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Data-based detection and quantification of causation in complex, nonlinear dynamical systems is of paramount importance to
science, engineering, and beyond. Inspired by the widely used methodology in recent years, the cross-map-based techniques,
we develop a general framework to advance towards a comprehensive understanding of dynamical causal mechanisms, which
is consistent with the natural interpretation of causality. In particular, instead of measuring the smoothness of the cross-map
as conventionally implemented, we define causation through measuring the scaling law for the continuity of the investigated
dynamical system directly. The uncovered scaling law enables accurate, reliable, and efficient detection of causation and
assessment of its strength in general complex dynamical systems, outperforming those existing representative methods. The
continuity scaling-based framework is rigorously established and demonstrated using datasets from model complex systems
and the real world.

1. Introduction

Identifying and ascertaining causal relations are a problem
of paramount importance to science and engineering with
broad applications [1–3]. For example, accurate detection
of causation is the key to identifying the origin of diseases
in precision medicine [4] and is important to fields such as
psychiatry [5]. Traditionally, associational concepts are often
misinterpreted as causation [6, 7], while causal analysis in
fact goes one step further beyond association in a sense that,
instead of using static conditions, causation is induced under
changing conditions [8]. The principle of Granger causality

formalizes a paradigmatic framework [9–11], quantifying
causality in terms of prediction improvements, but, because
of its linear, multivariate, and statistical regression nature,
the various derived methods require extensive data [12].
Entropy-based methods [13–20] face a similar difficulty.
Another issue with the Granger causality is the fundamental
requirement of separability of the underlying dynamical var-
iables, which usually cannot be met in the real world sys-
tems. To overcome these difficulties, the cross-map-based
techniques, paradigms tailored to dynamical systems, have
been developed and have gained widespread attention in
the past decade [21–36].
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The cross-map is originated from nonlinear time series
analysis [37–42]. A brief understanding of such a map is as
follows. Consider two subsystems: X and Y . In the recon-
structed phase space of X, if for any state vector at a time a
set of neighboring vectors can be found, the set of the
cross-mapped vectors, which are the partners with equal
time of X, could be available in Y . The cross-map underlying
the reconstructed spaces can be written as Yt =ΦðXtÞ
(where Xt and Yt are delay coordinates with sufficiently
large dimensions) for the case of Y unidirectionally causing
X while, mathematically, its inverse map does not exist
[34]. In practice, using the prior knowledge on the true cau-
sality in toy models or/and the assumption on the expanding
property of Φ (representing by its Jacobian’s singular value
larger than one in the topological causality framework
[24]), scientists developed many practically useful tech-
niques based on the cross-map for causality detection. For
instance, the “activity” method, originally designed to mea-
sure the continuity of the inverse of the cross-map, com-
pares the divergence of the cross-mapped vectors to the
state vector in X with the divergence of the independently-
selected neighboring vectors to the same state vector [22,
23]. The topological causality measures the divergence rate
of the cross-mapped vectors from the state vectors in Y
[24], and the convergent cross-mapping (CCM), increasing
the length of time series, compares the true state vector Y
with the average of the cross-mapped vectors, as the estima-
tion of Y [21, 25–36]. Then, the change of the divergence or
the accuracy of the estimation is statistically evaluated for
determining the causation from Y to X. Inversely, the causa-
tion from X to Y can be evaluated in an analogous manner.
The above evaluations [21, 24, 26–36] can be understood at a
conceptional and qualitative level and perform well in many
demonstrations.

In this work, striving for a comprehensive understanding
of causal mechanisms and inspired by the cross-map-based
techniques, we develop a mathematically rigorous frame-
work for detecting causality in nonlinear dynamical systems,
turning eyes towards investigating the original systems from
their cross-maps, which is also logically consistent with the
natural interpretation of causality as functional dependences
[2, 8]. The skills used in cross-map-based methods are
assimilated in our framework, while we directly study the
original dynamical systems or the reconstructed systems
instead of the cross-maps. The foundation of our framework
is the scaling law for the changing relation of ε with δ arising
from the continuity for the investigated system, henceforth
the term “continuity scaling”. In addition to providing a the-
ory, we demonstrate, using synthetic and real-world data,
that our continuity scaling framework is accurate, computa-
tionally efficient, widely applicable, showing advantages over
the existing methods.

2. Continuity Scaling Framework

To explain the mathematical idea behind the development of
our framework, we use the following class of discrete time
dynamical systems: xt+1 = fðxt , ytÞ and yt+1 = gðxt , ytÞ for t
∈ℕ, where the state variables fxtgt∈ℕ, fytgt∈ℕ evolve in

the compact manifolds M, N of dimension DM, DN under
sufficiently smooth map f, g, respectively. We adopt the
common recognition of causality in dynamical systems.

Definition 1. If the dependence of fðx, yÞ on y is nontrivial (i.
e., a directional coupling exists), a variation in y results in a
change in the value of fðx, yÞ for any given x, which, accord-
ing to the natural interpretation of causality [2, 43], admits
that y : fytgt∈ℕ has a direct causal effect on x : fxtgt∈ℕ,
denoted by y↪x, as shown in the upper panel of Figure 1(a).

We now interpret the causal relationship stipulated by
the continuity of a function. Let fxgð·Þ ≜ fðxg, ·Þ for a given

point xg ∈M. For any yP ∈N , we denote its image under
the given function by xI ≜ fxgðyPÞ. Applying the logic state-

ment of a continuous function to fxgð·Þ, we have that, for

any neighborhood OðxI, εÞ centered at xI and of radius ε >
0, there exists a neighborhood OðyP, δÞ centered at yP of
radius δ > 0, such that fxgðOðyP, δÞÞ ⊂ OðxI, εÞ. The neigh-

borhood and its radius are defined by

O p, hð Þ = s ∈ S distSj s, pð Þ < hf g, p ∈ S , h > 0, ð1Þ

where distSð·, · Þ represents an appropriate metric describ-
ing the distance between two given points in a specified
manifold S with S =M or N . The meaning of this mathe-
matical statement is that, if we have a neighborhood of the
resulting variable xI first, we can then find a neighborhood
for the causal variable yP to satisfy the above mapping and
inclusion relation. This operation of “first-ε-then-δ” pro-
vides a rigorous base for the principle that the information
about the resulting variable can be used to estimate the
information of the causal variable and therefore to ascertain
causation, as indicated by the long arrow in the middle
panels of Figure 1(a). Note that, the existence of the δ > 0
neighborhood is always guaranteed for a continuous map
fxg . In fact, due to the compactness of the manifold N , a

largest value of δ exists. However, if yP does not have an
explicit causal effect on the variable xI , i.e., fxg is independent
of yP, the existence of δ is still assured but it is independent
of the value of ε, as shown in the upper panel of Figure 1(b).
This means that merely determining the existence of a δ-
neighborhood is not enough for inferring causation - it is
necessary to vary ε systematically and to examine the scaling
relation between δ and ε. In the following we discuss a num-
ber of scenarios.

Case I. Dynamical variables fðxt , ytÞgt∈ℕ are fully measur-
able. For any given constant εx > 0, the set fxτ ∈Mjτ ∈ Itx
ðεxÞg can be used to approximate the neighborhood Oðxt+1,
εxÞ, where the time index set is

Itx εxð Þ ≜ τ ∈ℕ distMj xt+1, xτð Þ < εxf g: ð2Þ

The radius δty = δtyðεxÞ of the neighborhood Oðyt , δtyÞ
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satisfying fxg=xt ðOðyt , δtyÞÞ ⊂ Oðxt+1, εxÞ can be estimated as

δty εxð Þ ≜ # �Itx εxð Þ
h in o−1

〠
τ∈�Itx εxð Þ

distN yt , yτ−1ð Þ, ð3Þ

where #½·� is the cardinality of the given set and the index set
is �ItxðεxÞ ≜ fτ ∈ ItxðεxÞjdistMðxt , xτ−1Þ < εxg.

The strict mathematical steps for estimating δty are given
in Section II of Supplementary Information (SI). We empha-
size that here correspondence between xt+1 and yt is investi-
gated, differing from the cross-map-based methods, with
one-step time difference naturally arising. This consider-
ation yields a key condition [DD], which is only need when
considering the original iteration/flow and whose detailed
description and universality are demonstrated in SI. We
reveal a linear scaling law between hδtyit∈ℕ and ln εx , as
shown in the lower panels of Figure 1, whose slope sy↪x is
an indicator of the correspondent relation between ε and δ
and hence the causal relation y↪x. Here, h·it∈ℕ denotes
the average over time. In particular, a larger slope value
implies a stronger causation in the direction from y to x as
represented by the map functions fðxt , ytÞ (Figure 1(a)),
while a near zero slope indicates null causation in this direc-
tion (Figure 1(b)). Likewise, possible causation in the
reversed direction, x↪y, as represented by the function gð
xt , ytÞ, can be assessed analogously. And the unidirectional
case when fðx, yÞ = f0ðxÞ independent of y is uniformly con-
sidered in Case II. We summarize the consideration below

and an argument for the generic existence of the scaling
law is provided in Section II of SI.

Theorem 2. For dynamical variables fðxt , ytÞgt∈ℕ measured
directly from the dynamical systems, if the slope sy↪x defined
above is zero, no causation exists from y to x. Otherwise, a
directional coupling can be confirmed from y to x and the
slope sy↪x increases monotonically with the coupling strength.

Case II. The dynamical variables fðxt , ytÞgt∈ℕ are not
directly accessible but measurable time series futgt∈ℕ and
fvtgt∈ℕ are available, where ut = uðxtÞ and vt = vðytÞ with
u: M⟶ℝru and v: N ⟶ℝrv being smooth observational
functions. To assess causation from y to x, we assume one-
dimensional observational time series (for simplicity): ru =
rv = 1, and use the classical delay-coordinate embedding
method [37–42, 44] to reconstruct the phase space: ut =
ðut , ut+τu ,⋯,ut+ðdu−1ÞτuÞ

T and vt = ðvt , vt+τv ,⋯,vt+ðdv−1ÞτvÞ
T ,

where τu,v is the delay time and du,v > 2ðDM +DN Þ is the
embedding dimension that can be determined using some
standard criteria [45]. As illustrated in Figure 2, the dynam-
ical evolution of the reconstructed states fðut , vtÞgt∈ℕ is gov-
erned by

ut+1 =~f ut , vtð Þ, vt+1 = ~g ut , vtð Þ: ð4Þ

The map functions can be calculated as ~fðu, vÞ ≜ Eu ∘
½ f, g�ðΠ1 ∘ E−1

u ðuÞ,Π2 ∘ E−1
v ðvÞÞ, ~gðu, vÞ ≜ Ev ∘ ½ f, g�ðΠ1 ∘ E−1

u
ðuÞ,Π2 ∘ E−1

v ðvÞÞ, where the embedding (diffeomorphism)

(b)(a)

Figure 1: Illustration of causal relation between two sets of dynamical variables. (a) Existence of causation from y in N to x in M, where
each correspondence from xt+1 to yt is one-to-one, represented by the line or the arrow, respectively, in the upper and the middle panels. In
this case, a change in ln εx results in a direct change in δy (the lower panel) with εx and δy denoting the neighborhood size of the resulting
variable x and of the causal variable y, respectively. (b) Absence of causation from y to x, where every point on each trajectory, fytg, in N

could be the correspondent point from xt+1 in M (the upper panel) and thus every point in N belongs to the largest δ-neighborhood of yt
(the middle panel). In this case, δy does not depend on εx (the lower panel). Also refer to the supplemental animation for illustration.
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Es: M ×N ⟶ ~L s ⊂ℝds with ~L s ≜ EsðM ×N Þ, s = u or v, is
given by

Eu x, yð Þ ≜ uð xð Þ, u ∘Π1 ∘ f, g½ �τu x, yð Þ, u ∘Π1 ∘

  f, g½ �2τu x, yð Þ,⋯, u ∘Π1 ∘ f, g½ � du−1ð Þτu x, yð ÞÞ,
Ev x, yð Þ ≜ vð yð Þ, v ∘Π2 ∘ f, g½ �τv x, yð Þ, v ∘Π2 ∘

  f, g½ �2τv x, yð Þ,⋯, v ∘Π2 ∘ f, g½ � dv−1ð Þτv x, yð ÞÞ,

ð5Þ

with the inverse function E−1
s defined on ~L s, ½ f, g�k represent-

ing the kth iteration of the map and the projection mappings
as Π1ðx, yÞ = x and Π2ðx, yÞ = y. Case II has now been
reduced to Case I, and our continuity scaling framework
can be used to ascertain the causation from v to u based on
the measured time series with the indices ItuðεuÞ, δtvðεuÞ and
sv↪u (equations (2) and (3)).

Does the causation from v to u imply causation from y to
x? The answer is affirmative, which can be argued, as follows.
If the original map function f is independent of y: fðx, yÞ =
f0ðxÞ, there is no causation from y to x. In this case, the
embedding Euðx, yÞ becomes independent of y, degenerating
into the form of Euðx, yÞ = Eu0ðxÞ, a diffeomorphism fromM

to ~Lu0 = Eu0ðMÞ only. As a result, equation (4) becomes
ut+1 =~f0ðutÞ and vt+1 = ~gðut , vtÞ, where ~f0ðuÞ = Eu0 ∘ f ∘ E−1

u0ð
uÞ and the resulting mapping ~f0 is independent of v. The
independence can be validated by computing the slope
sv↪u associated with the scaling relation between hδtvit∈ℕ
and ln εu, where a zero slope indicates null causation from
v to u and hence null causation from y to x. Conversely, a
finite slope signifies causation between the variables. Thus,
any type of causal relation (unidirectional or bi-directional)
detected between the reconstructed state variables
fðut , vtÞgt∈ℕ implies the same type of causal relation
between the internal but inaccessible variables x and y of
the original system.

Case III. The structure of the internal variables is completely
unknown. Given the observational functions ~u, ~v: M ×N

⟶ℝ with ~ut = ~uðxt , ytÞ and ~vt = ~vðxt , ytÞ, we first recon-
struct the state space: ~ut = ð~ut , ~ut+τ,⋯,~ut+ðd−1ÞτÞT and ~vt =
ð~vt , ~vt+τ,⋯,~vt+ðd−1ÞτÞT . To detect and quantify causation
from ~v to ~u (or vice versa), we carry out a continuity scaling
analysis with the modified indices It~uðε~uÞ, δt~vðε~uÞ and s~v↪~u.
Differing from Case II, here, due to the lack of knowledge
about the correspondence structure between the internal
and observational variables, a causal relation for the latter
does not definitely imply the same for the former.

Case IV. Continuous-time dynamical systems possessing a
sufficiently smooth flow fSt ; t ∈ℝg on a compact manifold
H : dStðu0Þ/dt = χðStðu0ÞÞ, where χ is the vector field. Let
fût=ωn+νgn∈ℤ and fv̂t=ωn+νgn∈ℤ be two respective time series
from the smooth observational functions û, v̂:H ⟶ℝ with
ût = ûðStÞ and v̂t = v̂ðStÞ, where 1/ω is the sampling rate and
ν is the time shift. Defining Ξ ≜ Sω: H ⟶H and Ŝn ≜
Sωn+νðu0Þ, we obtain a discrete-time system as Ŝn+1 = ΞðŜnÞ
with the observational functions as ûn = ûðŜnÞ and v̂n = v̂ð
ŜnÞ, reducing the case to Case III and rendering applicable
our continuity scaling analysis to unveil and quantify the
causal relation between fût=ωn+νgn∈ℤ and fv̂t=ωn+νgn∈ℤ. If
the domains of û and v̂ have their own restrictions on some
particular subspaces, e.g., û: Hu ⟶ℝ and v̂: H v ⟶ℝ
with H =Hu ⊕H v, the case is further reduced to Case II,
so the detected causal relation between the observational
variables imply causation between the internal variables
belonging to their respective subspaces.

3. Demonstrations: From Complex Dynamical
Models to Real-World Networks

To demonstrate the efficacy of our continuity scaling frame-
work and its superior performance, we have carried out
extensive numerical tests with a large number of synthetic
and empirical datasets, including those from gene regulatory
networks as well as those of air pollution and hospital
admission. The practical steps of the continuity scaling
framework together with the significance test procedures
are described in Methods. We present three representative
examples here, while leaving others of significance to SI.

The first example is an ecological model of two unidirec-
tionally interacting species: x1,t+1 = x1,tð3:8 − 3:8x1,t − μ12
x2,tÞ and x2,t+1 = x2,tð3:7 − 3:7x2,t − μ21x1,tÞ. With time series
fðx1,t , x2,tÞgt∈ℕ obtained from different values of the cou-
pling parameters, our continuity scaling framework yields
correct results of different degree of unidirectional causa-
tion, as shown in Figures 3(a) and 3(b). In all cases, there
exists a reasonable range of ln εx2 (neither too small nor
too large) from which the slope sx1↪x2

of the linear scaling
can be extracted. The statistical significance of the estimated
slope values and consequently the strength of causation can
be assessed with the standard p-value test [46] (Methods and
SI). An ecological model with bidirectional coupling has also
been tested (see Section III of SI). Figures 3(c) and 3(d)
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Figure 2: Illustration of system dynamics before and after
embedding for Case II. In the left panel, the arrows describe how
the original systems ðf, gÞ is equivalent to the system ð~f, ~gÞ after
embedding. In the right panel, causation between the internal
variables x and y can be ascertained by detecting the causation
between the variables u and v reconstructed from measured time
series.
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show the results from ecological networks of five mutually
interacting species on a ring and on a tree structure, respec-
tively, where the color-coded slope values reflect accurately
the interaction patterns in both cases.

The second example is the coupled Lorenz system: _xi =
σiðyi − xiÞ + μijxj, _yi = xiðρi − ziÞ − yi, _zi = xiyi − βizi with i,
j = 1, 2 and i=j. We use time series fy1,t , y2,tgt=nω for
detecting different configurations of causation (see Section
III of SI). Figure 4 presents the overall result, where the
color-coded estimated values of the slope from the continu-
ity scaling are shown for different combinations of the sam-
pling rate 1/ω and coupling strength. Even with relatively
low sampling rate, our continuity scaling framework can
successfully detect and quantify the strength of causation.
Note that the accuracy does not vary monotonously with
the sampling rate, indicating the potential of our framework

to ascertain and quantify causation even with rare data.
Moreover, the proposed index can accurately reflect the true
causal strength (denoting by the coupling parameter), which
is also evidenced by numerical tests in Sections III and IV of
SI. Robustness tests against different noise perturbations are
provided in Section III of SI demonstrating the practical
usefulness of our framework. Additionally, analogous to
the first example, we present in SI several examples on cau-
sation detection in the coupled Lorenz system with nonlin-
ear couplings, and the Rössler-Lorenz system, etc., which
further demonstrates the generic efficacy of our framework.

In addition, we present study on several real-world data-
set, which brings new insights to the evolutionary mecha-
nism of underlying systems. We study gene expression
data from DREAM4 in silico Network Challenge [47, 48],
whose intrinsic gene regulatory networks (GRNs) are known
for verification (Figure 5(a) and Figure S17 of SI). Applying
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Figure 3: Ascertaining and characterizing causation in various ecological systems of interacting species. (a, b) Unidirectional causation of
two coupled species. In (a), the values of the slope sx1↪x2

associated with the causal relation x1↪x2 are approximately 0.0004, 0.1167, 0.1203,
and 0.1238 for four different values of the coupling parameter μ21. (b) Near zero slope values sx2↪x1

for x2↪x1, indicating its
nonexistence. (c, d) Inferred causal network of five species whose interacting structure is, respectively, that of a ring: xi↪xi+1ðmod 5Þ
(i = 1,⋯, 5) and of a tree: xj↪xj+1,j+3 (j = 1, 2), where the estimated slope values are color-coded. Results of a statistical analysis of the
accuracy and reliability of the determined causal interactions are presented in SI Section III. Time series of length 5000 are used in all
these simulations. The embedding parameters are τs = 1 and ds = 3 with s = x1,⋯, x5.
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our framework to these data, we ascertain the causations
between each pair of genes by using the continuity scaling
framework. The corresponding ROC curves for five different
networks as well as their AUROC values are shown in
Figure 5(b), which indicates a high detection accuracy in
dealing with real-world data.

We then test the causal relationship in a marine ecosys-
tem consisting of Pacific sardine landings, northern anchovy
landings and sea surface temperature (SST). We reveal new
findings to support the competing relationship hypothesis
stated in [49] which cannot be detected by CCM [25]. As
pointed out in Figure 6, while common influence from SST
to both species is verified with both methods, our continuity
scaling additionally illuminates notable influence from
anchovy to sardine with its reverse direction being less sig-
nificant. While competing relationship plays an important

role in ecosystems, continuity scaling can reveal more essen-
tial interaction mechanism. See Section III.E of SI for more
details.

Moreover, we study the transmission mechanism of the
recent COVID-19 pandemic. Particularly, we analyze the
daily new cases of COVID-19 of representative countries
for two stages: day 1 (January 22 nd 2020) to day 100 (April
30 th 2020) and day 101 (May 1 st 2020) to day 391 (February
15 th 2021). Our continuity scaling is pairwisely applied to
reconstruct the transmission causal network. As shown in
Figure 7, China shows a significant effect on a few countries
at the first stage and this effect disappears at the second
stage. However, other countries show a different situation
with China, whose external effect lasts as shown in Section
III.E and Figure S18 of SI. Our results accord with that
China holds stringent epidemic control strategies with
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Figure 4: Detecting causation in the unidirectionally coupled Lorenz system. The results are for different values of μ21 (μ12 = 0) and
sampling rate 1/ω. (a, b) Color-coded values of the slopes sy1↪y2

and sy2↪y1
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embedding parameters are ds = 7, τs ≈ 0:05 with ωjτs (s = y1 or y2). See Section III and Table S9 of SI for all the other parameters
including the time series lengths used in the simulations.
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sporadic domestic infections, as evidenced by official daily
briefings, demonstrating the potential of continuity scaling
in detecting causal networks for ongoing complex systems.
Additionally, We emphasize that day 100 is a suitable
critical day to distinguish the early severe stage and the late
well-under-control stage of the pandemic (see Figure S18(a)
of SI), while slight change of the critical day will not nullify
our result. As shown in Figure S18(b) of SI, when the
critical day varies from day 94 to day 106, no significant
change (less than 5%) of the detected causal links occurs at
both stages, and the number of countries under influence of
China at Stage 2 remains zero. See more details in Section
III.E of SI.

Additional real world examples including air pollutants
and hospital admission record from Hong Kong are also
shown in Section III of SI.

4. Discussion

To summarize, we have developed a novel framework for
data-based detection and quantification of causation in com-
plex dynamical systems. On the basis of the widely used
cross-map-based techniques, our framework enjoys a rigor-
ous foundation, focusing on the continuity scaling law of
the concerned system directly instead of only investigating
the continuity of its cross-map. Therefore, our framework

is consistent with the standard interpretation of causality,
and works even in the typical cases where several existing
typical methods do not perform that well or even they fail
(see the comparison results in Section IV of SI). In addition,
the mathematical reasoning leading to the core of our frame-
work, the continuity scaling, helps resolve the long-standing
issue associated with techniques directly using cross-map
that information about the resulting variables is required to
project the dynamical behavior of the causal variables,
whereas several works in the literature [50], which directly
studied the continuity or the smoothness of the cross-map,
likely yielded confused detected results on causal directions.

Computational complexity. The computational com-
plexity of the algorithm is OðT2NεÞ, which is relatively
smaller than the CCM method, whose computational com-
plexity is OðT2 log TÞ.

Limitations and future works. Nevertheless, there are
still some spaces for improving the presently proposed
framework. First, currently, only bivariate detection algo-
rithm is designed, so generalization to multivariate network
inference requires further considerations, as analogous to
those works presented in Refs. [51–53]. Second, the causal
time delay has not been taken into account in the current
framework, so it also could be further investigated, similar
to the work reported in Ref. [33]. Also, more advanced algo-
rithms, such as the one developed in Ref. [54], could be

Sardine

SST

Anchovy Sardine

SST

Anchovy

Continuity scaling CCM

Figure 6: The comparison of causal network structure detected by continuity scaling and CCM among sea surface temperature, sardine, and
anchovy.

Figure 7: The causal effect from China to other countries of the COVID-19 pandemic detected by continuity scaling between stages 1 and 2.
Here, stage 1 is from January 22 nd 2020 to April 30 th 2020, and stage 2 is from May 1 st 2020 to February 15 th 2021. For those detected
causal links between all countries, refer to Section III.E and Figure S18 of SI. These maps are for illustration only.
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integrated into this framework for detecting those temporal
causal structures. Definitely, we will settle these questions
in our future work.

Detecting causality in complex dynamical systems has
broad applications not only in science and engineering, but
also in many aspects of the modern society, demanding
accurate, efficient, and rigorously justified and hence trust-
worthy methodologies. Our present work provides a vehicle
along this feat and indeed resolves the puzzles arising in the
use of those influential methods.

5. Methods

Continuity scaling framework: a detailed description of algo-
rithms. Let futgt=1,2,⋯,T and fvtgt=1,2,⋯,T be two experimen-
tally measured time series of internal variables fðxt , ytÞgt∈ℕ.
Typically, if the dynamical variables fðxt , ytÞgt∈ℕ are accessi-
ble, fðut , vtÞg reduce to one-dimensional coordinate of the
internal system. The key computational steps of our conti-
nuity scaling framework are described, as follows.

We reconstruct the phase space using the classical
method of delay coordinate embedding [37] with the opti-
mal embedding dimension dz and time lag τz determined
by the methods in Refs. [55, 56] (i.e., the false nearest neigh-
bors and the delayed mutual information, respectively):

Lz ≜ z tð Þ = zt , zt+τz ,⋯, zt+ dz−1ð Þτz
� �

t = 1,⋯, T0j
n o

, ð6Þ

where z = u, v, T0 = min fT − ðdz − 1Þτzjz = u, vg, and
Euclidean distance is used for both Lu,v .

We present the steps for causation detection using the
case of v↪u as an example.

We calculate the respective diameters for Lu,v as

Dz ≜max distLz
z tð Þ, z τð Þð Þ 1 ≤ t, τ ≤ T0j� �

, ð7Þ

where z = u, v, and z = u, v. We set up a group of numbers,
fεu,jgj=1,⋯,Nε

, as εu,1 = e ·Du, εu,Nε
=Du, with the other ele-

ments satisfying

ln εu,j − ln εu,1
j − 1 =

ln εu,Nε
− ln εu,1

Nε − 1 , ð8Þ

for j = 2,⋯,Nε − 1. Then, in light of (2) with (3), we have

δtv εuð Þ = # Itu εuð Þ� �−1 〠
τ∈Itu εuð Þ

distLv
v tð Þ, v τ − 1ð Þð Þ, ð9Þ

with

Itu εuð Þ = τ ∈ℕ distLu

�� u t + 1ð Þ, u τð Þð Þ < εu, t + 1 − τj j > E
� �

ð10Þ

where numerically, εu alters its value successively from the
set fεu,jgj=1,⋯,Nε

, and the threshold E is a positive number

chosen to avoid the situation where the nearest neighboring
points are induced by the consecutive time order only.

As defined, hδtvðεuÞit∈ℕ is the average of δtvðεuÞ over all
possible time t. We use a finite number of pairs
fðhδtvðεu,jÞit∈ℕT0

, ln εu,jÞg
j=1,⋯,Nε

to approximate the scaling

relation between hδtvðεuÞit∈ℕ and ln εu, where ℕT0
= f1,

2,⋯,T0g. Theoretically, a larger value of Nε and a smaller
value of e will result in a more accurate approximation of
the scaling relation. In practice, the accuracy is determined
by the length of the observational time series, the sampling
duration, and different types of noise perturbations. In
numerical simulations, we set e = 0:001 and Nε = 33. In addi-
tion, a too large or a too small value of εu can induce insuffi-
cient data to restore the neighborhood and/or the entire
manifold. We thus set δtvðεu,jÞ = δtvðεu,j+1Þ as a practical tech-
nique as the number of points is limited practically in a small
neighborhood. As a result, near zero slope values would
appear on both sides of the scaling curve hδtvðεuÞit∈ℕ-ln εu,
as demonstrated in Figure 3 and in SI. In such a case, to esti-
mate the slope of the scaling relation, we take the following
approach.

Define a group of numbers by

Sj ≜
δtv εu,j+1
	 
� �

t∈ℕT0
− δtv εu,j

	 
� �
t∈ℕT0

ln εu,j+1 − ln εu,j
, ð11Þ

where j = 1,⋯,Nε − 1, sort them in a descending order,
from which we determine the ½Nε + 1/2� largest numbers,
collect their subscripts - j’s together as an index set Ĵ , and
set H ≜ fj, j + 1jj ∈ Ĵg. Applying the least squares method
to the linear regression model:

δtv εuð Þ� �
t∈ℕ = S · ln εu + b ð12Þ

with the dataset fðhδtvðεu,jÞit∈ℕT0
, ln εu,jÞg

j∈H
, we get the

optimal values ðŜ, b̂Þ for the parameters ðS, bÞ in (12) and
finally obtain the slope of the scaling relation as sv↪u ≜ Ŝ.

For the other causal direction from u to v, these steps are
equally applicable to estimating the slope su↪v .

To assess the statistical significance of the numerically
determined causation, we devise the following surrogate test
using the case of v causing u as an illustrative example.

Divide the time series fuðtÞgt∈ℕT0
into NG consecutive

segments of equal length (except for the last segment - the
shortest segment). Randomly shuffle these segments and
then regroup them into a surrogate sequence fûðtÞgt∈ℕT0

.

Applying such a random permutation method to fvðtÞgt∈ℕT0
generates another surrogate sequence fv̂ðtÞgt∈ℕT0

. Carrying

out the slope computation yields sv̂↪û. The procedure can
be repeated for a sufficient number of times, say Q, which
consequently yields a group of estimated slopes, denoted as
fsqv̂↪ûgq=0,1⋯,Q, where s0v̂↪û is set as sv↪u obtained from the

original time series. For all the estimated slopes, we calculate
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their mean bμv↪u and the standard deviation bσv↪u. The p
-value for sv↪u is calculated as

psv↪u
≜ 1 − normcdf sv↪u − bμv↪ubσv↪u


 �
, ð13Þ

where normcdf ½·� is the cumulative Gaussian distribution
function. The principle of statistical hypothesis testing guar-
antees the existence of causation from v to u if psv↪u

< 0:05.
In simulations, we set the number of segments to be

NG = 25 and the number of times for random permutations
to be Q ≥ 20.

Additional Points

Code Availability. The source codes for our CS framework are
available at https://github.com/bianzhiyu/ContinuityScaling.
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I. MATHEMATICAL NOTATIONS

Listed in Tab. S1 are mathematical notations used in this work.

TABLE S1. Illustrations on notations.

Notations Illustrations

xt, yt Internal states of the original dynamical system at time t evolving on

some compact manifold.

u(·), v(·) Observational functions, either depending on only partial Cartesian

coordinates of the state variables x and y, respectively, or containing

mixed information from the state variables.

ut, vt Values of the observational functions from the internal states of the

original dynamical system at time t.

ut, vt Reconstructed state vectors at time t consisting of the delayed coor-

dinates based on the observational time series {ut}t∈N and {vt}t∈N,

respectively.

εu Radius of the neighborhood on the manifold where the variable u is

assumed to represent an effect.

δtv(εu) Radius of the pull-back neighborhood on the manifold where v is sup-

posed to be a causal variable, which corresponds to the neighborhood

of radius εu. Here, time t indicates the point at which the estimation

of the radius is applicable.

〈δtv(εu)〉t∈N The average of δtv(εu) over all possible time t for a given number εu.

sv↪→u Estimated slope of the regression line obtained from the scaling rela-

tion between 〈δtv(εu)〉t and ln εu.

II. ESTIMATING RADIUS OF NEIGHBORHOOD AND SCALING LAW

We rewrite the considered original dynamical system here as

xt+1 = f(xt,yt), yt+1 = g(xt,yt), t ∈ N, (S2.1)

where {xt}t∈N and {yt}t∈N evolve on compact manifoldsM, N of dimension DM, DN re-
spectively and [f , g] are sufficiently smooth map functions. The internal states {xt,yt}t∈N
of system (S2.1) are either completely or partially accessible and {ut, vt}t∈N are the two
observational time series. Let ut = u(xt) and vt = v(yt). With the embedding dimensions
du,v and delay time τu,v properly chosen according to some empirical criteria (See Meth-
ods in the main text), we reconstruct the state vectors as zt = (zt, zt+τz , . . . , zt+(dz−1)τz),
where z = u,v and z = u, v. The dynamical evolution of the reconstructed state vectors
is governed by

ut+1 = f̃(ut,vt), vt+1 = g̃(ut,vt), t ∈ N, (S2.2)

where ut ∈ Lu and vt ∈ Lv. When the observational functions so defined are identity
functions, the explicit intrinsic states of the original system are recovered: u = x and
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v = y. The mathematical reasoning below is thus not only suitable for the more general
Case II defined in the main text, but also for Case I through a direct substitution of u
and v by x and y, respectively.

For a given ug ∈ Lu, we set f̃ug(·) , f̃(ug, ·). For any given εu > 0, we examine
the preimage of the neighborhood O(ut+1, εu). Denoting this pull-back neighborhood
as f̃−1

ut (O(ut+1, εu)), we have that f̃−1
ut (O(ut+1, εu)) is a neighborhood of vt because of

the relation f̃ut(vt) = ut+1 from system (S2.2). Of particular interest is whether and
how f̃−1

ut (O(ut+1, εu)) contracts to the point vt as εu tends to zero, as the existence of
some scaling of this correspondent continuity is not only indicative but also a quantitative
characterization of causation from vt to ut at time t.

To obtain the continuity scaling, for given εu, we analytically define the “radius” of
the neighborhood f̃−1

ut (O(ut+1, εu)) as

δtv(εu) ,
{

Vol
[
f̃−1
ut (O(ut+1, εu))

]}−1 ∫
f̃−1
ut (O(ut+1,εu))

distLv(v,vt) dv, (S2.3)

where Vol[·] represents the volume of a given set. In applications, one relies on the
reconstructed measured time series {ut,vt}t∈N to estimate the quantity δtv(εu). The most
accurate estimation obtained in an ideal situation is

δtv(εu) ,
{

#Î(εu)
}−1 ∑

ι∈Î(εu)

distLv(vt,vι), (S2.4)

where

Î(εu) ,
{
ι ∈ N

∣∣∣ vι ∈ f̃−1
ut (O(ut+1, εu))

}
(S2.5)

and #[·] is the cardinality of a given set. However, because of lack of sufficient information
about f̃ , in general such an estimation cannot be obtained directly. The ideal index set
Î(εu) defined in Eq. (S2.5) thus is usually not available.

To overcome this difficulty, we make use of the following

sup
v∈Lv

distLu(f̃u′(v), f̃u′′(v))→ 0, as distLu(u′,u′′)→ 0, (S2.6)

which is the result of uniform continuity of f̃ on the compact manifold Lu×Lv. Another
fact is

distLu(ut+1, f̃ut(vι)) = distLu(f̃ut(vt), f̃ut(vι)). (S2.7)

The triangle inequality gives∣∣∣distLu(f̃ut(vι), f̃ut(vt))− distLu(f̃ut(vt), f̃uι(vι))
∣∣∣ 6 distLu(f̃ut(vι), f̃uι(vι)) (S2.8)

which, from Eq. (S2.6), approaches zero as distLu(ut,uι) tends to zero. Applying
Eqs. (S2.6) and (S2.7) as well as the inequality (S2.8), we get{

vι ∈ Lv
∣∣ vι ∈ f̃−1

ut (O(ut+1, εu))
}

=
{
vι ∈ Lv

∣∣ distLu(ut+1, f̃ut(vι)) < εu

}
=
{
vι ∈ Lv

∣∣ distLu(f̃ut(vt), f̃ut(vι)) < εu

}
≈
{
vι ∈ Lv

∣∣ distLu(f̃ut(vt), f̃uι(vι)) < εu

}
=
{
vι ∈ Lv

∣∣ distLu(ut+1,uι+1) < εu
}
,

(S2.9)
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provided that distLu(ut,uι) is sufficiently small. Letting ι = τ − 1 yields a new setting
for the radius estimation as

δtv(εu) ,
{

#[Ī tu(εu)]
}−1

∑
τ∈Ītu(εu)

distLv(vt,vτ−1), (S2.10)

where

Ī tu(εu) ,
{
τ ∈ N

∣∣∣ distLu(ut,uτ−1) < εu, distLu(ut+1,uτ ) < εu

}
(S2.11)

has been used to approximate the set Î tu(εu) specified in Eq. (S2.5). This indicates that
the scaling relation at time t between δtv(εu) and ln εu, which describes the changes of
the set f̃−1

ut

(
O(ut+1, εu) ∩ {uτ ; distLu(ut,uτ−1) < εu}

)
with the contraction of the set

O(ut+1, εu) ∩ {uτ ; distLu(ut,uτ−1) < εu}, measures the instantaneous causation from v
to u at time t. When u and v are substituted, respectively, by x and y, the quantity set
in (S2.10) reduces to the quantity in Eq. (2) in the main text.

If the following condition is assumed,

distLu(ut+1,uτ )→ 0 implies distLu(ut,uτ−1)→ 0, [DD]

the index set Ī tu(εu) as defined in (S2.11) can be further simplified as:

I tu(εu) ,
{
τ ∈ N

∣∣∣ distLu(ut+1,uτ ) < εu

}
. (S2.12)

Consequently, the estimation of the radius of the neighborhood becomes

δtv(εu) ,
{

#[I tu(εu)]
}−1

∑
τ∈Itu(εu)

distLv(vt,vτ−1). (S2.13)

Since the scaling relation at time t between δtv(εu) and ln εu is calculated for the situ-
ation where εu is close to 0, estimation (S2.13) with the simplified index set (S2.12) is
applicable to the case where Condition [DD] is fulfilled. In applications, Condition [DD]
is often warranted when delayed coordinates are used to reconstruct the states from the
observational time series. The examples and simulations shown in Fig. S1 demonstrate
the universality of Condition [DD].

The scaling relation, computed by either (S2.10) or (S2.13), represents a characteriza-
tion at one time instant. To quantify the causation from v to u on the whole manifolds,
we use the slope of the regression line obtained from the scaling relation between the
averaged 〈δtv(εu)〉t∈N and ln εu.

The scaling relation between 〈δtv(εu)〉t∈N and ln εu can also be analytically demon-
strated as the following reasonings, which represents consistency with the numerical sim-
ulations. Here we consider the reconstructed system (S2.2). For any given εu > 0, any
u∗ ∈ O(ut+1, εu), and v∗ close to vt, the Taylor expansion of f̃ to the first order gives

ut+1 − u∗ = f̃(ut,vt)− u∗

≈ f̃(ut,v
∗)− u∗ +

∂f̃

∂v
(ut,v

∗)(vt − v∗). (S2.14)
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FIG. S1. Two examples demonstrating the universality of Condition [DD]: dist(zt+1, zτ )→0

implies dist(zt, zτ−1)→0. The notation dist(·, ·) stands for the Euclidean distance in

the underlying space and z represents the relevant variable. For a given εz > 0,

Condition [DD] is verified through estimating the average value defined by Dt
z(εz) ,

(#[J tz(εz)])−1
∑

τ∈Jtz(εz) dist(zt, zτ−1), where the index set satisfies J tz(εz) , {τ ∈
N | dist(zt+1, zτ ) < εz, |t+1−τ | > E}, and E is a positive threshold to avoid the situation where

the nearest neighboring points are induced only by the consecutive time order. In numerical sim-

ulations, εz alters its value successively from the set {εz,j}j=1,··· ,Nε , where εz,1 = eDz, εz,Nε = Dz

and (ln εz,j − ln εz,1)/(j− 1) = (ln εz,Nε − ln εz,1)/(Nε− 1), j = 2, . . . , Nε− 1. Parameter values

are Nε = 33, e = 0.001, and Dz, analogous to Eq. (2) in the main text, is the largest diameter

estimated for the underlying manifold. (a) The two-species, unidirectionally coupled ecological

system (S3.1) with (r1, r2) = (3.8, 3.7) and the coupling coefficients µ21 = 0.05 and µ12 = 0. The

system generates time series of 5400 points, where the first 400 points are abandoned to get rid of

the transient behavior. The observational functions are ui(xi) = xi and the embedding param-

eters are di = 3 and τi = 1 so that ui,t = (ui,t, ui,t+1, ui,t+2) for i = 1, 2, z = u1,2, and E = 0.

(b) Unidirectionally coupled Lorenz system (S3.3) with (σ1, ρ1, β1) = (10.010, 27.944, 2.667),

(σ2, ρ2, β2) = (9.990, 28.056, 2.667), µ21 = 4, and µ12 = 0. Using the Euler scheme with step

size 0.001 produces time series of duration 150, in which the data points from time instant 51 to

150 are used in the analysis. The observational functions are ui(xi, yi, zi) = yi. The embedding

parameters are di = 7 and τi = 2ω, where i = 1, 2, ω = 0.016 is the sampling duration, z = u1,2,

and E = 8. It is clear that Condition [DD] holds from the trends in (a) and (b).
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Therefore,

ln ‖ut+1 − u∗‖ ≈ ln

∥∥∥∥∥f̃(ut,v
∗)− u∗ +

∂f̃

∂v
(ut,v

∗)(vt − v∗)

∥∥∥∥∥
=

1

2
ln

∥∥∥∥∥f̃(ut,v
∗)− u∗ +

∂f̃

∂v
(ut,v

∗)(vt − v∗)

∥∥∥∥∥
2

=
1

2
ln

{∥∥∥f̃(ut,v
∗)− u∗

∥∥∥2

+ 2
[
f̃(ut,v

∗)− u∗
]

·

[
∂f̃

∂v
(ut,v

∗)(vt − v∗)

]
+

∥∥∥∥∥∂f̃∂v (ut,v
∗)(vt − v∗)

∥∥∥∥∥
2


≈ 1

2
ln

1 +

∥∥∥f̃(ut,v
∗)− u∗

∥∥∥∥∥∥∂f̃∂v (ut,v
∗)(vt − v∗)

∥∥∥ γt
1
2

∥∥∥f̃(ut,v∗)− u∗
∥∥∥2


+

1

2
ln

(∥∥∥f̃(ut,v
∗)− u∗

∥∥∥2
)

≈

∥∥∥f̃(ut,v
∗)− u∗

∥∥∥ · ∥∥∥∂f̃∂v (ut,v
∗)(vt − v∗)

∥∥∥ · γt∥∥∥f̃(ut,v∗)− u∗
∥∥∥2

+
1

2
ln

(∥∥∥f̃(ut,v
∗)− u∗

∥∥∥2
)

≈

∥∥∥f̃(ut,v
∗)− u∗

∥∥∥ · ∥∥∥∂f̃∂v (ut,v
∗)
∥∥∥ · γt∥∥∥f̃(ut,v∗)− u∗

∥∥∥2 ‖vt − v∗‖

+ ln
∥∥∥f̃(ut,v

∗)− u∗
∥∥∥ , (S2.15)

where γt denotes the cosine of the angle between vectors f̃(ut,v
∗)−u∗ and ∂f̃

∂v
(ut,v

∗)(vt−
v∗). By replacing ‖ut+1 − u∗‖ with εu and ‖vt − v∗‖ with δtv, we obtain

ln(εu) ≈ K̃t
v↪→uδ

t
v + B̃t

v↪→u (S2.16)

with the parameters abbreviated as K̃t
v↪→u and B̃t

v↪→u. Because εu is independent of time
t, reformulating this equation (subtract B̃t

v↪→u and then divided by K̃t
v↪→u at both sides

of (S2.16)) and taking average over time admit

〈δtv〉t ≈ 〈Kt
v↪→u〉t ln(εu) + 〈Bt

v↪→u〉t, (S2.17)

which clearly demonstrates the linear scaling relation. Notice that this scaling relation
can be further rewritten by substituting the average over time by the average over space
based on ergodic theory, i.e.,∫

δv dµLu×Lv ≈
∫
Kv↪→u dµLu×Lv ln(εu) +

∫
Bv↪→u dµLu×Lv , (S2.18)

where µLu×Lv represents the Sinai-Ruelle-Bowen (SRB) measure [1] on Lu × Lv.
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III. ADDITIONAL EXAMPLES DEMONSTRATING THE POWER OF CON-

TINUITY SCALING FRAMEWORK IN ASCERTAINING AND QUANTIFY-

ING CAUSATION

A. Unidirectionally and bidirectionally coupled systems

1. Coupled ecological models

The coupled map system is written as

xi,t+1 = xi,t

(
ri − rixi,t −

∑
j 6=i

µijxj,t

)
, (S3.1)

where i = 1, . . . , NV , t ∈ N. We consider two-species models here: NV = 2 with
(r1, r2) = (3.8, 3.7) and choose different pairs of the coupling parameters {µij}. Time
series of 5400 points are generated with the first 400 points abandoned to get rid of
the transient behavior. The observational functions are ui(xi) = xi and the embedding
parameters are di = 3 and τi = 1 for i = 1, 2, and E = 0. In order to detect the causal
relation x1 ↪→ x2, we calculate the scaling relation between 〈δtuj(εui)〉t∈N and ln εui for
i, j = 1, 2 with i 6= j, where ui is the reconstructed state space vector from the obser-
vational time series {ui(xi,t)}t∈N. In each case, the p-value is calculated with 25 random
surrogates.

Case a: For the unidirectionally coupled two-species model, the scaling relations for
different pairs of the coupling parameters have been shown in Figs. 3(a)-3(b) in the main
text. The calculated slopes together with their p-values are listed in Tab. S2. The
results validate our continuity scaling framework. Moreover, statistical fluctuation tests
are performed with parameters µ12 = 0, µ21 = 0.1 and 400 uniformly generated grid initial
values from [0, 1]× [0, 1]. The CS results are presented in Fig. S2, showing high statistical
robustness.

TABLE S2. Estimated slopes of the regression lines of the scaling relations and their p-values

for the unidirectionally coupled ecological models.

No. su1↪→u2 su2↪→u1 µ21 µ12 p-value

(su1↪→u2)

p-value

(su2↪→u1)

1 0.0004 0.0005 0.00 0.00 0.2680 0.1641

2 0.1167 -0.0002 0.05 0.00 0.0000 0.8385

3 0.1203 0.0006 0.10 0.00 0.0000 0.7673

4 0.1238 0.0005 0.15 0.00 0.0000 0.3864

Case b: For the bidirectionally coupled two-species model, the scaling relations for
different parameter combinations are shown in Fig. S3. The slopes with their p-values are
listed in Tab. S3, also providing validation to the continuity scaling framework. Statistical
fluctuation tests showing high robustness of the CS framework are shown in Fig. S4.
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FIG. S2. Statistical fluctuation tests with the unidirectionally coupled two-species models (S3.1).

Results for µ12 = 0 and µ21 = 0.1 and 400 grid initial values from [0, 1] × [0, 1] are shown. (a)

The scaling relation for detecting the causation x1 ↪→ x2 with mean CS index value 0.1240 and

standard deviation 0.0015. (b) The scaling relation for detecting the causation x2 ↪→ x1 with

mean CS index value 0.0006 and standard deviation 0.0006.

Case c: For the unidirectionally coupled two-species model subject to noise:

xi,t+1 = xi,t

(
ri − rixi,t −

∑
j 6=i

µijxj,t

)
+ Ui,t, i = 1, 2, (S3.2)

where {U1,t, U2,t}N are i.i.d. random variables uniformly distributed on [−σ, σ] and µ21 =
0.1, the representative scaling relations are shown in Fig. S5 and the estimated slopes
with their p-values are listed in Tab. S4, demonstrating good robustness of our framework
against noise.

TABLE S3. Estimated slopes of the regression lines associated with the scaling relations in

Fig. S3 and their p-values for the bidirectionally coupled two-species model.

No. su1↪→u2 su2↪→u1 µ21 µ12 p-value

(su1↪→u2)

p-value

(su2↪→u1)

1 0.0007 0.0929 0.00 0.05 0.1555 0.0000

2 0.1092 0.0986 0.05 0.05 0.0000 0.0000

3 0.1183 0.0976 0.10 0.05 0.0000 0.0000

4 0.1217 0.0937 0.15 0.05 0.0000 0.0000

2. Coupled Lorenz systems

The system equations are

ẋi,t = σi(yi,t − xi,t) +
∑

j 6=i µijxj,t,

ẏi,t = xi,t(ρi − zi,t)− yi,t,
żi,t = xi,tyi,t − βizi,t,

(S3.3)
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FIG. S3. Detecting causation in the bidirectionally coupled two-species models (S3.1). Results

for fixed µ12 = 0.05 and a number of µ21 values are shown. (a) The scaling relation between

〈δtu1
(εu2)〉t and ln εu2 for detecting the causation x1 ↪→ x2. (b) The scaling relation between

〈δtu2
(εu1)〉t and ln εu1 for detecting the causation x2 ↪→ x1.
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FIG. S4. Statistical fluctuation tests with the bidirectionally coupled two-species models (S3.1).

Results for µ12 = 0.05 and µ21 = 0.05 and 400 grid initial values from [0, 1] × [0, 1] are shown.

(a) The scaling relation for detecting the causation x1 ↪→ x2 with mean CS index value 0.1123

and standard deviation 0.0016. (b) The scaling relation for detecting the causation x2 ↪→ x1

with mean CS index value 0.0975 and standard deviation 0.0014.

where i = 1, . . . , NV , t ∈ R. Here we set NV = 2, (σ1, ρ1, β1) = (10.010, 27.944, 2.667),
and (σ2, ρ2, β2) = (9.990, 28.056, 2.667). Different combinations of the coupling param-
eters are used to validate the continuity scaling framework for this continuous-time
dynamical system. Euler scheme is used with step size 0.001 to produce time series of
duration 150 and the data points from time instant 51 to 150 are used in the analysis.
The observational functions are ui(xi, yi, zi) = yi. The embedding parameters are di = 7
and τi = 2ω, where i = 1, 2. Sampling duration ω = 0.016, and E = 8. Each p-value is
calculated with 20 random surrogates.
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FIG. S5. Detecting causation in the unidirectionally coupled two-species system (S3.2) under

noise perturbation. The fixed parameters are µ12 = 0 and µ21 = 0.1. The noise amplitude σ

varies as indicated inside each panel. (a) The scaling relation between 〈δtu1
(εu2)〉t and ln εu2 for

detecting the causal relation x1 ↪→ x2 . (b) The scaling relation between 〈δtu2
(εu1)〉t and ln εu1

nullifying the causal relation x2 ↪→ x1.

TABLE S4. Estimated slopes of the regression lines associated with the scaling relations in

Fig. S5 and their p-values for the unidirectionally coupled two-species model for different values

of the noise amplitude.

No. su1↪→u2 su2↪→u1 σ p-value

(su1↪→u2)

p-value

(su2↪→u1)

1 0.1203 0.0006 0.000 0.0000 0.1637

2 0.1203 0.0011 0.002 0.0000 0.9373

3 0.1149 -0.0000 0.004 0.0000 0.5167

4 0.1131 -0.0001 0.006 0.0000 0.2990

Case d: For the unidirectionally coupled Lorenz system, the continuity scaling rela-
tions are shown in Fig. S6 with the slopes and their p-values listed in Tab. S5. Moreover,
statistical fluctuation tests are performed with parameters µ12 = 0, µ21 = 3 and 400
randomly generated initial values from [−3, 3] × [−3, 3] × [−3, 3]. The CS results are
presented in Fig. S7, showing high statistical robustness.

Case e: For the bidirectionally coupled Lorenz system, the scaling relations are shown
in Fig. S8 with the slopes and their p-values listed in Tab. S6. Statistical fluctuation tests
showing high robustness of the CS framework are shown in Fig. S9.
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Case f: The unidirectionally coupled Lorenz system with noise perturbation is given
by

dxi,t =
(
σi(yi,t − xi,t) +

∑
j 6=i µijxj,t

)
dt+ σ · dWi,x,t,

dyi,t = (xi,t(ρi − zi,t)− yi,t)dt+ σ · dWi,y,t,
dzi,t = (xi,tyi,t − βizi,t)dt+ σ · dWi,z,t,

(S3.4)

where i = 1, 2, t ∈ R and each Wi = {(Wi,x,t,Wi,y,t,Wi,z,t)}t is a standard Wiener process
of dimension three, W1,2 are mutually independent, µ21 = 4, and σ is the noise amplitude.
The scaling relations are shown in Fig. S10 with the slopes and their p-values listed in
Tab. S7. Results demonstrate good robustness against noise for our continuity scaling
framework.
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FIG. S6. Causal detection in the unidirectionally coupled Lorenz system (S3.3). Various values

of µ21 are indicated inside the left panel. (a) Scaling relation between 〈δtu1
(εu2)〉t and ln εu2 for

identifying the causal relation x1 ↪→ x2. (b) Scaling relation between 〈δtu2
(εu1)〉t and ln εu1 for

demonstrating nonexistence of the causal relation x2 ↪→ x1.

TABLE S5. Slopes of the regression lines associated with the scaling relations in Fig. S6 and

their p-values for the unidirectionally coupled Lorenz system.

No. su1↪→u2 su2↪→u1 µ21 µ12 p-value

(su1↪→u2)

p-value

(su2↪→u1)

1 -0.0620 0.1363 0.00 0.00 0.7247 0.2292

2 2.4251 -0.2906 2.00 0.00 0.0000 0.9237

3 3.5427 0.0279 4.00 0.00 0.0000 0.6066

4 4.3265 0.2967 6.00 0.00 0.0000 0.1916
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FIG. S7. Statistical fluctuation tests with the unidirectionally coupled Lorenz system (S3.3).

Results for µ12 = 0 and µ21 = 3 and 400 randomly generated initial values from [−3, 3]×[−3, 3]×
[−3, 3] are shown. (a) The scaling relation for detecting the causation x1 ↪→ x2 with mean CS

index value 3.1231 and standard deviation 0.2538. (b) The scaling relation for detecting the

causation x2 ↪→ x1 with mean CS index value 0.0575 and standard deviation 0.2004.
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FIG. S8. Detecting causation in the bidirectionally coupled Lorenz system (S3.3) for fixed

µ12 = 2. Various values of µ21 are indicated inside the left panel. (a) Scaling relation between

〈δtu1
(εu2)〉t and ln εu2 for ascertaining the causal relation x1 ↪→ x2. (b) Scaling relation between

〈δtu2
(εu1)〉t and ln εu1 for confirming the causal relation x2 ↪→ x1.
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FIG. S9. Statistical fluctuation tests with the bidirectionally coupled Lorenz system (S3.3).

Results for µ12 = 2 and µ21 = 2 and 400 randomly generated initial values from [−3, 3] ×
[−3, 3] × [−3, 3] are shown. (a) The scaling relation for detecting the causation x1 ↪→ x2 with

mean CS index value 2.5565 and standard deviation 0.4125. (b) The scaling relation for detecting

the causation x2 ↪→ x1 with mean CS index value 2.5861 and standard deviation 0.4073.

TABLE S6. Slopes of the regression lines associated with the scaling relations in Fig. S8 and

their p-values for the bidirectionally coupled Lorenz system.

No. su1↪→u2 su2↪→u1 µ21 µ12 p-value

(su1↪→u2)

p-value

(su2↪→u1)

1 0.0695 2.2773 0.00 2.00 0.3754 0.0001

2 1.2333 2.8261 1.00 2.00 0.0000 0.0000

3 2.8006 2.8561 2.00 2.00 0.0000 0.0000

4 2.7493 1.9162 3.00 2.00 0.0000 0.0002

TABLE S7. Slopes of the regression lines associated with the scaling relations in Fig. S10

and their p-values for the unidirectionally coupled Lorenz system under noise perturbation of

different amplitudes.

No. su1↪→u2 su2↪→u1 σ p-value

(su1↪→u2)

p-value

(su2↪→u1)

1 3.5427 0.0279 0.00 0.0000 0.6275

2 3.2192 -0.2594 0.08 0.0000 0.7441

3 3.4558 0.1312 0.16 0.0000 0.4412

4 3.1478 0.1133 0.24 0.0000 0.5063
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FIG. S10. Detecting causation in the unidirectionally coupled Lorenz system (S3.4) under noise

perturbations. The coupling parameter values are µ12 = 0 and µ21 = 4. The various values of

the noise amplitude σ are indicated inside each panel. (a) Scaling relation between 〈δtu1
(εu2)〉t

and ln εu2 for ascertaining the causal relation x1 ↪→ x2. (b) Scaling relation between 〈δtu2
(εu1)〉t

and ln εu1 demonstrating nonexistence of the causal relation x2 ↪→ x1.

3. Coupled Rössler-Lorenz systems

The system equations are

ẋ1,t = −α(y1,t + z1,t),
ẏ1,t = α(x1,t + 0.2y1,t),
ż1,t = α[0.2 + z1,t(x1,t − 5.7)],

ẋ2,t = σ(y2,t − z2,t) + µ21y1,t,
ẏ2,t = x2,t(ρ− z2,t)− y2,t,
ż2,t = x2,ty2,t − βz2,t,

(S3.5)

where α = 6, σ = 10.01, ρ = 28.028, and β = 2.664. There is unidirectional coupling
from the Rössler to the Lorenz system. Time series of duration 280 are generated using
the Euler scheme with the step size 0.001. The data points before t = 81 are disregarded
to eliminate transient behaviors. The observational functions are u1(x1, y1, z1) = x1 +
0.01y1 + 0.1 sin(z1) and u2(x2, y2, z2) = y2 − 0.01x2 + 0.1 cos(z2). Other parameters are:
sampling duration ω = 0.016, embedding dimensions d1 = 13 and d2 = 8, time delay
τ1 = 2ω and τ2 = 3ω, E = 10, and 20 random surrogates are used to calculate the p-value.
The scaling relations are displayed in Fig. S11 and the corresponding slopes together with
their p-values are listed in Tab. S8. All the results show our continuity scaling framework
is highly effective in detecting causation in nonlinear dynamical systems.

B. Effects of varying sampling duration

To assess the effects of sampling duration on causation detection in continuous-time dy-
namical systems, we take the unidirectionally coupled Lorenz system (S3.3) with NV = 2
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FIG. S11. Detecting causation in the unidirectionally coupled Rössler-Lorenz system (S3.5).

The value of the coupling parameter µ21 is varied systematically from {0, 1, 2, 3}, while the

parameter µ12 is set to be zero (unidirectional coupling from the Rössler to the Lorenz sys-

tem). (a) Scaling relation between 〈δtu1
(εu2)〉t and ln εu2 for ascertaining the causal relation

(x1, y1, z1) ↪→ (x2, y2, z2). (b) Scaling relation between 〈δtu2
(εu1)〉t and ln εu1 nullifying the

causal relation (x2, y2, z2) ↪→ (x1, y1, z1).

TABLE S8. Slopes of the regression lines associated with the scaling relations in Fig. S11 and

their p-values for the unidirectionally coupled Rössler-Lorenz system.

No. su1↪→u2 su2↪→u1 µ21 µ12 p-value

(su1↪→u2)

p-value

(su2↪→u1)

1 -0.1596 -0.3893 0.00 0.00 0.8617 0.9756

2 2.1836 0.1440 1.00 0.00 0.0000 0.2468

3 2.8633 -0.1323 2.00 0.00 0.0000 0.8563

4 3.4286 -0.0322 3.00 0.00 0.0000 0.7518

as an example. The simulation setting in terms of the system parameters, the observa-
tional functions, and the embedding dimension, is the same as that in section III.A.2.
We conduct 60 numerical runs: for µ21 = {0, 2, 4, 6} and {ωk}k=1,··· ,15. The delay time
τ = τ k, the threshold E = Ek, and the length of the time series L = 50 + T k are used
and shown in Tab. S9. The calculated slope values of the continuity scaling are shown in
Fig. 4, with more details listed in Tab. S9. Notice that even with relatively low sampling
rate, our continuity scaling framework can successfully detect and quantify the strength
of causation.

C. Additional examples with complex nonlinear coupling schemes

In addition to the linear coupling schemes as we discussed for the coupled Lorenz
system (S3.3), our continuity scaling framework is also effective for nonlinear couplings
as in the coupled ecological system (S3.1). To further investigate the universality of
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TABLE S9. Slopes of the regression lines associated with the continuity scaling for the unidi-

rectionally coupled Lorenz system with different sampling durations.

su1↪→u2 su2↪→u1

µ21 µ21 µ21 µ21 µ12 µ12 µ12 µ12

k 0 2 4 6 0 0 0 0 ωk τk Ek T k

1 0.200 2.349 4.519 4.375 0.234 0.205 0.041 0.275 0.004 0.048 20 60

2 0.067 3.115 4.930 4.578 0.131 0.308 0.144 0.030 0.005 0.050 20 75

3 -0.210 3.118 4.573 4.574 0.100 0.348 0.200 0.002 0.006 0.048 16 80

4 -0.209 3.966 4.164 4.751 -0.101 0.273 0.082 0.143 0.007 0.049 16 90

5 0.016 3.004 4.545 4.830 -0.172 0.009 0.169 0.189 0.008 0.048 16 100

6 -0.045 3.377 4.573 5.290 -0.073 -0.018 0.251 0.169 0.009 0.054 12 100

7 -0.073 3.139 4.305 5.004 -0.083 0.102 0.215 -0.011 0.010 0.050 12 100

8 0.028 3.467 4.624 5.366 -0.077 -0.005 0.034 0.165 0.011 0.055 12 100

9 -0.077 2.864 4.153 4.853 -0.108 -0.017 0.094 -0.035 0.012 0.048 8 100

10 -0.071 3.208 4.445 5.176 -0.213 0.282 0.171 0.077 0.013 0.052 8 100

11 0.073 2.727 3.761 4.457 -0.301 -0.002 0.138 0.056 0.014 0.042 8 100

12 -0.209 2.751 3.895 4.697 -0.032 -0.005 0.153 0.094 0.015 0.045 8 100

13 0.122 2.858 4.116 4.899 0.118 -0.285 0.306 0.089 0.016 0.048 8 100

14 -0.104 3.165 4.334 5.126 -0.039 0.036 0.260 0.319 0.017 0.051 8 100

15 0.093 3.143 4.535 5.331 0.200 0.020 0.172 0.223 0.018 0.054 8 100

continuity scaling in systems with more complex nonlinear coupling schemes, we consider
the following examples. For the first example, we use the unidirectionally coupled Lorenz
systems:

ẋ1,t = σ1(y1,t − x1,t),
ẏ1,t = x1,t(ρ1 − z1,t)− y1,t,
ż1,t = x1,ty1,t − β1z1,t,

ẋ2,t = σ2(y2,t − x2,t) + µ21Ω(x1,t, y1,t, z1,t),
ẏ2,t = x2,t(ρ2 − z2,t)− y2,t,
ż2,t = x2,ty2,t − β2z2,t

(S3.6)

with the nonlinear coupling function Ω(x, y, z) = x3/400 + 20 sin(0.1x). System parame-
ters are taken as: (σ1, ρ1, β1) = (10.010, 27.944, 2.667) and (σ2, ρ2, β2) = (9.990, 28.056, 2.667).
Euler scheme with time step 0.001 is used to generate the time series with a length of
150, and the points in the first time duration, 50, are discarded to eliminate the transient
states. We set the sampling duration as ω = 0.016, the embedding dimension and the
delay time as, respectively, 7ω and 2ω, and as e = 0.001, Nε = 33, and E = 8. The
observational functions are supposed to be ui(xi, yi, zi) = yi, i = 1, 2. We change the cou-
pling parameter µ21 in the set {0, 1, 2, 3} and keep µ12 = 0 (viz. unidirectional coupling).
There are 20 surrogates generated for calculating the corresponding p-values. As shown
in Fig. S12 and Tab. S10, the continuity scaling is still effective even with very complex
nonlinear couplings, further demonstrating the universality of our framework.

As another illustrative example with nonlinear coupling, we use the unidirectionally
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FIG. S12. Detecting causation in the unidirectionally nonlinearly coupled Lorenz system (S3.6).

The value of the coupling parameter µ21 is varied systematically from {0, 1, 2, 3}, while the pa-

rameter µ12 is set to be zero. (a) Scaling relation between 〈δtu1
(εu2)〉t and ln εu2 for ascertaining

the causal relation x1 ↪→ x2. (b) Scaling relation between 〈δtu2
(εu1)〉t and ln εu1 nullifying the

causal relation x2 ↪→ x1.

TABLE S10. Slopes of the regression lines associated with the scaling relations in Fig. S12 and

their p-values for the unidirectionally nonlinearly coupled Lorenz system.

No. su1↪→u2 su2↪→u1 µ21 µ12 p-value

(su1↪→u2)

p-value

(su2↪→u1)

1 -0.06196 0.13625 0 0 0.6560 0.1497

2 2.28164 0.08594 1 0 0.0000 0.4996

3 3.47241 0.24354 2 0 0.0000 0.4427

4 3.77883 0.38925 3 0 0.0000 0.3290

coupled discrete-time Hénon system:

x1,t+1 = 1− a1x
2
1,t + y1,t,

y1,t+1 = b1x1,t,

x2,t+1 = 1− a2x
2
2,t + y2,t + µ21Ω(x1,t, y1,t),

y2,t+1 = b2x2,t

(S3.7)

with the coupling function Ω(x, y) = 2
3
x2 − 1

5
sin(x). Time series of length 20400 are

generated with the first 400 points that are discarded to eliminate the transient states.
We set the sampling duration as ω = 4, change the coupling strength µ21 in the set
{0, 0.015, 0.030, 0.045} and keep µ12 = 0 (viz. unidirectional coupling). We set the system
parameters as [a1, b1] = [1.4, 0.2], [a2, b2] = [1.401, 0.201] and the observational functions
as u1(x1, y1) = x1 and u2(x2, y2) = x2. Additionally, we select the embedding dimension
and the delay time as, respectively, 5ω and 1ω, and as E = 0, e = 0.001, and Nε = 33.
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FIG. S13. Detecting causation in the unidirectionally nonlinearly coupled Hénon system (S3.7).

The value of the coupling parameter µ21 is varied systematically from {0, 0.015, 0.030, 0.045},
while the parameter µ12 is set to be zero. (a) Scaling relation between 〈δtu1

(εu2)〉t and ln εu2

for ascertaining the causal relation x1 ↪→ x2. (b) Scaling relation between 〈δtu2
(εu1)〉t and ln εu1

nullifying the causal relation x2 ↪→ x1.

TABLE S11. Slopes of the regression lines associated with the scaling relations in Fig. S13 and

their p-values for the unidirectionally nonlinearly coupled Hénon system.

No. su1↪→u2 su2↪→u1 µ21 µ12 p-value

(su1↪→u2)

p-value

(su2↪→u1)

1 0.000556 -0.001033 0.000 0.00 0.1210 0.9876

2 0.003331 0.000539 0.015 0.00 0.0000 0.2447

3 0.005790 -0.000204 0.030 0.00 0.0000 0.6443

4 0.012026 0.000077 0.045 0.00 0.0000 0.5384

There are 28 surrogates generated to calculate the p-values. The results presented in
Fig. S13 and Tab. S11 also validate the efficacy of our framework of the continuity scaling.

In addition, to show the superior efficacy of our framework to the other existing meth-
ods in detecting causation in the form of the nonlinear couplings, we present here a
comparison on the unidirectionally coupled Hénon system (S3.7) with the continuity scal-
ing framework and the CCM technique. We depict the index values for the continuity
scaling (the slope) and the CCM (see section IV) as the coupling parameter µ21 increasing
from 0 to 0.04 and µ12 sustaining at zero. All the other parameters are set in the same
manner as those used in the above example. Figure S14 shows a clear distinction for the
directions with and without causations for the continuity scaling. However, the CCM can
hardly distinguish the correct causation [see the two intertwined curves in Fig. S14(b)],
even bringing reversal, wrong identifications for some coupling strengths.
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FIG. S14. Comparison of causation detection with continuity scaling and CCM for the unidi-

rectionally nonlinearly coupled Hénon system (S3.7). For CCM, the embedding dimension and

delay time are 5ω and 1ω respectively and the length of library time series varies from 100 to

2900. Notice that CCM has reversed wrong identifications for some coupling strengths (see the

subpanel for the corresponding converging curves [2]).

D. Inferring networks of causal interactions

We test the power of our continuity scaling framework in inferring networks of causal
interactions from multivariate time series. Here the pairwise inference is considered while
generalization of the CS framework to multivariate version will be included in our future
work. To be concrete, each network has 5 nodes (i.e., Nv = 5) that interact with each
other according to the chain, ring, or tree topology, as shown in Figs. S15(a)-15(c).

Discrete time nodal dynamics. We consider the case where the nodal dynamical sys-
tem is the ecological model (S3.1). For convenience, we rewrite the system equation
here:

xi,t+1 = xi,t

(
ri − rixi,t −

∑
j 6=i

µijxj,t

)
,

where i = 1, . . . , NV , t ∈ N. The observational functions are ui(xi) = xi, the embedding
parameters are di = 5 and τi = 1 for i = 1, · · · , 5, and other parameters are Nε = 33,
e = 0.001, and E = 0. For each network topology, the parameters and the coupling
strengths in model (S3.1) are set as follows:

• Chain topology: r1 = 3.75, r2 = 3.78, r3 = 3.76, r4 = 3.8, r5 = 3.76, and µi+1,i =
0.07 for i = 1, 2, 3, 4, and all other coupling strengths are 0.

• Ring topology: r1 = 3.8, r2 = 3.77, r3 = 3.78, r4 = 3.79, r5 = 3.78, and µ(i+1) mod 5,i =
0.07 for i = 1, 2, 3, 4, 5 with other coupling parameters being 0.

• Tree topology: r1 = 3.8, r2 = 3.78, r3 = 3.76, r4 = 3.77, r5 = 3.74, and µi+1,i =
µi+3,i = 0.07 for i = 1, 2 with other coupling parameters being 0.
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For all the cases, the calculated values of the slope sui↪→uj characterizing the causa-
tion from xi to xj are displayed in Fig. S15(d) and in Figs. 3(c) and 3(d) in the main
text. To further characterize the performance of our continuity scaling framework for
causal network inferences, we plot the Receiver Operating Characteristics (ROC) curves
and calculate the corresponding areas under the ROC curves (AUROCs). As shown in
Fig. S15(e), all the AUROC values approach one, demonstrating the superior power of
our framework in identifying and quantifying causal interactions in networks.

Continuous time nodal dynamics. We study networks whose nodal dynamics are those
of the Lorenz system (S3.3). We also rewrite the system equation here:

ẋi,t = σi(yi,t − xi,t) +
∑

j 6=i µijxj,t,

ẏi,t = xi,t(ρi − zi,t)− yi,t,
żi,t = xi,tyi,t − βizi,t,

where i = 1, . . . , NV , t ∈ R. The parameters for the five nodes are taken as: (σ1, ρ1, β1) =
(10.01, 27.972, 2.668), (σ2, ρ2, β2) = (9.99, 28.028, 2.6672), (σ3, ρ3, β3) = (10.012, 27.944, 2.6656),
(σ4, ρ4, β4) = (9.98, 27.9608, 2.66934), and (σ5, ρ5, β5) = (10.04, 28.056, 2.664). The em-
bedding parameters are di = 7 and τi = 2ω for i = 1, · · · , 5. The sampling duration is
ω = 0.016. Other parameter values are Nε = 33, e = 0.001, and E = 8. For each network
topology, the coupling parameters and the observational functions are as follows:

• Chain topology: µi+1,i = 3 for i = 1, · · · , 4 with the other coupling strengths being
0, and the observational functions are ui(xi, yi, zi) = yi for i = 1, · · · , 5.

• Ring topology: µ(i+1) mod 5,i = 3 for i = 1, · · · , 5 with all other coupling strengths
being 0, and the observational functions are ui(xi, yi, zi) = xi−0.2 cos(yi)yi+2 sin(zi)
for i = 1, · · · , 5.

• Tree topology: µi+1,i = µi+3,i = 3 for i = 1, 2 with the other coupling strengths being
0, and the observational functions are ui(xi, yi, zi) = yi for i = 1, · · · , 5.

In all cases, the values of the slope sui↪→uj characterizing the causal interaction from
(xi, yi, zi) to (xj, yj, zj) are shown in Figs. S16(a)-16(c). The statistical ROC curves with
their AUROCs are displayed in Fig. S16(d), validating the accuracies of the inferred causal
interactions in the networks.

E. Test of real-world datasets

1. Synthetic gene regulatory networks

This real-world example has been described in the main text. Here we provide necessary
additional information on the dataset and important numerical simulation parameters.
We consider five different networks consisting of 20 genes, which are randomly selected
from five 100-genes-networks for each. One of the network structures is presented in Fig.
5(a) of the main text and the other four structures are shown in Fig. S17. Available are
time series of 10 realizations (21 points each) of gene’s expressions, which are combined
as one of 210 points for each gene in the phase space reconstruction procedure. The
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FIG. S15. Inferring causal interactions in networks with the continuity scaling framework. The

nodal dynamics are governed by the coupled ecological model of five species. The network

structures are (a) chain, (b) ring, and (c) tree. For each case, the results of inferred causation

are presented in (d) (chain) as well as in Figs. 3(c) (ring) and 3(d) (tree) of the main text. (e)

The corresponding ROC curves and their AUROC values representing high detection accuracies.

embedding dimension and delay time are 2 and 1 respectively. Applying our continuity
scaling framework to the time series we obtain the corresponding ROC curves with their
AUROC values shown in Fig. 5(b) of the main text.

2. Fishery landings and sea surface temperature data

The California landings data for Pacific sardine and northern anchovy and the sea sur-
face temperature (SST) data are acquired and pre-processed following the supplementary
materials of [2].

In each run of continuity scaling, the embedding dimension is 3 and embedding lag is
1 and other parameters are Nε = 33, e = 0.001 and E = 0. Each p-value is calculated
with 250 random surrogates. Detailed continuity scaling indexes and their p-values are
listed in Tab. S12.
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FIG. S16. Inferring causal interactions in networks with continuous time nodal dynamics. The

nodal dynamics are described by the Lorenz system (S3.3). The network structures are chain,

ring, and tree as in Figs. S15(a)-15(c). The results of causal inference for the three network

structures are shown in (a-c), respectively. (d) The corresponding ROC curves and their AUROC

values.

3. World COVID-19 pandemic daily cases

We analyze the COVID-19 pandemic data of 19 representitave countries. Time series
of daily cumulative confirmed COVID-19 cases from January 22nd 2020 to February 15th

2021 for each country is downloaded from https://datahub.io/core/covid-19#data, and
then first-differenced to obtain the time series of daily new confirmed COVID-19 cases.
Few negative data points are due to data corruption and are set as zero. Seven-day moving
average is applied to the daily new cases time series.

As shown in Fig. S18(a) the pandemic situation in China experiences a remarkable
change: severe at first and under control afterwards, and the critical day 100 is suitable
to divide these two stages (see below). Thus we split the times series into two segments:
day 1 to day 100 (Stage 1) and day 101 to day 391 (Stage 2), and compare the causal
effect from China to other countries at these stages. Causation is confirmed pairwisely if
the p-value of its continuity scaling index is less than 0.05. The embedding parameters
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FIG. S17. The four networks together with Fig. 5(a) of the main text, with which our continuity

scaling framework is tested.

TABLE S12. Inferring causal interaction among SST and landings data for Pacific sardine and

northern anchovy. Slopes of the regression lines of the scaling relations and their p-values are

listed.

slope p-value (< 0.05)

sSST↪→Sardine 0.0435 0.0000

sSardine↪→SST -0.0012 0.6943

sSST↪→Anchovy 0.0462 0.0001

sAnchovy↪→SST -0.0239 0.9837

sSardine↪→Anchovy 0.0025 0.3411

sAnchovy↪→Sardine 0.0105 0.0237

are d = 3 and τ = 1, and other parameters are Nε = 33, e = 0.001 and E = 0 for each
run. Each p-value is calculated with 200 random surrogates. The detected pairwise causal
links are presented in Figs. S18(c)-S18(d) for two stages respectively. Particularly, the
detected causal links from China to other countries are depicted in Fig. 7 of the main
text. Abbreviation (from ISO 3166 country codes, https://www.iso.org/iso-3166-country-
codes.html) or index number denoting each country is listed in Tab. S13.

Additionally, we show that critical day, the last day of Stage 1, can be chosen with
moderate freedom and this won’t harm the soundness of our result. We split the daily
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TABLE S13. Abbreviation and index number used in Fig. 7 of the main text, Fig. S18 and

Tab. S14 for each country are listed here.

No. Abbr. Country

1 CHN The People’s Republic of China

2 GBR The United Kingdom of Great Britain and

Northern Ireland

3 AUS The Commonwealth of Australia

4 FRA The French Republic

5 DEU The Federal Republic of Germany

6 ITA The Italian Republic

7 JPN Japan

8 MYS Malaysia

9 MEX The United Mexican States

10 SGP The Republic of Singapore

11 ZAF The Republic of South Africa

12 ESP The Kingdom of Spain

13 SWE The Kingdom of Sweden

14 CHE The Swiss Confederation

15 USA The United States of America

16 KOR The Republic of Korea

17 BEL The Kingdom of Belgium

18 NLD The Kingdom of the Netherlands

19 GRC The Hellenic Republic

confirmed cases time series of all contries by day D ranging from 94 to 106, and conduct
analogous analysis to detect causal links. A directional links labelled by “1” with causation
or “0” without causation. We compare the results between critical day D and 100 by
counting discrepant results among all links and calculated the proportion. As shown
in Fig. S18(b), for all Ds, the proportion of variated results does not exceed 5%, and
particularly, the conclusion that no country is under the influence of China at Stage 2
always holds.

For CCM, the embedding dimension is 3 and embedding lag is 1. At the two stages,
we use 44, 128 points as library respectively, and calculate CCM index with 30, 90 length
time series respectively [2]. Emperical threshold is selected where the largest 1/3 links are
identified as positive detections (see [2, 3] for more information on the issues of threshold
selection).

The prevalence of COVID-19 pandemic in China exists only at Stage 1, while daily
cases at Stage 2 are fewer as shown in Fig. 7 of the main text which are mainly imported
cases as reported by the goverment (http://en.nhc.gov.cn/DailyBriefing.html). Therefore
minor causal influence from China to other countries can be supposed at Stage 2. However
as shown in Tab. S14, at Stage 2 CCM detects a remarkable number of countries still under
the influence of China and produces results hard to interpret, lowering its reliablity in
widely use.
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FIG. S18. The 7-day moving averaged daily cases time series of China is plotted in (a). The

pairwise causal links detected by continuity scaling from COVID-19 pandemic times series at

both stages are illustrated in (c, d). A directional link is colored yellow with causation (“1”) or

brown without causation (“0”). Each country is represented by its index number listed in Tab.

S13. The results of Stage 1 and 2 are presented in (c) and (d) respectively. For critical day, the

last day of Stage 1, D ranging from 94 to 106, the proportion of changed causal links compared

with critical day 100 is plotted in (b).

TABLE S14. Countries under the influence of China detected by CCM at both stages.

Stage Countries

1 FRA, DEU, ITA, MYS, ESP, CHE, BEL, NLD

2 GBR, MYS, MEX, ZAF, USA

4. Air pollutants and hospital admission records from Hong Kong

The dataset contains the records of daily air pollutants and of the daily admissions of
cardiovascular (Cardio.) disease and respiratory (Resp.) diseases in major hospitals of
Hong Kong, China [4, 5] from 1997 to 1999. Every time series contains 1032 points, one
for each day. The causal influences of four pollutants, i.e., NO2, O3, respirable suspended
particulates (Rspar.), and SO2, on the hospital admissions of Cardio. and Resp. diseases
are tested. For all the time series, the embedding dimension and delay time are d = 4 and
τ = 1, and other parameter values are Nε = 33, e = 0.001, and E = 0. The estimated
values of the slope sPollutant↪→Disease and their p-values are listed in Tab. S15. It can be
seen that the instantaneous influences of NO2 on both Cardio. and Resp. diseases are
relatively strong. In addition, the instantaneous impact of O3 on Cardio. disease and that
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TABLE S15. Causal influences, quantified by values of the slope sPollutant↪→Disease, of four

pollutants on the hospital admissions of Cardio. and Resp. diseases, where 300 surrogates are

used to test the statistical significance.

sPollutant↪→Disease p-value (< 0.05)

Pollutant Cardio. Resp. Cardio. Resp.

NO2 0.5722 0.4139 0.0000 0.0276

O3 0.2427 0.0856 0.0000 0.6529

Rspar. 0.0002 0.0151 0.8404 0.8239

SO2 -0.0716 0.1077 1.0000 0.0000

of SO2 on Resp. disease are also significant, which are highly consistent with previous
results [6, 7].

IV. COMPARISONS WITH TYPICAL CROSS-MAP-BASED METHODS

A cross map is defined originally based on the strict correspondence of the time in-
dex between the reconstructed manifolds, which is not directly relevant to the existing
causal relation, leading to the long-standing question of the use of the information about
the effect variable to estimate that of the causal variable. Ref. [8] provides a conceptual
explanation from the viewpoint of information flow, which still calls for a rigorous demon-
stration from the mathematical viewpoint. The definition and the arguments presented
in the main text not only provide a resolution to this puzzle in the estimation order
but, more significantly, establish a rigorous framework to ascertain reliably and quantify
accurately the causal interactions.

We analyze the deficiencies of representative existing cross-map-based methods for
causality detection and carry out a comparison study based on benchmark models with
known ground truth to demonstrate that our continuity scaling framework is able to
overcome the difficulties.

A. Comparison with topological causality

A recently developed technique is based on the concept of topological causality [9]. Let
F be a dynamical system on a compact manifoldM with two observational functions: φ
and ψ, which are smooth functions from M to R. Suppose further that

Φ(x) = (φ(x), φ(F τ (x)), · · · , φ(F (d−1)τ (x))) :M→Mφ = Φ(M) ⊂ Rd,
Ψ(x) = (ψ(x), ψ(F τ (x)), · · · , ψ(F (d−1)τ (x))) :M→Mψ = Ψ(M) ⊂ Rd

are embedding and thus are diffeomorphism to image. Let φt = (φ(xt), . . . , φ(F (d−1)τ (xt)))
and ψt = (ψ(xt), . . . , ψ(F (d−1)τ (xt))), where xt+1 = F (xt). Define a cross mapping Γφψ:
Mφ → Mψ through the correspondence from φt to ψt based on the time index t, and
further define the extension measure etφψ by the product of the singular, larger than one
values of the Jacobian matrix of Γφψ evaluated at φt. The local topological causality from
ψt to φt is defined as Ct

ψ→φ = (1 + ln etφψ)−1, and the topological causality from ψ to φ
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is defined as Cψ→φ = (1 + 〈ln etφψ〉t)−1, in which 〈ln etφψ〉t represents an average of ln etφψ
over all time index t.

We wish to point out that the definition of topological causality is mathematically
incomplete and thus cannot resolve the long-standing question of using information about
the effect variables to infer that of the causal variables. In particular, eliminating the
singular values less than one in its definition is likely to lead to inaccurate evaluation of
causality, and the coupling strength may not consistently correspond to the strength of the
detected causal interaction. This can be demonstrated through the following continuous
time linear dynamical system:

ẋ = x− µy, ẏ = y,

where µ is the coupling parameter. For simplicity, it is possible to consider topological
causality in a local region of the phase space (e.g., a neighborhood of the point (2, 1)), since
local topological causality index is only evaluated at the investigated point. We consider
typical cases here, for example, µ ranging in [0, 1] and (x, y) near (2, 1). Therefore, a one-
dimensional system is considered as follows. We localize the phase space by multiplying
a real-valued smooth function ξ : R2 → R ranging in [0, 1] at the right-hand side of the
original equations, with ξ supported in an open neighborhood of (x, y) = (2, 1) contained
in { (x, y) |x > y > 0 } and ξ(2, 1) = 1. The investigated phase space is given by

Lµ = { (x, y) = (α(t), β(t)) | (α(t), β(t)) is a solution of

α̇(t) = ξ(α, β)(α− µβ), β̇(t) = ξ(α, β)β, α(0) = 2, β(0) = 1 }.

In such a one-dimensional phase space, ẋ = ξ(x, y)(x − µy), ẏ = ξ(x, y)y well defines a
dynamical system in it. Because of the localization, coordinate projections of the orbit
can indeed reconstruct this system by noting that ξ(x, y)(x−µy) 6= 0, ξ(x, y)y 6= 0 on Lµ,
and thus maintain the topological characteristics of the original one-dimensional system:
ẋ = x− µy, ẏ = y.

Considering the new system ẋ = ξ(x − µy), ẏ = ξy on phase space Lµ. Set the
observational functions as x and y, let Γxy be a cross mapping as the correspondence from
Mx to My based on the time index, and denote as M t

xy the Jacobian matrix of Γxy at
time t. Analytically, we have

M t
xy =

dy

dx
=

1

x/y − µ
.

As defined, etxy is the singular value of M t
xy which is larger than one. Typically, for x, y >

0, if the coupling parameter µ increases from 0 to x/y, M t
xy increases from y/x to +∞,

and etxy increases from max{1, y/x} to +∞. Consequently, the measure of the topological
causality, Ct

y→x = (1 + ln etxy)
−1, decreases monotonously from (1 + ln max{1, y/x})−1 to

0. That is, a larger value of the coupling parameter does not imply a more significant
causation detected - a result that is not consistent with the dynamical behavior of the
system.

We compare the performance of our continuity scaling framework with topological
causality using the algorithms according to the original TC measuring by the index
Cψ→φ. We first consider time series generated by the unidirectionally coupled ecologi-
cal model (S3.1) with NV = 2, (r1, r2) = (3.8, 3.7), µ12 = 0, and µ21 changing its value
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from 0 to 0.05. As shown in Fig. S21, our continuity scaling framework works well in
detecting causation for all values of µ21, while the topological causality method fails for
small values of µ21.
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FIG. S19. Results of comparison study using data from the unidirectionally coupled ecological

model (S3.1) of two species: x1 ↪→ x2. (a) Results from our continuity scaling framework with

Nε = 33, e = 0.001, and E = 0. (b) Results from the topological causality method, where the

number of points in the neighborhood is taken to be k = 15. For all cases, the observational

functions are ui(xi) = xi and the embedding parameters are di = 3 and τi = 1 for i = 1, 2.

The second example is the unidirectionally coupled Bernoulli oscillators:

x1,t+1 = (1.9 · x1,t − µ12 · x2,t) mod 1,
x2,t+1 = (2.3 · x2,t) mod 1,

(S4.1)

where the coupling parameter µ12 changes its value systematically from 0 to 0.02. Fig-
ure S22 presents the results of the comparison study, demonstrating the superior accuracy
of our continuity scaling framework for detecting and quantifying causation. The topolog-
ical causality method reveals completely wrong causation in the weakly coupling regime
of small µ12 values and exhibits a reversed relation with the increase of µ12.

B. Comparison with convergent cross mapping

We also carry out a comparison study with CCM method based on benchmark models
with known ground truth [2]. We calculate the slope values estimated from the linear
regression of the convergence curve with increasing length of the library time series in
CCM.

We first consider time series generated by the unidirectionally coupled ecological
model (S3.1) with NV = 2, (r1, r2) = (3.8, 3.7), µ12 = 0, and µ21 changing its value from
0 to 0.05. As shown in Fig. S21, both our continuity scaling framework and CCM work
well in detecting causation for all values of µ21. However, the CCM measure exhibits an
increasing level of fluctuations as the coupling parameter is increased.

The second example is the unidirectionally coupled Bernoulli maps:

x1,t+1 = (1.9 · x1,t − µ12 · x2,t) mod 1,
x2,t+1 = (2.3 · x2,t) mod 1,

(S4.2)
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FIG. S20. Results of comparison study using data from the unidirectionally coupled Bernoulli

oscillators (S4.2): x2 ↪→ x1. (a) Results from our continuity scaling framework. (b) Results

from the topological causality method. The embedding parameters are di = 4 and τi = 1 for

i = 1, 2, and the observational functions and other parameter values are the same as those in

Fig. S21.
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FIG. S21. Results of comparison study using data from the unidirectionally coupled ecological

model (S3.1) of two species: x1 ↪→ x2. (a) Results from our continuity scaling framework

with Nε = 33, e = 0.001, and E = 0. (b) Results from the CCM method. For all cases, the

observational functions are ui(xi) = xi and the embedding parameters are di = 3 and τi = 1 for

i = 1, 2.

where the coupling parameter µ12 changes its value systematically from 0 to 0.02. Fig-
ure S22 presents the results of the comparison study, demonstrating the superior accuracy
of our continuity scaling framework for detecting and quantifying causation. The CCM
method fails for most values of the coupling parameter. The reason for the failure lies
in that the Bernoulli maps have uniformly expanding properties with all positive Lya-
punov exponents, leading to the sensitivity of detection on the pre-selected radius of the
neighborhoods. Increasing the time series length in the CCM method does not provide
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a resolution. In contrast, the continuity scaling between the dynamically contracting
neighborhoods is key to determining the accuracy of causation detection.

(a) (b)

FIG. S22. Results of comparison study using data from the unidirectionally coupled Bernoulli

maps (S4.2): x2 ↪→ x1. (a) Results from our continuity scaling framework. (b) Results from

the CCM method. The embedding parameters are di = 5 and τi = 1 for i = 1, 2, and the

observational functions and other parameter values are the same as those in Fig. S21.

Though greatly inspired by the cross-map-based methods, we still summarize the es-
sential differences between our CS framework and the cross-map-based methods here.
While the correspondence techniques using the time indexes in the traditional cross-map-
based methods and our CS framework are almost the same, they differ in one-step time
index and also in using a [DD] condition. These differences follow from the considera-
tion and quantification of continuity for different maps (Φ or f). These differences also
yield the above example where our framework outperforms the CCM method even us-
ing sufficiently large embedding dimensions. Precisely, in the traditional cross-map-based
techniques, function properties including continuity regarding the cross-map Yt = Φ(Xt)
(when Y drives X) are fully and systematically investigated. Thus, correspondence tech-
nique using the simultaneous points is taken into account. But we consider the causality
using the original dynamical systems, not the cross-map Φ. Particularly, when turning
eyes from the cross-map to the original iteration/flow, i.e., xt+1 = f(xt, yt), correspon-
dence between yt and xt+1 is considered, with one-step time difference naturally arising.
This minor difference in implementation in fact is induced by essential difference in chang-
ing object of study. Secondly, the above consideration requires the key Condition [DD],
which is only needed when considering the original iteration/flow and whose universality
is demonstrated in section II. Thirdly, the idea of the CS framework is that causality is
reflected in the continuity scaling relationship of the original iteration/flow, i.e., in the
scaling relation between changing sizes of the εxt+1 and δyt neighborhoods, which leads
to the failure of the CCM method using pre-selected/fixed radius of the neighborhoods
in the example of coupled Bernoulli maps, with uniformly expanding properties. These
points illustrate the importance of directly investigating the continuity of the original
iteration/flow f rather than the cross-map Φ.

In addition, our proposed CS framework has different object of study with all the
existing methods and holds essentially different theoretical basis. In fact, the existing
causation detection methods, referred to in the main text, can be roughly classified into the
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following categories: Granger causality based methods, entropy based methods, and cross-
map-based methods. While a complete summarization study of the Granger causality
based methods and entropy based methods can be referred to many literatures [3, 10], the
above comparisons with typical cross-map-based method demonstrate their differences
with our CS framework.
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