (x)]/(2m) is a non-negative even function that provides the
nonlocal coupling among all the oscillators. The quantity c;; is the ijth
element of the N X N coupling matrix C, where ¢; = 1 if there is a
coupling from the jth oscillator to the ith oscillator, and ¢; = 0
indicates the absence of such a coupling. For a fully connected net-
work, we have c;; = 1fori,j = 1, ..., N. Random removal of links can
be implemented by choosing c;; = 0 for all possible values of i and j (i
# j) with probability p.

For convenience, we introduce a reference frame rotating at the
angular frequency €, so that the phase variable of any oscillator in
this frame can be written as 0 = ¢ — Qt. When a chimera state
emerges, (2 can be chosen to be the average frequency of the oscilla-
tors in the coherent subset. To characterize the dynamics, we use the
following complex order parameter Z defined® for oscillator i:

N
Z(x) = R(x;)e®) = %”Z GG(r—x)"™), ()
j=1

where the summation on the right side is effectively a weighted
average of the quantity ¢ over all the neighboring oscillators of i
for which ¢;; = 1. The quantity R(x;) thus measures the coherence of
oscillator i with respect to its neighbors, and @ is the average phase of
oscillator i. Equation (1) can then be rewritten as

A

O—H_UJ—Q—R sin(0—©+a), (3)

0
where the subscript i has been dropped because the form of Eq. (3) is
identical for all the oscillators, and the interactions among the oscil-
lators are through the quantities R and ©. In a chimera state, those
oscillators whose phases are locked at frequency Q in the original
frame correspond to the stationary solution of Eq. (3) with 00/6t = 0,
which requires R = |w — Q|. In contrast, in the same chimera state
the drifting oscillators (i.e., those that are not phase-locked) have
frequencies differing from Q. The condition for drifting oscillators
is then R < | — Q).

For randomized coupling specified by the removal probability p,
we calculate the time evolution of the system by using three inde-
pendent approaches. The first is direct numerical integration of Eq.
(1) to yield the phase ¢(x;, t) of each oscillator and its velocity v(x;, £).
The second is to solve the self-consistency equation to obtain the
complex order parameter Z(x;). The third is to derive a partial dif-
ferential equation (PDE) in the continuum limit to solve for the order
parameter. (In Methods, we provide detailed derivations of the self-
consistency equation and of the PDE.) For example, in the self-con-
sistency approach, the contributions of the phase-locked and drifting
regions to the order parameter of any given oscillator can be com-
bined into a single summation®, and the resulting self-consistency
equation is

. ) 21 i
10 (x; i —0 § i0O( x;
R(xi)e ( )—e("/z @) X ﬁ C,]G(x,—x])e ( ]) X

where A=w—Q is the difference between the natural frequency of
oscillators and the frame frequency. Equation (4) contains three
unknowns: R(x), ®(x) and A, which can be solved by an iterative
scheme™. As we will demonstrate below, these approaches give
essentially the same results.

Examples of chimera states under random removal of links. For p
= 0, the network is fully connected, so chimera state can definitely
occur. Figure 1(a) shows the snapshot of the spatial profile of R(x)
and A of a typical chimera state obtained from the solutions of the
self-consistency equation. The region of coherence in which the
oscillators are phase-locked is determined by the condition R =
|A], while the region of incoherence is characterized by R < |A|.
The results from direct numerical simulation of Eq. (1) agree with
those from the self-consistency equation, as shown in Figs. 1(b-d) for
the phase profile ¢(x), the phase-velocity profile v(x), and the order
parameter modulus R(x) together with A of the system, respectively.
We see that the chimera state possesses a kind of spatial symmetry
that reflects the coupling pattern of the oscillators. As we begin to
remove the links randomly by increasing the value of p from zero, the
spatial symmetry is broken, causing certain chimera state to lose its
stability. For example, Figs. 1(e) and (f-h) show, for p = 0.8, the
corresponding results from the self-consistency approach and direct
numerical solutions, respectively. We observe the disappearance of
the phase-locked region due to the relatively high value of the
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Figure 1| Snapshot of the system state in the space. The link removal probabilities are p = 0 for (a-d) (left column) and p = 0.8 for (e~h) (right column).
(a) R(x) (black solid) obtained from the self-consistency equation (4), where the value of A is indicated (red). (b), (c) Spatial distributions of the phase
variable ¢(x) and the phase velocity v(x) obtained from direct numerical integration of Eq. (1), respectively. (d) The corresponding order parameters
calculated directly from Eq. (2), where a fixed time step dt = 0.025 is used, the initial condition is chosen (somewhat arbitrarily) to be ¢(x) =
6rexp(—0.76 x°), and ris a random number chosen uniformly from the interval [—0.5, 0.5]. (e~h) The respective results for p = 0.8. The parameter A in
the kernel function G(x) is set to be 0.995. Other parameters are N = 256 and o« = 1.39.

removal probability, signifying destruction of the chimera state. In
fact, for large values of p, the self-consistency equation for many
configurations of the system yields divergent results, indicating the
absence of any chimera state. For any p > 0, the occurrence of
chimera state becomes a statistical phenomenon, which can be
meaningfully characterized by the probability for chimera state to
occur, denoted by F(p), as a function of the removal probability p.

To determine, for any coupling configuration under a fixed
value of the removal probability p, whether a chimera state has
occurred, we develop the following criterion. First, we define e, =
|min[v(x)]|/e, where v(x) is the phase velocity of the oscillator at x,
which can be obtained numerically from Eq. (1). Next, we say that a
chimera state arises if there are more than one but less than N oscil-
lators, each being coherent with its 2d neighbors (d from the left and
d from the right). The set of 2d + 1 oscillators is regarded to be
coherent if the difference in the phase velocities of each and every
pair of the 2d + 1 oscillators is constantly less than e,. For any
numerically obtained dynamical evolution of the system, we monitor
coherence of the oscillators for the final 1000 time steps. A chimera
state is deemed to have occurred only if the relevant oscillators
remain coherent for all these time steps. This procedure is also
applicable to solutions from the self-consistency Eq. (4). In particu-
lar, a chimera state is considered to have occurred if there are 2d + 1
< N oscillators that satisfy the criterion R > |A].

Note that, our numerical criterion to differentiate chimera states is
to regard any subset of oscillators as coherent if the difference in the
phase velocities of each and every pair of oscillators is constantly less
than a small threshold. For chimera state with more than one cluster,
this criterion is still applicable because it identifies any subset of
coherent oscillators and separates them from the incoherent oscilla-
tors. We have observed that, for random removal of links, the chi-
mera state typically contains a single coherent region. Chimera states
with multiple clusters of coherent oscillators tend to occur when links

are removed in a deterministic fashion. We have tested that our
criterion works in all these cases.

Using our criterion for the emergence of chimera states, we cal-
culate, for a systematically increasing set of values of p, the frequency
F(p) of chimera state from a large number N of random realizations
of the network configuration. Figure 2 shows the results for Ny =
1000 and two (somewhat arbitrary) values of the parameter ¢ used in
the criterion. As anticipated, we observe that F(p) decreases from
unity as p is increased from zero. However, for relatively large system
size, the probability for chimera state to emerge is still quite large
(e.g., greater than 0.8) even when the removal probability p exceeds
an appreciable value (e.g., 0.2), indicating that chimera states are
robust against random perturbations to the network structure. Due
to the statistical nature in the calculation of F(p) and the need to
choose empirical parameters to detect chimera states, the numer-
ically obtained F(p) curve has a large spread. Nonetheless, the theor-
etical prediction (open black circles) lies near the middle of the
numerical spread, suggesting the validity of our results.

Scaling behaviors. To uncover the possible scaling behaviors in F(p),
we focus on the two regimes: one for small values of p in which F(p)
begins to decrease from unity, and another for relatively large value
of p where F(p) approaches zero. Figures 3(al) and 3(a2) show the
theoretically obtained F(p) curves for two different network sizes. In
each case, we identify two critical values, p; and p.,, where F(p) starts
to decrease from unity as p is increased through p, and F(p)
approaches zero as p — p.,. For p > p, empirically we have

1—Foc(p—pa)’, (5)

as can be seen from Figs. 3(b1) and 3(b2), where ¥ > 0 is the algebraic
scaling exponent. Similarly, for p < p., and p — p.,, we have

Foc(pa—p)” (6)
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Figure 2 | Probability F of chimera states. Theoretically and numerically determined probability F, or the fraction of network configurations

permitting chimera states, as a function of the removal probability p. In both approaches, 1000 random network configurations for each fixed value of p
are used, where open black circles stand for the result from the self-consistency equation, and red squares and blue triangles indicate the numerical results
for ¢ = 4 and & = 14, respectively. The parameters d used to detect the chimera state for different system sizes Nare (a) d = 4 for N= 64, (b) d = 8for N=

128, (¢) d = 12 for N =192, and (d) d = 16 for N = 256.

as shown in Figs. 3(cl) and 3(c2), where ¢ is the scaling exponent.
The scaling relation (6) can be interpreted, as follows. As p is
decreased through p,,, sufficient links among nodes are formed so
that chimera state begins to emerge, albeit with low probability. The
manner by which the probability of generating chimera state
increases is statistically described by the approximately algebraic
scaling relation (6).

The behaviors of F(p) as revealed by Figs. 2 and 3 are robust with
respect to the system size. To show this, we plot in Fig. 4(a) the
theoretically obtained F(p) curves for a number of values of the
system size N. There is spread among these curves, but it can be
significantly reduced by suitable rescaling. For example, we can
identify a specific value of p, say p,, for which the values of F are
approximately equal for different system sizes. From Fig. 4(a), we
have F(p,) = 0.36. If we rescale p according to py as p’ = p/p,, the
resulting F(p') curves exhibit much smaller spread, as shown in
Fig. 4(b).

Spatiotemporal patterns of chimera states. The spatiotemporal
behaviors of the oscillator system under random perturbations to
the network structure can be assessed by direct numerical
integration of the original system Eq. (1). Theoretical insights into
the patterns can be obtained by resorting to the continuum limit N—
o to reduce the system to one described by PDE***°. For the PDE
approach, the state of the system is characterized by a probability
density function f(x, ¢, t) that satisfies the continuity equation

of

—+—(fV) (7)

and can be expressed in terms of Fourier series as

flxp,t)= { Zh”xt mq’—l—cc}} (8)

where “c.c.” stands for the complex conjugate of the previous term,
and the nth coefficient is a function, h(x, t) raised to the nth power.
The state of the system can then be described by the function h(x, £).
Taking into account random perturbations to the links, we obtain the
time evolution function of h(x; t) associated with the order
parameter Z; of the oscillator at x; (see Methods) as

is . L . _
ah(j; ) = —iwh(x;,t) + 3 [ZFe” — Zie " h (xi,t)],
E
Lo ©
= F C,]G (.Xj,t).

j=

Figures 5(al-el) show, for five values of p, the spatiotemporal
behavior of R(x;, t), the module of the order parameter Z; obtained
by solving Eq. (9). The corresponding results obtained from direct
simulation of Eq. (1) are shown in Figs. 5(a2-e2) for comparison. We
observe that, for p = 0, the spatiotemporal pattern is a kind of
breathing chimera state. As p is increased from zero, the period of
breathing becomes longer and the value of R(x;, t) is reduced. From
the scaling behavior of F(p) (e.g., Fig. 4), we see that chimera state is
not probable for p > 0.4. However, Figs. 5(d1,d2,el,e2) reveal that
even in this regime there are pronounced spatiotemporal patterns in
the system, similar to the breathing chimera state for p = 0.

In addition to the order parameter Z, the complex parameter
h(x,t)=re" in the PDE approach can also be used to characterize
the state of any individual oscillator, where r is a measure of the
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Figure 3 | Scaling behaviors of the probability of chimera states. (al), (a2) The probability of chimera states estimated theoretically for two system
sizes, N = 256 and 512, respectively. The critical points p,; and p,, for the two systems are indicated by the arrows. The algebraic scaling behaviors of Fin
the close vicinities of the two points are show in (b1), (b2) and (c1), (c2) on a logarithmic scale, respectively.

sharpness of the probability distribution f(x, ¢, t). In particular, r = 0
corresponds to a uniform distribution, while r = 1 signifies the Dirac
delta distribution d(¢ — ). The value ¥ gives the phase of h(x, t) at
the maximum of f(x, ¢, t). The continuity equation (7) implies that
the impact of the oscillators at other spatial locations, as described by
the phase-velocity function v, may shift the distribution f{x, ¢, t). The
trajectories of h(t) in its own complex plane for some representative
oscillators are shown in Fig. 6 for the situations where the system
exhibits a breathing chimera state (left-hand side for p = 0) and the
system is not in any chimera state (right-hand side for p = 0.4). For

the two top panels, the oscillator is selected from a region of high
coherence, where the trajectory of h(f) moves about the unit circle in
the complex plane. For the two bottom panels, the oscillator is from a
subset among which the coherence is much weaker. We see that the
corresponding trajectories are somewhat random. These results sug-
gest that, for a nonlocally-coupled array of identical oscillators, the
self-organized mode characterized by the coexistence of spatially
high-coherent and weak-coherent domains, as well as temporally
breathing behavior stand out as a general type of spatiotemporal
pattern, with or without random structural perturbations. The
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chimera state is effectively a particular case of the spatiotemporal
breathing pattern where the oscillators in the high-coherent domain
happen to be synchronized or phase-locked.

Discussion

Motivated by the growing recent interest in chimera state in non-
locally coupled network of identical oscillators, we address the
fundamental issue of robustness of chimera state against random
structural perturbations to the network. Using direct numerical
simulation and a self-consistency equation, we find that chimera
state can persist in a probabilistic sense: the probability of the occur-
rence of chimera state can be finite even when a large fraction of the
links in the networks are removed. The probability to observe chi-
mera state exhibits critical behaviors with the variation in the link-
removal probability.

Utilizing direct numerical computation and an analytic approach
based on the PDE model derived in the continuum limit, we study the
spatiotemporal pattern of the system of non-locally coupled identical
oscillators. Especially, by varying the link-removal probability, we
uncover a rather striking phenomenon: regardless of whether chi-
mera state can emerge, the system exhibits a general breathing pat-
tern in its spatiotemporal evolution. Associated with such a pattern,
the oscillators in the system can be qualitatively classified into two

(a1)6%0 (ch)

-+ 300

0
(a2)600

+ 300

groups: one group of high coherence and another of weak coherence.
The particular breathing pattern stipulates that this division holds
even for large link-removal probability where chimera state is ruled
out. The implication is that the breathing pattern in the spatiotem-
poral evolution of the system is general and robust, and chimera state
is a particular phenomenon where the oscillators in the highly coher-
ent group happen to be phase synchronized.

Our work thus provides deeper insights into the dynamical origin
of chimera state, a phenomenon of continuous interest and subject to
intense recent investigation®>*.

Methods

Self-consistency approach. By introducing a complex order parameter depending on
space and time as given in Eq. (2), we can rewrite the dynamical equations of the
oscillator system as Eq. (3), i.e.,

00

— =0—Q—Rsin(0—0O+a).

o (10)

The motion of the oscillator at x can be solved, using the fact that the oscillators with
R(x) > |w — Q| asymptotically approach a stable fixed point 0* defined implicitly by

0—Q=R(x)sin[0" —O(x) +0], (11)
where the oscillators are phase-locked at frequency Q in the original frame. To
calculate the contribution from the phase-locked oscillators to the order parameter,
we note that any fixed point of Eq. (10) must satisfy

Figure 5 | Spatiotemporal evolution of the order parameter. Contour plots representing spatiotemporal evolution of R(x, t) for five values of the link
removal probability p (from left to right: 0, 0.1, 0.2, 0.4, and 0.6). The five patterns in the top row are obtained by the PDE in the continuum limit
(the PDE approach), and the corresponding patterns in the bottom row are from direct numerical calculations of the original dynamical system.
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Figure 6 | Temporal behavior of h(t) for individual oscillators. Panels (al) and (b1) correspond to a representative oscillator selected from the
region of high coherence, while panels (a2) and (b2) are for an oscillator from the region of weak coherence. For (al), (a2) and (b1), (b2), the values of p

are p = 0 and 0.4, respectively.

cos(0" —O+a)= i@’ (12)

sin(0" — @ +o) = w%fl and R

where the stable fixed point of Eq. (10) corresponds to the plus sign in Eq. (12). Hence,
we have

sz((ofi) +i((qu)j 13)

implying that the contribution to the order parameter from the phase-locked oscillators is

expli(0" —O@+a)]=

2,
Py . o ) R—(0—0) +i(0—Q)
— c,-jG(x,v—xj)e'o/ =e " — c,jG(x,-—xj)e@/ xy ] s
N~ N = R; (14)

where the summation is taken over the portion of the domain where R; = | — Q.
Hereafter, for convenience, we use subscripts to denote the spatial position of the
oscillators, e.g., R; = R(x)), 0; = 0(x)), ¢; = ¢(x;), @; = O(x;), and so on.

The oscillators with R < | — Q| drift about the phase circle monotonically, and
they distribute themselves according to the following invariant probability density

p(0):
(0—Q) —Rr?

p(0)= 21l —Q—Rsin(0—O+a)|’

(15)

where the probability of finding an oscillator near a given value of 6 is inversely

proportional to the velocity there so as to make the density invariant. The normal-
us

p(0)do=1.

ization constant is chosen such that /
J =T
To calculate the contribution to the order parameter from the drifting oscillators,

U
we replace e by its statistical average / élip (6;)d0;. Using this approximation in
-7

Eq. (15), we have
T .
/ & p(0)d0= Lo~ [0)797 Jiw—ay fRZ] . (16)
The contribution from the drifting oscillators to the order parameter is then given by

an T

~ Csz(xf*Xj)f ¢p(0;)d0; =
N £ e
: (7)
oy o ©—Q—/(0—Q) —R
ie W;c,jG(x,-ij)e i X % ,

where the summation is over the complementary part of the domain defined by R; <
| — Q|. Note that the summation is exactly the same as that found earlier in Eq. (14)
for the contribution from the phase-locked oscillators, with the only difference being
the domains of summation. Since

sz(u)fﬂ)eri((qu)=i[w797\/ (wfﬂ)szz], (18)

insofar as we choose the branch corresponding to the “+i” square root of a negative
number, the two contributions agree with each other. They can then be combined into
one, which is the self-consistency equation derived in’:

0—Q—/(0—Q)*—R?

7
R;

(19)

N
. " 21 .
R;e® =je 2= E c,ﬂjG(xiij)e‘@/ X

N
j=1

Letting /= g —oand A = @ — Q, we can rewrite the self-consistency equation Eq.
(19) as

R;

o 2T o AR
R;e' ":e‘ﬂFZcijG(xi—xj)e‘ X — (20)
=1

The self-consistency equation can be used to solve three unknowns: R(x), ®(x) and
the real number A, which can be accomplished by using an iterative scheme in the
functional space. In general, there are two equations [corresponding to the real and
imaginary parts of Eq. (20)], and a third equation can be obtained by making the
system close. Since Eq. (20) is invariant under the rotation ®(x) — ©(x) + @, we can
specify the value of ®(x) at any point x. A natural choice is to set @(0) = 0. The
resulting three equations can then be solved numerically in a self-consistent manner
to yield the three quantities of interest.

PDE approach in the continuum limit. In the continuum limit N — o, the
probability density function f(x, ¢, t) satisfies the continuity equation

%+%(fv)=0, (21)

where

Vi=o— %g G (xi —x;) X ,[’ind(ﬁj sin(r]ﬁ,- 7¢j+ac)f<xj,¢j,t). (22)

Here the subscripts denote the spatial positions of the oscillators. The order
parameter is
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Z;=Rie® = %EN: G (xi —x;) X ’ nd(/)jei"’ff (xj,qﬁ‘,t). (23)
= -
Equation (22) can be rewritten as
vi=o— _Z ¢iG(xi—x) /‘;d‘/’f (i(hi—y+2) _Ziefi(d»,w,ﬂ)f(xj’%’t)
_w_,[ i) 2 qu xi—x;) / dgje” “"f J,) (24)
—igita %icijG(x[ﬂcj) x /n nd(ﬁ,‘ei"’ff(xj,(/)‘,t)}
= _
Substituting Eq. (23) into Eq. (24), we obtain
vi=m— % [Z;‘ei(‘/"“)—Z,ve’w"*“)]. (25)

Following the treatment in Refs. 29, 30, we express f(x, ¢, ) in terms of the Fourier
series:

(26)

Flet) = { i

h(x,t)"e" +c.c. ] }
under the assumption that different harmonics are determined by the corresponding
powers of the same function h(x, t). Inserting Eq. (25) and Eq. (26) into the continuity
equation (21), we have

(’}f 1 = n— Ul

5=2—Z [nh T— ¢’+cc] (27)
i(fv L i: inh"é" +c. c]px{w— L [Z*ei(‘”“) —Zefi(‘t’*“)]
o 2r | & 2i

(28)
= 1 . )
{ Z (e 4c.c) } {75[Z*ex((/’+%)+zefl((l’+1):|}‘

Comparing the coefficient of the term e/, we obtain

oh * it —inp2

— = —iwh+ = [Z —Ze 1. (29)

ot
Substituting Eq. (26) into Eq. (23), we obtain the order parameter as
7 Ly G " d o - [ 4 e ind
=N (vi—2) | ddex Z: '+ R TNED

The integration of term e is equal to 0 in the interval [—7, ] when m is an integer
except 0. Equation (30) then becomes

2
Zi="—
N &

j=1

ciG(x;—x;) " (x]-,t). (31)

Equations (29) and (31) can be combined to yield the following equation in terms of
h(x, t) and the order parameter:

% = —iwh(x;,t)+ % [ * ia‘*Ziefh‘hz(x,ﬂ,t)],
N (32)
Zi= n c,-jG(x,-—x]-)h* (x]-,t).
N £

From Eq. (32), we can obtain the time evolution of the order parameter.
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