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We develop a framework to uncover and analyse dynamical
anomalies from massive, nonlinear and non-stationary
time series data. The framework consists of three steps:
preprocessing of massive datasets to eliminate erroneous data
segments, application of the empirical mode decomposition
and Hilbert transform paradigm to obtain the fundamental
components embedded in the time series at distinct time
scales, and statistical/scaling analysis of the components.
As a case study, we apply our framework to detecting and
characterizing high-frequency oscillations (HFOs) from a big
database of rat electroencephalogram recordings. We find a
striking phenomenon: HFOs exhibit on–off intermittency that
can be quantified by algebraic scaling laws. Our framework
can be generalized to big data-related problems in other fields
such as large-scale sensor data and seismic data analysis.

1. Introduction
Big data analysis [1–6], a frontier field in science and engineering,
has broad applications ranging from biomedicine and smart
health [7,8] to social behaviour quantification and energy
optimization in civil infrastructures. For example, in biomedicine,
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vast electroencephalogram (EEG) or electrocorticogram (ECoG) data are available for the analysis,
detection and possibly prediction of epileptic seizures (e.g. [9–16]). In a modern infrastructure viewed
as a complex dynamical system, large-scale sensor networks can be deployed to measure a number of
physical signals to monitor the behaviours of the system in continuous time [17–19]. In a modern city,
smart cameras are placed in every main street to monitor the traffic flow at all times. In a community, data
collected from a large number of users carrying various mobile and networked devices can be used for
community activity prediction [20]. In wireless communication, big datasets are ubiquitous [21,22]. In all
these cases, monitoring, sensing or measurements typically result in big datasets, and it is of considerable
interest to detect behaviours that deviate from the norm or the expected.

In this paper, we develop a general and systematic framework to detect hidden and anomalous
dynamical events, or simply anomalies, from big datasets. The mathematical foundation of our
framework is Hilbert transform and instantaneous frequency analysis. The reason for this choice lies in
the fact that complex dynamical systems are typically nonlinear and non-stationary. For such systems, the
traditional Fourier analysis is limited because, fundamentally, they are designed for linear and stationary
systems. Windowed Fourier analysis may be feasible to generate patterns in the two-dimensional
frequency–time plane pertinent to characteristic events, but two-dimensional feature identification is
difficult. By contrast, the features generated by the empirical mode decomposition (EMD) methodology
are one dimensional, which are easier to be identified computationally. The Hilbert transform and
instantaneous frequency-based analysis have proved to be especially suited for data from complex,
nonlinear and non-stationary dynamical systems [23–25]. The challenge is to develop a mathematically
justified and computationally reasonable framework to uncover and characterize ‘unusual’ dynamical
indicators that may potentially be precursors to a large-scale, catastrophic dynamical event of the system.

The general principle underlying the development of our big data-based detection framework is as
follows. First, we develop an efficient procedure for preprocessing big datasets to exclude erroneous
data segments and statistical outliers. Next, we exploit a method based on a separation of time scales,
the EMD method [23,24], to detect anomalous dynamical features of the system. Owing to its built-in
ability to obtain from a complex, seemingly random time series a number of dominant components with
distinct time scales, the method is anticipated to be especially effective for anomaly detection. We pay
particular attention to the challenges associated with big datasets. Finally, we perform statistical analysis
to identify and characterize the anomalies and articulate their implications.

As a concrete example to illustrate the general principle of our big data analysis framework, we
address the detection of high-frequency oscillations (HFOs), which are local oscillatory field potentials
of frequencies greater than 100 Hz and usually have a duration less than 1 s [26–37]. Oscillations between
100 and 200 Hz are called ripples and occur most frequently during episodes of awake immobility and
slow-wave sleep. The HFOs in this range are believed to play an important role in information processing
and consolidation of memory [38,39]. Pathologic HFOs (with frequency larger than 200 Hz, or fast
ripples [40]) reflect fields of hyper-synchronized action potentials within small discrete neuronal clusters
responsible for seizure generation. They can be recorded in association with interictal spikes only in areas
capable of generating recurrent spontaneous seizures [41]. Thus detecting fast ripples can be useful in
locating the seizure onset zone in the epileptic network [29,42,43], and this was verified previously using
datasets from a wide variety of patients [32]. In particular, it was found that almost all fast-ripple HFOs
were recorded in seizure-generating structures of patients suffering from medial or polar temporal-lobe
epilepsy, indicating that the ripples are a specific, intrinsic property of seizure-generating networks in
these brain areas. The pathologic HFOs and their spatial extent can potentially be used as biomarkers of
the seizure onset zone, facilitating decisions as to whether surgical treatment would be necessary. Besides
their role in locating the seizure onset zone, HFOs may also reflect the primary neuronal disturbances
responsible for epilepsy and provide insights into the fundamental mechanisms of epileptogenesis and
epileptogenicity [44,45].

Traditional methods such as the Fourier transform and spectral analysis assume stationarity and/or
approximate the physical phenomena with linear models. These approximations may lead to spurious
components in their time–frequency distribution diagrams if the underlying signal is non-stationary
and nonlinear. EMD is a technique [23] to specifically deal with non-stationary and nonlinear signals.
Given such a signal, EMD decomposes it into a small number of modes, the intrinsic mode functions
(IMFs), each having a distinct time or frequency scale and preserving the amplitude of the oscillations
in the frequency range. The decomposed modes are orthogonal to each other, and the sum of all modes
gives the original data. The ease and accuracy with which the EMD method processes non-stationary
and nonlinear signals have led to its widespread use in various applications such as seismic data
analysis [23], chaotic time series analysis [24,46], neural signal processing in biomedical sciences [47],
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meteorological data analysis [48] and image analysis [49]. We develop an EMD-based method to detect
HFOs. Owing to its built-in ability to pick out from a complex, seemingly random time series a number
of dominant components of distinct time scales, the method is especially effective for the detection of
HFOs. We finally perform a statistical analysis and find a striking phenomenon: HFOs occur in an on–off
intermittent manner with algebraic scaling. In addition to HFOs, our framework can detect population
spikes, oscillations in the frequency range from 10 to 50 Hz, as well as distinct and independent IMFs.

As pathologic HFOs reveal dynamical coherence within small discrete neuronal clusters responsible
for seizure generation, a good understanding and accurate detection of HFOs may bring the grand goal of
early seizure prediction one step closer to reality and would also improve the localization of the seizure
onset zone to facilitate decision-making with regard to surgical treatment. Not only does our method
illustrate, in a detailed and concrete way, an effective way to analyse big datasets, our finding also has
potential impact in biomedicine and human health.

There were existing works on applying the EMD/Hilbert transform method to neural systems.
Earlier the method was applied to analysing biological signals and performing curve fitting [50], and a
combination of EMD, Hilbert transform and smoothed nonlinear energy operator was proposed to detect
spikes hidden in human EEG data [51]. Subsequently, it was demonstrated [52] that the methodology
can be used to analyse neuronal oscillations in the hippocampus of epileptic rats in vivo with the result
that the oscillations are characteristically different during the pre-ictal, seizure onset and ictal periods
of the epileptic EEG in different frequency bands. In another work [53], the EMD/Hilbert transform
method was applied to detecting synchrony episodes in both time and frequency domains. The method
was demonstrated to be useful for decomposing neuronal population oscillations to gain insights into
epileptic seizures [54], and EMD was used for extracting single-trial cortical beta oscillatory activities
in EEG signals [55]. The outputs of EMD, i.e. the IMFs, were demonstrated to be useful for EEG signal
classification [56]. Our work differs from these previous works in that we address the issue of detecting
HFOs and uncovering the underlying scaling law.

2. Results
2.1. Pretreatment of datasets
High-sampling (12 KHz), multichannel (32–64 channels), continuous recordings of local field potentials
in freely moving rodents present unique technical challenges. Although most channels continue to record
over a four- to six-week period, over time the integrity of the signal degrades and electrode recording
may come off- and online. To this end, it is important to preprocess data files to exclude gaps in data. This
in itself is challenging due to the large size of each dataset (approx. 5 TB), variability during recordings
of local field potentials, and gaps in data. Here, we develop a fully automated statistical method. The
resulting ‘data-mining’ algorithm is general and we expect it to be useful for dealing with other massive
datasets.

For our study, we examine EEG data taken from a rat model of the approach to epilepsy. The typical
size of a binary file in our database is about 600–700 MB. Each file belongs to a certain channel (specified
by a channel number) and a specific time duration (specified by a file number). We regard the channel and
file numbers as two orthogonal dimensions and plot the contour of a suitable statistical quantity (to be
discussed below) in the two-dimensional plane, so the data of one rat (approx. 5 TB) can be represented
by a single contour plot. The whole process can be programmed to be highly parallelized, providing a
global overview of the raw EEG data.

Let di, (i = 1, . . . , L) be the value of the EEG signal for a single sample, where L is the number of
samples in a binary file. In the experiment, each value di is recorded as a 16-bit integer, so di ∈ [−N, N − 1],
where N = 215 and, typically we have L ∼ 3 × 108 samples. We then examine the values of di and count
the number of each value present in the file, which results in an array nj, j = −N, . . . , N. Repeated values
over some periods in the oscillation pattern lead to corrupted files, which can be due to recording errors—
this, indeed, happened in our experiment. In general, when hours or even minutes of bad recordings of
zeros are encountered, the number n0 of zeros in the file counted will increase rapidly. These features of
abnormal recordings will be utilized to exclude the corrupted files.

Figure 1 shows four typical types of nj distributions obtained from channel 02 of Rat004 composed
of 229 data files. For binary files that have large numbers of continuous zeros, for example, file number
20, the distribution is shown in figure 1a. An example of a corrupted file is where a specific pattern of
oscillations is embedded repeatedly in most of the data in the file. The corresponding distribution is
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Figure 1. Pretreatment of massive data from rat EEG. Different types of distributions of nj for Rat004 channel 02. For each panel, the y-
axis is normalized by themaximumof nj . The four panels correspond to: (a) a corrupted filewith a large number of zeros (file no. 20), (b) a
bad recordingwith repetitions of oscillating patterns (file no. 73), (c) a normal file without transitions (file no. 77) and (d) a file containing
a seizure (file no. 99).

shown in figure 1b. The distributions from normal data files qualified for dynamical analysis are shown
in figure 1c,d. The distribution in figure 1c is approximately Gaussian. However, seizure events can cause
distortions from the Gaussian distribution, as evidenced by figure 1d for file number 99 where a clinically
certified seizure is present. We observe that the distribution becomes somewhat narrowed (as compared
with the case of no seizure) and slightly asymmetrical.

After obtaining the distribution for each file, we define and compute a statistical quantity for each
file, and assemble the files within the same channel according to this quantity, as follows. Let sk = nk−N −
nk−N−1 (k = 1, . . . , 2N), where sk represents the difference between two neighbouring counts, and let σ 2

s =
1/(2N − 1)

∑2N
k=1(sk − s̄)2 be the variance, where s̄ is the mean value of sk. Note that nj is not normalized

and their sum is the data length L of the file. Denoting 〈n〉j as the smoothed curve of nj, we have 〈n〉j ∼ L.
The fluctuations, as characterized by sk, are in general proportional to 〈n〉j. As a result, the variance σ 2

s is
positively correlated with L, e.g. a larger value of L would result in a larger value of σ 2

s .
Thus for small files that are normal in all other aspects, we will have smaller σs values, which can be

clearly identified from figure 2 as the points below the majority. This figure also shows some points with
extremely large σs values. These points correspond to the binary files with large numbers of continuous
zeros (figure 1a). The corrupted data all have σs values in the range 104 ∼ 105 (figure 1b) which can
be excluded readily, as shown in figure 2. A transition in σs at file number 99 (when the first seizure
occurred) is observed.

By applying the same procedure to multiple channels, the massive EEG data from one rat can be
expressed using a single contour plot of σs, as shown in figure 3. We can immediately identify different
types of data in terms of the values of log10 σs. It should be noted that for different ‘abnormal’ situations,
e.g. small files, contamination with zeros or corrupted data, there can be different methods of remedy
based on examining different aspects particular to the data. However, our method is general and efficient
in that a single indicator is effective at distinguishing the different types of abnormalities in the files
during the preprocessing stage of the massive database for further dynamical and statistical analysis.

2.2. Empirical mode decomposition analysis of electroencephalogram data
We conducted extensive tests of applying the EMD procedure to EEG data (see Material and methods). A
general finding is that the resulting IMFs in different frequency ranges possess statistical features that are
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relevant to certain brain activities, demonstrating that the EMD methodology can be effective for probing
the dynamical origins of epileptogenesis. For example, typically the frequencies of the first 5 IMFs are
about 5 kHz, 2 kHz, 1 kHz, 500 Hz, 200 Hz, 100Hz. As the sampling frequency is 12 kHz, the first three
modes correspond to mostly noise contained in the original EEG data. The fourth to sixth modes, whose
frequencies lie in the range between 50 Hz and 800 Hz represent the intrinsic dynamical evolution of the
underlying brain system.

Our procedure for analysing long EEG data thus consists of performing the EMDs to obtain different
IMFs, calculating the amplitudes and frequencies of the IMFs that are deemed to reveal the dynamical
evolution of the brain, and performing statistical analysis of the on-intervals for the IMFs in a proper
frequency range. An example is shown in figure 4, where the distributions of the amplitude and
frequency of an IMF for a particular channel of two months’ duration are shown. The entire dataset was
divided into 230 files, each containing 7 h of EEG recording. Note that when performing the EMD, the
data are broken into small segments, e.g. 5 s for each segment, to make the computation more efficient.
To calculate the IMFs, a 0.5 s segment is included at each end of the 5 s segment to eliminate the edge
effect so that the IMFs can be accurately determined. From figure 4, we can distinguish the changes in
the rat brain activity, such as stimulation and the occurrence of the first seizure. Recurrent seizures are
not so clearly visible in this plot. Another apparent feature revealed is the circadian periodicity. The EEG
recording has a 24 h periodicity because of the circadian activity or of the external treatment of the rat
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Figure 4. Typical EMD representation of massive rate EEG data. (a) Contour plot of normalized distribution of amplitude A (in arbitrary
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structure indicates the circadian periodicity. (b) Normalized distribution of the frequency f of the mode.

such as feeding, etc., which also changes the frequency and amplitude of each decomposed IMF. As each
file is 7 h long, the circadian periodicity indicates a periodicity of three (or four) files in the plot, which is
apparent from the comb-like structure in the plot, especially in figure 4a, where two adjacent comb teeth
have a separation of about three files.

2.3. Detection of high-frequency oscillations and population spikes
To illustrate the procedure of detection of HFOs and population spikes, we reduce the sampling rate so
that these dynamical events can be visualized clearly. Note that, when the sampling rate is reduced, the
noisy components are effectively filtered out, so the first few IMFs become important. (In the detection
and statistics of HFOs and population spikes in the following sections, higher sampling frequency should
still be used, in which case the first few IMFs need to be disregarded, as discussed above). Figure 5 shows,
for a segment of down-sampled EEG data, the relevant empirical modes. For this dataset, the frequencies
are 200–500 Hz for mode 1, 80–200 Hz for mode 2, about 50 Hz for mode 3 and 30 Hz for mode 4. Taking
mode 2 as an example, the IMF will have small amplitude if the original EEG data does not contain
oscillations in the corresponding frequency range. When the EEG data contains these oscillations, they
will be revealed in the corresponding IMF. As HFOs are generally associated with frequencies larger
than 80 Hz, they will be revealed in the first two modes. The population spikes (with a time scale of
0.1 s) are decomposed by EMD into oscillations in the frequency range 10–50 Hz, thus they will mainly
be manifested in modes 3 and 4. The EEG data in figure 5a contains an HFO and a population spike.
It is apparent that the HFO and population spike are separated by EMD into different modes and are
localized in different time scales, e.g. figure 5c for the HFO and figure 5d,e for the population spike.
Thus, the amplitude of the modes evolving in time can be used to detect the HFOs or population spikes,
depending on the frequency range of the mode.

Our results thus suggest strongly the feasibility of developing EMD-based algorithms to
systematically detect all the HFOs and population spikes. In this regard, we note an existing method
of detection of HFOs, which employs short-time energy or line length of the acquired data for HFOs
in some small frequency ranges [57]. Our method is capable of detecting HFOs and can be used to
distinguish various oscillation profiles. Based on the detected HFOs and population spikes, extensive
statistical analyses for the five critical phases during epileptogenesis, namely, pre-stimulation state, pre-
seizure state, status epilepticus phase, epilepsy latent period, spontaneous/recurrent seizure period, can
be carried out to gain unprecedented insights into epileptogenesis.
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It can occur that, for a particular signal whose highest frequency component is most significant to the
underlying dynamics, the first IMF contains the dominant dynamics with the highest frequency, the next
is a lower frequency background to it and so on. However, while the first IMF is the highest frequency
component, the corresponding frequency range may not necessarily be relevant to the system dynamics.
In fact, we found that typically the first IMF corresponds to noise, and the next IMF contains information
about the dynamics of the system. Which IMFs are actually useful and informative depends on the
nature of the original signal. More specifically, what EMD does is to decompose the signal into different
frequency components through different IMFs, which contain the time varying amplitude and frequency
information for each component embedded in the original signal. If the signal is contaminated by
noise, the first IMF would be the noise component that contains little information about the underlying
dynamics. Our analysis of the massive EEG data indicates that this is indeed the case.

2.4. Automated detection and classification of high-frequency oscillations
Our method to detect, characterize and understand HFOs from EEG recordings consists of the following
steps: (i) performing EMD and calculating distinct IMFs, (ii) searching for HFOs based on the amplitudes
of IMFs and (iii) classifying HFOs in terms of their frequencies and calculating the statistical properties
of HFOs. An illustration of the steps is shown in figure 6.

We first calculate the amplitudes of the IMFs from an automated EMD procedure. We then locate
the extrema of one IMF and define the interval between two neighbouring maxima (or minima) to be
one period T, as shown in figure 6a. Unlike the Fourier transform that becomes ineffective in time-series
analysis when the signal frequency changes with time, EMD is well suited for generating IMFs whose
frequencies vary with time, i.e. when the period is a function of time: T = T(t). We set a moving time
window of size w and calculate the average IMF amplitude within the window. The window contains
a fixed number of IMF periods. As the period varies with time, the actual time span of the window
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also changes with time. As an example, we show in figure 6a two windows wm and wn, each containing
the same number (7) of IMF periods. Apparently, their sizes are different. The amplitude values are
weighted magnitudes and are calculated as Am = (1/2)

∑
i∈wm

(xi+1 − xi)(|yi+1| + |yi|), where xi and yi
are the position and magnitude of the IMF, respectively, and the factor (xi+1 − xi) is the corresponding
weight. The calculation is repeated when the window is moved to the next position by the step size �w,
which is also chosen to contain a certain number of IMF periods. Small values of w and �w result in
rapidly oscillating amplitude functions, whereas too large values of w and �w would cause a loss of
information. Empirically, the window size can be chosen to include several IMF periods, e.g. six to nine,
where the moving forward step size �w can be set as one.

The next step is to find on-intervals, time intervals when the amplitude values are larger than a certain
threshold Ac, as shown in figure 6b. To set a proper threshold, we can pick a segment (e.g. 1 h long)
from the amplitude data and calculate the mean μ as well as the standard deviation σ . One way to set
the threshold is Ac = aμμ + aσ σ , where aμ and aσ are two adjustable parameters on the order unity. To
characterize each on-interval Oi, we define an on-area Si, the area of the IMF in the on-interval above
the threshold:

Si = (1/2)
∑
j∈Oi

(xj+1 − xj)(Aj+1 + Aj − 2Ac), (2.1)

where xj and Aj are the position and magnitude of the amplitude function of the underlying IMF,
respectively. The notation Si with the capital S should be distinguished from sk that denotes the difference
between two neighbouring counts. On-intervals are sorted in the descending order in terms of their on-
areas: S1 > S2 > · · · . The HFOs are identified as those with the largest on-areas, i.e. with longer duration
and larger oscillating amplitudes. As the on-area values of HFOs are typically much larger than those
of non-HFO on-intervals, the HFOs can be reliably identified as the outliers in the on-area statistics,
as follows.
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Figure 7. Example of successful HFO and PS detection. (a) Original EEG data plot of about 3 s. (b) IMF 5 plot with solid blue triangles
marking the ripples and open magenta triangles marking the fast ripples. (c) The amplitude of IMF 5. The horizontal blue line is
the threshold for separating on/off intervals of HFOs. The threshold is calculated from the amplitude data segment of about 1 h. The
computational parameters are aμ = 1 and aσ = 1. (a′)–(c′) The original data, IMF 6, and its amplitude function, respectively. The black
diamonds mark the position of the population spikes.

Starting from the most significant on-interval O1, we can evaluate its on-area S1 with a score function
of the remaining on-intervals. If

S1 > αE[{Si}i≥2] + β

√
Var[{Si}i≥2], (2.2)

O1 will be identified as an HFO, where α and β are two adjustable parameters, and E[·] and Var[·] are
the expectation and variance functions. This process is repeated until no on-intervals in the remaining
sequence satisfy the criterion. Typically, for one IMF, approximately 10% of the on-intervals would be
selected as HFOs. Among the remaining HFOs, one can see that some are so close to each other that
it is reasonable to combine them. The combinations are carried out wherever the gap G between two
neighbouring HFOs is small, i.e. when G < g · min(THFO1 , THFO2 ), where g is the parametric gap tolerance
ratio and THFO is the HFO duration. An example of combining HFOs is shown in figure 6b.

The HFOs in different frequency ranges are usually responsible for different brain behaviours such as
normal information processing and spontaneous seizures. The third step of our procedure is to calculate
the frequencies of various HFOs, which is done by locating the starting and ending times of an HFO,
finding the number n of oscillating periods within it and dividing by its duration: f = n/THFO. When
necessary, we combine overlapping HFOs across different IMFs, as shown in figure 6c. When various
HFOs have been identified, we can classify them into distinct frequency ranges: low-frequency range
(less than 80 Hz), ripples (80–200 Hz, between pairs of solid blue triangles in figure 6c) and fast ripples
(greater than 200 Hz, between pairs of open magenta triangles in figure 6c). HFOs of frequencies lower
than 80 Hz are identified as population spikes. An example of identifying and classifying HFOs is shown
in figure 7.

2.5. Statistical and scaling properties of high-frequency oscillations
As described, the on- and off-intervals associated with HFOs can be determined by setting a threshold
value Ac in the amplitude function of a given IMF. For a given HFO, an on-area can then be defined,
which is the area of the portion of the amplitude function above the threshold. The most significant
HFOs are those with the largest on-areas. The on-intervals thus provide a base for characterizing the
HFOs. Intuitively, HFOs of various magnitude correspond to ‘islands’ of various sizes above the ‘sea’
level defined by the threshold. To obtain a more complete understanding of HFOs, it is insightful to
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be determined to be 61. If P(A) takes a smaller value, then Ac will be larger.

examine the corresponding ‘undersea’ dynamics (below the threshold). It is computationally feasible to
study the dynamical and statistical characteristics of the oscillations below the ‘sea’ level but only within
a certain depth.

To illustrate our approach in a concrete way, we take the example in figure 7 and focus on mode 5
because the frequency of this mode lies in a suitable HFO frequency range. From the contour plot of the
distribution of amplitude versus file number, figure 4, we see that there are several regions of distinct
properties. In particular, the EEG data are relatively stable before the stimulation, say between files 28
and 29. After the stimulation, the data changed characteristically, as can be seen from the amplitude
distribution plot in figure 4a (indicated by the arrow between files 28 and 29). The first seizure occurred
in file 99, and the data are stable for files 29–99. There is a relatively small change between files 51 and
52, as can be seen from the amplitude plot in figure 4a, when the rat was actually moved from one cage
to another. We have checked other modes and also data from other channels and found a consistency in
the specific data segmentation as described. It is thus useful to study these different segments separately:
files 1–28 (before stimulation), files 29–51 (between stimulation and first seizure), files 52–94 (pre-ictal
phase), files 100–172 (postictal phase but with recurrent seizures in files 105 and 125) and files 175–223
(with recurrent seizures in files 192, 209 and 216). To obtain stable statistics, we temporarily disregard a
few files that are in the transitional regime. However, these files may be important in providing possible
hints about how the seizure (e.g. the one that occurred around file 99) is developed in terms of the
transient dynamics. The specific segmentation scheme of the EEG data is only for one rat, but it is valid
for all the channels.

For different segments the signal amplitudes can have systematic differences, and in certain cases
the average amplitude can be, for example, twice larger in one segment than in another. It is thus
necessary to determine and set different thresholds in different segments. To do this, first we calculate
the normalized distribution of the amplitude A in each segment. The distribution for files 1–28 is
shown in figure 8. Second, from the peak point defined as P(Ap) = 1 (as P is normalized to unity), we
decrease P with small steps, e.g. P = 0.98, 0.96, . . . , 0.02. For each P value, we determine the corresponding
threshold Ac (>Ap), as demonstrated in figure 8 for P = 0.1, where the corresponding threshold is
Ac = 61. Third, for each value of Ac, we calculate all the on-intervals in this segment from the amplitude
function. The distributions of the durations T of the on-intervals from different segments are then
compared, and various threshold values are set such that the values of P(Ac) are all identical across
the segments.
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Figure 9 shows an example of the statistical distribution of the on-intervals for all five segments
as specified above. We observe algebraic distributions. For each segment, the algebraic scaling regime
extends over at least one order of magnitude in the length of the on-interval. The distributions for the
three segments before the first seizure have approximately the same algebraic scaling exponent, as shown
in figure 9a–c, although the amplitude value varies continuously for these segments, as shown in figure 4.
After the first seizure, the exponent becomes smaller, indicating more on-intervals with longer durations.
For example, in figure 9d, for on-intervals with T ∼ 0.4 s, the probability is 100 times larger than those
before the seizure. For files 175–223, however, the exponent is somewhat increased, signifying a decrease
in the probability of longer on-intervals, but it is still larger than the probability before the seizure. We
have systematically checked on-interval statistics for different thresholds. The algebraic scaling and the
qualitative difference among the scaling exponents from different segments are robust with respect to
variations of the threshold in a certain range (e.g. P(Ac) ranging from 0.02 to 0.3).

As many on-intervals (especially the long ones) correspond actually to HFOs, our discovery of the
algebraic scaling suggests that the HFOs appear more active and sustaining associated with seizure
activities, which is consistent with previous observations [29,31,32]. In general, an algebraic scaling
indicates a hierarchical organization in the underlying dynamics, which in our case, suggests such an
organization in the brain neuronal activities. For example, the local synchrony among discrete neuron
clusters may vary in hierarchical scales. The fact that approximately the same algebraic scaling exponent
occurred before the seizure indicates that, after the stimulation, while evolving toward epilepsy, the
underlying dynamics behave the same as in the normal brain. This could be due to the latency effect of
the stimulation. The development into epilepsy, however, occurs in a relatively short period, similar to
the cascading phenomena associated with earthquakes [58].

We have also checked other channels, which are so selected that they belong to different (neural)
correlation clusters. For some channels, behaviours similar to those in figure 9 are observed, but
significant deviations occur for some other channels. This may be because the HFO and the seizure
onset zone are usually highly localized [32]. As a result, only within a proper range of this zone can the
HFOs be detected. As the distance between the neighbouring channels is quite small (approx. 0.25 mm),
the HFO and the underlying neuronal activity could be revealed in a small subset of channels.

We find that the algebraic scaling law for the on-intervals of HFOs holds for all the animal models.
Figure 10a–f shows more examples for a different rat. In particular, the scaling was calculated for a
specific channel for the pre-stimulation state, post-stimulation state, evolution towards seizure, the status
epilepticus phase, the epilepsy latent period and the spontaneous/recurrent seizure period, for panels
(a–f ), respectively. We see that, while the details of the scaling behaviours can be different for the distinct
critical phases (e.g. during epileptogenesis the on-intervals with longer durations are dominant after the
first seizure), the algebraic nature of the scaling law is robust.
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Figure 10. Statistical and scaling behaviours of HFOs, more examples. Distributions of on-interval T of IMF 5 (channel 6 of rat 9): (a–f )
for files 1–19, 32–57, 63–72, 78–97, 98–118 and 119–149, corresponding to the pre-stimulation state, post-stimulation state, evolving
towards seizure, status epilepticus phase, epilepsy latent period and spontaneous/recurrent seizure period, respectively. The numbers of
on-intervals are 354 499, 561 669, 300 291, 458 649, 293 118 and 438 919 for (a–f ), respectively. An algebraic distribution is observedwith
different exponents for different segments, where the exponents are−5.7,−3.3,−2.9 for dash-dotted line, solid line and dotted line,
respectively. The criterion for choosing the threshold Ac is the same as in figure 9.

3. Discussion
Seizure prediction, early recognition and blockage of seizures are considered by the membership
of the American Epilepsy Society (AES) as the first research priority listed among 15. To achieve
these goals a good understanding of the origin, mechanism and dynamics of seizures is necessary.
At present the only accessible avenue to probe the origin of epileptic seizures is multiple-channel
EEG or ECoG data. Continuous improvement in the experimental methodology has made such data
highly reliable and generally of high quality. A challenge is that the amount of EEG or ECoG data is
massive. An issue of paramount importance and significant interest is to extract knowledge about epilepsy
from data.

We have developed a method to detect, characterize and analyse the dynamical behaviour of HFOs
from a massive database of extensive EEG recordings of a number epileptic rats over two months. We
first devise a general and efficient procedure for preprocessing the massive database to exclude erroneous
data files and statistical anomalies. (The procedure should also be applicable to massive datasets of other
sorts, such as large-scale sensor data or seismic data collections.) We then articulate a procedure based
on separating the time scales, the EMD method [23,24], to detect HFOs. We finally perform a statistical
analysis and find evidence for a striking phenomenon: the occurrences of HFOs appear in an on–off
intermittent manner and the time intervals that they last exhibit an algebraic scaling.

The methods and results in this paper can potentially be extended to other fields. Big datasets
arise not only in biomedicine but also in other fields of science and engineering. For example, in civil
engineering, large sensor arrays are often employed to monitor the temperature, humidity and energy
flows in large, complex infrastructure systems in a continuous-time fashion. In such an application,
the underlying system is in general non-stationary and nonlinear, and to detect behaviours that
deviate from the norm or the expected is of considerable interest. Another example is earthquake
data. A previous work [58] indicated that seizures can be regarded as ‘quakes of the brain’. It is then
conceivable that the idea, method and algorithms developed in this paper can be extended to big
seismic database for detecting anomalous oscillating signals (similar to HFOs) preceding the actual
occurrence of earthquakes. In general, the EMD/Hilbert transform-based methodology demonstrated
in this paper has broad applications because it is specifically designed [23] to deal with nonlinear
and non-stationary systems. Owing to its built-in ability to obtain from a complex, seemingly random
time series a number of dominant components of distinct time scales, the method is anticipated
to be especially effective for anomaly detection. A challenge is to develop mathematically justified,
computationally reasonable and automated procedures to detect anomalies, from big datasets, which
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has been addressed in this paper through the detection of HFOs from massive EEG data with multiple
animal models.

We now discuss a number of issues that may warrant future efforts.
First, there is room to improve the EMD-based algorithms developed in this paper, leading possibly

to a fully automated method for detecting HFOs and population spikes from massive data for all distinct
epileptic stages including pre-stimulation, pre-seizure and recurrent seizures. This will provide a base
for probing into the emergence and evolution of HFOs through detailed analyses using methods from
nonlinear dynamics, statistics and statistical physics. Special features associated with different types
of brain activities can be identified, with the grand goal to exploit the predictive power of HFOs for
epileptic seizures. Many questions, which are previously unimaginable, can be asked. For example, does
a general class of HFOs exist, regardless of the specific brain activities? What types of HFOs are especially
related to seizures? How localized are they around the regions of seizure onset? Are there systematic
and characteristic changes in the HFOs during the ictal phase? What types of HFOs are associated with
recurrent seizures and is there any relation to the latency period? Answers to those questions and many
more will provide a comprehensive picture for the dynamical role of HFOs in epileptogenesis.

Second, with our optimized EMD-based method, HFOs and population spikes can be detected
reliably for all the channels. The issue of spatiotemporal evolution of these dynamical events in the
brain can then be addressed. For example, we have observed that certain population spikes appear
only in some channels at a given time, i.e. they may be highly localized in space. Some HFOs can,
however, occur in many channels simultaneously. A possible reason for the dispersive character of
the HFOs is that the distance between neighbouring recording sites is about 0.25 mm, which can be
within the propagating range of the underlying neuronal activities that cause the pathologic HFOs. The
available database from a dense electrode grid thus provides a useful probe to study the propagation of
neuronal synchronous activities. For example, by examining the exact timings of HFOs and population
spikes and the occurrence of the epileptic seizure in different EEG channels, the propagating pattern
of these dynamical events can be determined and, consequently, the sources triggering these events
may be identified. A mapping between the epileptic dynamics and activities in different brain regions
can be made and the temporal evolution of the mapping can be studied. It would also be useful to
examine the correlation patterns of the distinct dynamical events and compare them with those of the
background neuronal activities. All these have the potential to provide deeper insights into the origin of
epileptogenesis.

Third, in this paper we focused on stable states of the brain, which are the states that last for relatively
long periods of time. The transient behaviours were neglected. It would be interesting to study the
nonlinear and complex transient dynamics [59] associated with epileptogenesis and brain behaviours
in general.

Fourth, there were previous studies of exploiting nonlinear dynamics for analysing epileptic
seizures (e.g. [60–66]), and on–off intermittency is an ubiquitous phenomenon in nonlinear dynamical
systems [67–82]. It is known in nonlinear dynamics that on–off intermittency can be controlled by
applying small but deliberately chosen perturbations to the system [83]. The power-law statistics of
the on-intervals associated with HFOs indicate the emergence of a hierarchical organization in the
neuronal activities. However, it is difficult to determine uniquely the underlying dynamical mechanism
that is distinct from the well-documented mechanism for on–off intermittency. Nonetheless, there are
common features between the intermittent behaviours of HFOs uncovered in this paper and those
of on–off intermittency, such as scaling properties. If a specific type of HFO can be correlated with
the occurrence of seizures and if the underlying dynamics bear similarity to those of generic on–off
intermittency, it may be possible to investigate controlling HFO dynamics based on previous works on
controlling on–off intermittency. In particular, can the on–off intermittent dynamics of the epileptic HFOs
be controlled by using, say, small and infrequent brain stimuli to delay or even eliminate seizures? The
results in this paper provide a base for developing computational and experimental schemes to test this
control idea.

4. Material and methods
4.1. Setting of experimental data collection
Experiments were performed on five, two-month old, male Sprague Dawley rats, each weighing between
210 and 265 g. The rats were induced into the state of complete anaesthesia by subcutaneous injection of
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10 mg kg−1 (0.1 ml by volume) of xylazine and maintained in the anaesthetized state using isoflorane (1.5)
administered through inhalation by a precision vaporizer. For each rat, the top of its head was shaved
and chemically sterilized with iodine and alcohol. The skull was exposed by a mid-sagittal incision. In
three of the five rats, a bipolar, twisted, Teflon-coated, stainless steel electrode (330 µm) was implanted in
the right posterior ventral hippocampus (5.3 mm caudal to bregma, 4.9 mm right of midline suture and
at a depth of 5 mm from the dura) for stimulating the rat into status epilepticus. The remaining two rats
are for control. In all the five rats, a 16 microwire (50 µm, TDT Technologies, Alachua, FL, USA) electrode
arraying two rows separated by 500 µm with electrode spacing of 250 µm, was implanted to the left of
midline suture horizontally in the CA1–CA2 and dentate gyrus of the hippocampus. The furthest left
microwire was 4.4 mm caudal to bregma, 4.6 mm left of midline suture and at a depth of 3.1 mm from
the dura. A second microwire array of 16 electrodes was implanted to the right of midline suture in
a diagonal fashion. The furthest right microwire was 3.2 mm caudal to bregma, 2.2 mm to the right of
midline suture. The closest right microwire was 5.2 mm caudal to bregma, 1.7 mm to the right of midline
suture and at a depth of 3.1 mm from the dura. Finally, four 0.8 mm stainless steel screws were placed in
the skull to anchor the microwire electrode array: two screws were AP 2 mm to the bregma and bilaterally
2 mm and served as the ground electrodes while two screws were AP −2 mm to the lambdoidal suture
and bilaterally 2 mm and served as the reference electrodes. The entire surgical area was then closed and
secured with cranioplast cement. Following surgery the rats were allowed to recover for a week.

4.2. Data acquisition and file structures
Electrophysiological recordings were conducted by hooking each rat onto a 32-channel commutator, the
output of which was fed into the recording system comprising two 16-channel pre-amps, which digitized
the incoming signal with a 16 bit A/D converter at a sampling rate of 12 kHz (approx. 12 207 Hz). The
digitized signal was then sent over a fibre optic cable to a Pentusa RX-5 data acquisition board (Tucker
Davis Technologies). The digital stream of data was stored for later processing. For each channel, the
data were recorded and saved as 16-bit signed integer binary files, each of size 600–700 MB (approx. 7.5 h
recording time). Thus, for each rat, there were 32 channels, each of which has between 153 and 317 files
depending on the recording durations. Each binary file was assigned a rat number, a channel number and
a file number. The data were recorded over two months for most of the rats, including pre-stimulation
stage, pre-seizure stage, status epilepticus phase, epilepsy latent period and spontaneous/recurrent
seizure period.

The sampling rate of the data was relatively high, making it possible to analyse high-frequency, short-
duration dynamical events in the brain such as HFOs and population spikes. The typical duration of
an HFO is about 100 ms and its characteristic spontaneous frequency can be as high as several hundred
hertz. In such a case, our data will have 40 points for a single oscillation period, which is generally
enough for various analyses of HFOs. The extensive database provides us with a platform to compare
the high-frequency events in different stages in the evolution of epileptic seizures and to systematically
investigate the dynamics of epileptogenesis.

4.3. Empirical mode decomposition of electroencephalogram data
EMD is specifically designed to deal with nonlinear and non-stationary datasets. In particular, EMD
decomposes the signal into a series of IMFs, as follows. For a given signal, EMD determines the local
maxima and local minima, and connects them with cubic splines to form an IMF. One then subtracts the
IMF from the original signal, and repeats the process to get the second IMF and so on. The procedure
is repeated until the remaining signal becomes monotonic. The IMFs are orthogonal to each other (at
least locally) and their sum restores the original data. Thus, effectively, the original signal has been
decomposed into the IMFs, each in a distinct frequency range, whose non-stationary amplitude and
frequency information is well preserved.

Ideally, for given EEG data, the EMD method returns a set of IMFs in separate frequency ranges.
Practically, as each data file is too large to be processed computationally, we need to divide the data into
small segments so that each segment can be computed within the memory of our computers. To deal with
the boundary effect properly, for each data segment, we include an extra but much smaller subset of data
points on both ends of the segment, which are from neighbouring segments. These are the corresponding
boundary sets. After performing the EMD calculations, only the IMFs within the original data segment
are kept, while those associated with the boundary sets are discarded. For a given data segment, the
resulting IMFs usually depend on the choices of the sizes of the segment and the boundary sets. In
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Figure 11. A demonstration of adding small oscillations in EMD computation to eliminate spurious large values in IMFs. (a) A 5 s segment
of data with about 0.4 s zeros, as indicated by the dotted circle. (b–f ) The first 5 IMFs directly calculated from the data in (a). (g) Data (a)
with added small oscillations on the scale of unity (see text), which is almost invisible from the figure. (h–l) The first 5 IMFs calculated
from the data in (g). Insets of (g) and (k) show magnification of the zero region. Note that the scale of the y axis is much larger in (b–f )
than those in (h–l). The anomalies appeared in (b–f ) are effectively removed by the simple method of adding small oscillations to the
data segment.

particular, the larger the boundary sets, the more accurate the IMFs, but the amount of the computation
will also increase. A systematic test on varying sizes of the boundary sets indicates that the choice of 0.5 s
duration (corresponding to 6103 data points at the recording sampling frequency) for each boundary
set yields accurate IMFs with tolerable extra computation load. The limited computational power also
stipulates that the size of each segment itself cannot be too large. Our systematic test gave 5 s (approx.
61 035 data points) as the optimal duration for balancing the computation time and the reliability of the
results. We use the code developed by Rilling [84] to perform the EMD calculations by modifying the
original C-Matlab interface to C-codes.

Another practical issue is that the data may contain some discontinuities. In such a case, the
EMD program may diverge or have abnormally large values (figure 11a–f ). A remedy is to add
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a small perturbation in the original signal prior to the EMD calculations. However, due to the
difference in the frequency ranges in which the various IMFs lie, small time-varying perturbation
signals of frequencies in these distinct ranges are needed. For each frequency range, the amplitude
of the perturbation needs to be orders of magnitude smaller than that of the corresponding IMF.
For example, if for a normal EEG data segment (denoted by y[i]), there are six IMFs and their
frequencies are about 5 kHz, 2 kHz, 1 kHz, 500 Hz, 200 Hz and 100 Hz, respectively (for IMFs 1–6), we
will need to add the following small sinusoidal signals: y[i] = y[i] + 0.9 × sin (2π i/(12 207/100)) + 0.5 ×
sin (2π i/(12 207/200)) + 0.25 × sin (2π i/(12 207/500)) + 0.125 × sin (2π i/(12 207/1000)) + 0.0625 × sin(2π i/
(12 207/2000)) + 0.03 × sin(2π i/(12 207/5000)), where the amplitudes of the IMFs are typically larger than
10. The perturbation signals thus will not have any practical influences on the IMF results for normal
data. However, when there is a discontinuity with a linear relaxation in time, the corresponding IMFs
will contain the added small sinusoidal oscillations instead of generating divergence or large anomalies
(figure 11g–l). In addition, when the original data is contaminated by a small segment of zeros, without
adding the small oscillations, the resulting IMFs will oscillate wildly in this region with amplitudes
orders of magnitude larger than those of the normal datasets (figure 11a–f ). This is because, for obtaining
each IMF, EMD looks for the local maxima and local minima and then approximates the data with cubic
spline connecting the maxima or minima. When a segment of zeros is encountered, there are no local
maxima or minima so that the EMD extrapolates with cubic spline using the maxima or minima outside
this region. For the first IMF, as the frequency is the highest (approx. 5 kHz), even a zero segment of
about 0.1 s would correspond to about 500 maxima or minima. Thus, the extrapolation will generate
extremely large, artificial oscillations. The remainder obtained by subtracting IMF 1 from the original
data will compensate the large oscillations in IMF 1, but they will propagate to subsequent IMFs. The
conclusion is that, adding the small sinusoidal perturbing signals causes essentially no difference in the
original signal (about 1 part in 1000), but the artificial anomalies can be effectively eliminated.

Ethics. This study was conducted in accordance with Federal and University of Florida Institutional Animal Care and
Use Committee policies regarding the ethical use of animals in research (IACUC protocol D710).
Data accessibility. All data used in the study have been uploaded onto Google Drive and are publicly available:
https://drive.google.com/drive/folders/0B7S5nQOU−nMIYkEyYmJvTGpNOVU?usp=sharing.
Authors’ contributions. Y.-C.L., L.H., P.R.C., W.L.D. and M.S. conceived and designed the research. The data were acquired
in P.R.C.’s laboratory. L.H. and X.N. developed the computational method and performed simulations. All analysed
data. Y.-C.L. and L.H. drafted the manuscript. All authors gave final approval for publication.
Competing interests. We have no competing interests.
Funding. The National Institutes of Biomedical Imaging and Bioengineering (NIBIB) through Collaborative Research in
Computational Neuroscience (CRCNS) grant numbers R01 EB004752 and EB007082, the Wilder Center of Excellence
for Epilepsy Research and the Children’s Miracle Network supported this research. This work was also supported by
the US Army Research Office under grant no. W911NF-14-1-0504. L.H. was supported by NNSF of China under grant
nos. 11135001, 11375074 and 11422541. Y.-C.L. acknowledges support from the Vannevar Bush Faculty Fellowship
program sponsored by the Basic Research Office of the Assistant Secretary of Defense for Research and Engineering
and funded by the Office of Naval Research through grant no. N00014-16-1-2828.

References
1. Marx V. 2013 Biology: the big challenges of big data.

Nature (London) 498, 255–260. (doi:10.1038/
498255a)

2. Sagiroglu S, Sinanc D. 2013 Big data: a review. In
2013 Int. Conf. on Collaboration Technologies and
Systems (CTS), San Diego, CA, pp. 42–47.
IEEE.

3. Katal A, Wazid M, Goudar RH. 2013 Big data: issues,
challenges, tools and good practices. In Sixth Int.
Conf. on Contemporary Computing (IC3), Noida,
pp. 404–409. IEEE.

4. Chen M, Mao SW, Zhang Y, Leung VCM. 2014 Big
data related technologies, challenges and future
prospects. Berlin, Germany: Springer.

5. Fan JQ, Han F, Liu H. 2014 Challenges of big data
analysis. Nat. Sci. Rev. 1, 293–314. (doi:10.1093/
nsr/nwt032)

6. Lazer D, Kennedy R, King G, Vespignani A. 2014 The
parable of Google Flu: traps in big data analysis.

Science 343, 1203–1205. (doi:10.1126/science.
1248506)

7. Howe D et al. 2008 Big data: the future of
biocuration. Nature (London) 455, 47–50.
(doi:10.1038/455047a)

8. Baig MM, Gholamhosseini H. 2013 Smart health
monitoring systems: an overview of design and
modeling. J. Med. Sys. 37, 9898. (doi:10.1007/s10916-
012-9898-z)

9. Sanchez JC, Mareci TH, NormanWM, Principe JC,
Ditto WL, Carney PR. 2006 Evolving into epilepsy:
multiscale electrophysiological analysis and
imaging in an animal model. Exp. Neurol. 198,
31–47. (doi:10.1016/j.expneurol.2005.
10.031)

10. Talathi SS, Hwang DU, Spano ML, Simonotto J,
Furman MD, Myers SM, Winters J, Ditto WL, Carney
PR. 2008 Non-parametric early seizure detection in
an animal model of temporal lobe epilepsy. J.

Neural Eng. 5, 85–98. (doi:10.1088/1741-2560/
5/1/009)

11. Komalapriya C, Romano M, Thiel M, Schwarz U,
Kurths J, Simonotto J, Furman M, Ditto WL, Carney
PR. 2009 Analysis of high-resolution microelectrode
EEG recordings in an animal model of spontaneous
limbic seizures. Int. J. Bifurcation Chaos 19, 605–617.
(doi:10.1142/S0218127409023226)

12. Cadotte A, Mareci T, DeMarse T, Ditto WL, Talathi
SS, Hwang DU, Carney P. 2009 Temporal lobe
epilepsy: anatomical and effective connectivity.
IEEE Trans. Neural Syst. Rehab. 17, 214–223.
(doi:10.1109/TNSRE.2008.2006220)

13. Talathi SS, Hwang DU, Ditto WL, Spano M, Carney
PR. 2009 Circadian phase-induced imbalance in the
excitability of population spikes during
epileptogenesis in an animal model of spontaneous
limbic epilepsy. Neurosci. Lett. 455, 145–149.
(doi:10.1016/j.neulet.2009.03.057)

 on January 19, 2017http://rsos.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1038/498255a
http://dx.doi.org/doi:10.1038/498255a
http://dx.doi.org/doi:10.1093/nsr/nwt032
http://dx.doi.org/doi:10.1093/nsr/nwt032
http://dx.doi.org/doi:10.1126/science.1248506
http://dx.doi.org/doi:10.1126/science.1248506
http://dx.doi.org/doi:10.1038/455047a
http://dx.doi.org/doi:10.1007/s10916-012-9898-z
http://dx.doi.org/doi:10.1007/s10916-012-9898-z
http://dx.doi.org/doi:10.1016/j.expneurol.2005.10.031
http://dx.doi.org/doi:10.1016/j.expneurol.2005.10.031
http://dx.doi.org/doi:10.1088/1741-2560/5/1/009
http://dx.doi.org/doi:10.1088/1741-2560/5/1/009
http://dx.doi.org/doi:10.1142/S0218127409023226
http://dx.doi.org/doi:10.1109/TNSRE.2008.2006220
http://dx.doi.org/doi:10.1016/j.neulet.2009.03.057
http://rsos.royalsocietypublishing.org/


17

rsos.royalsocietypublishing.org
R.Soc.opensci.4:160741

................................................
14. Fisher N, Talathi SS, Carney PR, Ditto WL. 2010

Effects of phase on homeostatic spike rates. Biol.
Cybern. 102, 427–440. (doi:10.1007/s00422-
010-0376-8)

15. Nandan M, Talathi SS, Khargonekar P, Carney PR,
Ditto WL. 2010 Support vector machine algorithms
for seizure detection in an animal model of
temporal lobe epilepsy. J. Neural Eng. 7, 036001.
(doi:10.1088/1741-2560/7/3/036001)

16. Cadotte AJ, DeMarse TB, Mareci TH, Parekh M,
Talathi SS, Hwang DU, Ditto WL, Ding M, Carney PR.
2010 Granger causality relationships between local
field potentials in an animal model of temporal
lobe epilepsy. J. Neurosci. Methods 189, 121–129.
(doi:10.1016/j.jneumeth.2010.03.007)

17. Tang L, Yu L, Wang S, Li JP, Wang SY. 2012 A novel
hybrid ensemble learning paradigm for nuclear
energy consumption forecasting. Appl. Energy 93,
432–443. (doi:10.1016/j.apenergy.2011.12.030)

18. Ghelardoni L, Ghio A, Anguita D. 2013 Energy load
forecasting using empirical mode decomposition
and support vector regression. IEEE Trans. Smart
Grid 4, 549–556. (doi:10.1109/TSG.2012.2235089)

19. An N, Zhao WG, Wang JZ, Shang D, Zhao ED. 2013
Using multi-output feedforward neural network
with empirical mode decomposition based signal
filtering for electricity demand forecasting. Energy
49, 279–288. (doi:10.1016/j.energy.2012.10.035)

20. Zhang Y, Chen M, Mao SW, Leung V. 2014 CAP:
community activity prediction based on big data
analysis. IEEE Net. 28, 52–57. (doi:10.1109/MNET.
2014.6863132)

21. Chen M, Mao SW, Liu YH. 2014 Big data: a survey.
Mobile Net. Appl. 19, 171–209. (doi:10.1007/s11036-
013-0489-0)

22. Sandryhaila A, Moura JMF. 2014 Big data analysis
with signal processing on graphs: representation
and processing of massive data sets with irregular
structure. IEEE Sig. Proc. Mag. 31, 80–90.
(doi:10.1109/MSP.2014.2329213)

23. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng
Q, Yen NC, Tung CC, Liu HH. 1998 The empirical
mode decomposition and the Hilbert spectrum for
nonlinear and non-stationary time series analysis.
Proc. R. Soc. Lond. A 454, 903–995. (doi:10.1098/
rspa.1998.0193)

24. Yalcinkaya T, Lai YC. 1997 Phase characterization of
chaos. Phys. Rev. Lett. 79, 3885–3888. (doi:10.1103/
PhysRevLett.79.3885)

25. Quian Quiroga R, Kraskov A, Kreuz T, Grassberger P.
2002 Performance of different synchronization
measures in real data: a case study on
electroencephalographic signals. Phys. Rev. E 65,
041903. (doi:10.1103/PhysRevE.65.041903)

26. Staba RJ, Wilson CL, Bragin A, Fried Jr I, Engel J.
2002 Quantitative analysis of high-frequency
oscillations (80–500 Hz) recorded in human
epileptic hippocampus and entorhinal cortex.
J. Neurophysiol. 88, 1743–1752.

27. Worrell GA, Parish L, Cranstoun SD, Jonas R, Baltuch
G, Litt B. 2004 High frequency oscillations and
seizure generation in neocortical epilepsy. Brain
127, 1496–1506. (doi:10.1093/brain/awh149)

28. Jirsch JD, Urrestarazu E, LeVan P, Olivier A, Dubeau
F, Gotman J. 2006 High-frequency oscillations
during human focal seizures. Brain 129, 1593–1608.
(doi:10.1093/brain/awl085)

29. Worrell GA, Gardner AB, Stead SM, Hu S, Goerss S,
Cascino GJ, Meyer FB, Marsh R, Litt B. 2008

High-frequency oscillations in human temporal
lobe: simultaneous microwire and clinical
macroelectrode recordings. Brain 131, 928–937.
(doi:10.1093/brain/awn006)

30. Zijlmans M, Jacobs J, Zelmann R, Dubeau F, Gotman
J. 2009 High-frequency oscillations mirror disease
activity in patients with epilepsy. Neurology 72,
979–986. (doi:10.1212/01.wnl.0000344402.
20334.81)

31. Bragin Jr A, Engel J, Staba RJ. 2010 High-frequency
oscillations in epileptic brain. Curr. Opin. Neurol. 23,
151–156. (doi:10.1097/WCO.0b013e3283373ac8)

32. Crépon B, Navarro V, Hasboun D, Clemenceau S,
Martinerie J, Baulac M, Adam C, Quyen MLV. 2010
Mapping interictal oscillations greater than 200 Hz
recorded with intracranial macroelectrodes in
human epilepsy. Brain 133, 33–45. (doi:10.1093/
brain/awp277)

33. Modur PN, Zhang S, Vitaz TW. 2011 Ictal
high-frequency oscillations in neocortical epilepsy:
implications for seizure localization and surgical
resection. Epilepsia 52, 1792–1801. (doi:10.1111/j.
1528-1167.2011.03165.x)

34. Blanco JA et al. 2011 Data mining neocortical
high-frequency oscillations in epilepsy and controls.
Brain 134, 2948–2959. (doi:10.1093/brain/
awr212)

35. Zijlmans M, Jiruska P, Zelmann R, Leijten FSS,
Jefferys JG, Gotman J. 2012 High-frequency
oscillations as a new biomarker in epilepsy. Ann.
Neurol. 71, 169–178. (doi:10.1002/ana.22548)

36. Jacobs J et al. 2012 High-frequency oscillations
(HFOs) in clinical epilepsy. Prog. Neurobiol. 98,
302–315. (doi:10.1016/j.pneurobio.2012.03.
001)

37. Haegelen C et al. 2013 High-frequency oscillations,
extent of surgical resection, and surgical outcome in
drug-resistant focal epilepsy. Epilepsia 54, 848–857.
(doi:10.1111/epi.12075)

38. Buzsaki G. 1996 The hippocampo-neocortical
dialogue. Cereb. Cortex 6, 81–92. (doi:10.1093/
cercor/6.2.81)

39. Siapas AG, Wilson MA. 1998 Coordinated
interactions between hippocampal ripples and
cortical spindles during slow-wave sleep. Neuron
21, 1123–1128. (doi:10.1016/S0896-6273(00)
80629-7)

40. Bragin A, Wilson CL, Staba RJ, Reddick M, Fried Jr I,
Engel J. 2002 Interictal high-frequency oscillations
(80–500 Hz) in the human epileptic brain:
entorhinal cortex. Ann. Neurol. 52, 407–415.
(doi:10.1002/ana.10291)

41. Bragin Jr A, Engel J, Wilson CL, Vizentin E, Mathern
GW. 1999 Electrophysiologic analysis of a chronic
seizure model after unilateral hippocampal KA
injection. Epilepsia 40, 1210–1221. (doi:10.1111/j.
1528-1157.1999.tb00849.x)

42. Urrestarazu E, Chander R, Dubeau F, Gotman J. 2007
Interictal high-frequency oscillations (100–500 Hz)
in the intracerebral EEG of epileptic patients. Brain
130, 2354–2366. (doi:10.1093/brain/awm149)

43. Engel J, Bragin Jr A, Staba R, Mody I. 2009
High-frequency oscillations: what is normal and
what is not? Epilepsia 50, 598–604. (doi:10.1111/
j.1528-1167.2008.01917.x)

44. Khalilov I, Quyen MLV, Gozlan H, Ben-Ari Y. 2005
Epileptogenic actions of GABA and fast oscillations
in the developing hippocampus. Neuron 48,
787–796. (doi:10.1016/j.neuron.2005.09.026)

45. Quyen MLV, Khalilov I, Ben-Ari Y. 2006 The dark side
of high-frequency oscillations in the developing
brain. Trends Neurosci. 29, 419–427. (doi:10.1016/
j.tins.2006.06.001)

46. Lai YC. 1998 Analytic signals and the transition to
chaos in deterministic flows. Phys. Rev. E 58,
R6911–R6914. (doi:10.1103/PhysRevE.58.
R6911)

47. Liang H, Lin Q, Chen JDZ. 2005 Application of the
empirical mode decomposition to the analysis of
esophageal manometric data in gastroesophageal
reflux disease. IEEE Trans. Biomed. Eng. 52,
1692–1701. (doi:10.1109/TBME.2005.855719)

48. Duffy DG. 2004 The application of Hilbert–Huang
transforms to meteorological datasets. J. Atmos.
Ocean. Tech. 21, 599–611. (doi:10.1175/1520-
0426(2004)021<0599:TAOHTT>2.0.CO;2)

49. Nunes JC, Bouaoune Y, Delechelle E, Niang O, Bunel
P. 2003 Image analysis by bidimensional empirical
mode decomposition. Image Vis. Comp. 21,
1019–1026. (doi:10.1016/S0262-8856(03)00094-5)

50. Huang NE. 2004 Empirical mode decomposition
apparatus, method and article of manufacture for
analyzing biological signals and performing curve
fitting. U.S. Patent No. 6738734.

51. Cui SY, Li XL, Ouyang GX, Guan XP. 2005 Detection
of epileptic spikes with empirical mode
decomposition and nonlinear energy operator.
In Int. Symp. on Neural Networks, pp. 445–450.
Berlin, Germany: Springer.

52. Li XL. 2006 Temporal structure of neuronal
population oscillations with empirical model
decomposition. Phys. Lett. A 356, 237–241.
(doi:10.1016/j.physleta.2006.03.045)

53. Sweeney-Reed CM, Nasuto SJJ. 2007 A novel
approach to the detection of synchronisation in EEG
based on empirical mode decomposition. J. Comp.
Neurosci. 23, 79–111. (doi:10.1007/s10827-007-
0020-3)

54. Li XL, Jefferys JGR, Fox J, Yao X. 2008 Neuronal
population oscillations of rat hippocampus during
epileptic seizures. Neural Net. 21, 1105–1111.
(doi:10.1016/j.neunet.2008.06.002)

55. Yeh CL, Chang HC, Wu CH, Lee PL. 2010 Extraction of
single-trial cortical beta oscillatory activities in EEG
signals using empirical mode decomposition.
BioMed. Eng. Online 9, 25. (doi:10.1186/1475-
925X-9-25)

56. Bajaj V, Pachori RB. 2012 EEG signal classification
using empirical mode decomposition and support
vector machine. In Proc. of the Int. Conf. on Soft
Computing for Problem Solving (SocProS 2011),
pp. 623–635. India: Springer.

57. Gardner AB, Worrell GA, Marsh E, Dlugos D, Litt B.
2007 Human and automated detection of
high-frequency oscillations in clinical intracranial
EEG recordings. Clin. Neurophysiol. 118, 1134–1143.
(doi:10.1016/j.clinph.2006.12.019)

58. Osorio I, Frei MG, Sornette D, Milton J, Lai YC. 2010
Epileptic seizures: quakes of the brain? Phys. Rev. E
82, 021919. (doi:10.1103/PhysRevE.82.
021919)

59. Lai YC, Tél T. 2011 Transient chaos: complex dynamics
on finite time scales. New York, NY: Springer.

60. Osorio I, Harrison MA, Lai YC, Frei M. 2001
Observations on the application of correlation
dimension and correlation integral to prediction of
seizures. J. Clin. Neurophysiol. 18, 269–274.
(doi:10.1097/00004691-200105000-00006)

 on January 19, 2017http://rsos.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1007/s00422-010-0376-8
http://dx.doi.org/doi:10.1007/s00422-010-0376-8
http://dx.doi.org/doi:10.1088/1741-2560/7/3/036001
http://dx.doi.org/doi:10.1016/j.jneumeth.2010.03.007
http://dx.doi.org/doi:10.1016/j.apenergy.2011.12.030
http://dx.doi.org/doi:10.1109/TSG.2012.2235089
http://dx.doi.org/doi:10.1016/j.energy.2012.10.035
http://dx.doi.org/doi:10.1109/MNET.2014.6863132
http://dx.doi.org/doi:10.1109/MNET.2014.6863132
http://dx.doi.org/doi:10.1007/s11036-013-0489-0
http://dx.doi.org/doi:10.1007/s11036-013-0489-0
http://dx.doi.org/doi:10.1109/MSP.2014.2329213
http://dx.doi.org/doi:10.1098/rspa.1998.0193
http://dx.doi.org/doi:10.1098/rspa.1998.0193
http://dx.doi.org/doi:10.1103/PhysRevLett.79.3885
http://dx.doi.org/doi:10.1103/PhysRevLett.79.3885
http://dx.doi.org/doi:10.1103/PhysRevE.65.041903
http://dx.doi.org/doi:10.1093/brain/awh149
http://dx.doi.org/doi:10.1093/brain/awl085
http://dx.doi.org/doi:10.1093/brain/awn006
http://dx.doi.org/doi:10.1212/01.wnl.0000344402.20334.81
http://dx.doi.org/doi:10.1212/01.wnl.0000344402.20334.81
http://dx.doi.org/doi:10.1097/WCO.0b013e3283373ac8
http://dx.doi.org/doi:10.1093/brain/awp277
http://dx.doi.org/doi:10.1093/brain/awp277
http://dx.doi.org/doi:10.1111/j.1528-1167.2011.03165.x
http://dx.doi.org/doi:10.1111/j.1528-1167.2011.03165.x
http://dx.doi.org/doi:10.1093/brain/awr212
http://dx.doi.org/doi:10.1093/brain/awr212
http://dx.doi.org/doi:10.1002/ana.22548
http://dx.doi.org/doi:10.1016/j.pneurobio.2012.03.001
http://dx.doi.org/doi:10.1016/j.pneurobio.2012.03.001
http://dx.doi.org/doi:10.1111/epi.12075
http://dx.doi.org/doi:10.1093/cercor/6.2.81
http://dx.doi.org/doi:10.1093/cercor/6.2.81
http://dx.doi.org/doi:10.1016/S0896-6273(00)80629-7
http://dx.doi.org/doi:10.1016/S0896-6273(00)80629-7
http://dx.doi.org/doi:10.1002/ana.10291
http://dx.doi.org/doi:10.1111/j.1528-1157.1999.tb00849.x
http://dx.doi.org/doi:10.1111/j.1528-1157.1999.tb00849.x
http://dx.doi.org/doi:10.1093/brain/awm149
http://dx.doi.org/doi:10.1111/j.1528-1167.2008.01917.x
http://dx.doi.org/doi:10.1111/j.1528-1167.2008.01917.x
http://dx.doi.org/doi:10.1016/j.neuron.2005.09.026
http://dx.doi.org/doi:10.1016/j.tins.2006.06.001
http://dx.doi.org/doi:10.1016/j.tins.2006.06.001
http://dx.doi.org/doi:10.1103/PhysRevE.58.R6911
http://dx.doi.org/doi:10.1103/PhysRevE.58.R6911
http://dx.doi.org/doi:10.1109/TBME.2005.855719
http://dx.doi.org/doi:10.1175/1520-0426(2004)021<0599:TAOHTT>2.0.CO;2
http://dx.doi.org/doi:10.1175/1520-0426(2004)021<0599:TAOHTT>2.0.CO;2
http://dx.doi.org/doi:10.1016/S0262-8856(03)00094-5
http://dx.doi.org/doi:10.1016/j.physleta.2006.03.045
http://dx.doi.org/doi:10.1007/s10827-007-0020-3
http://dx.doi.org/doi:10.1007/s10827-007-0020-3
http://dx.doi.org/doi:10.1016/j.neunet.2008.06.002
http://dx.doi.org/doi:10.1186/1475-925X-9-25
http://dx.doi.org/doi:10.1186/1475-925X-9-25
http://dx.doi.org/doi:10.1016/j.clinph.2006.12.019
http://dx.doi.org/doi:10.1103/PhysRevE.82.021919
http://dx.doi.org/doi:10.1103/PhysRevE.82.021919
http://dx.doi.org/doi:10.1097/00004691-200105000-00006
http://rsos.royalsocietypublishing.org/


18

rsos.royalsocietypublishing.org
R.Soc.opensci.4:160741

................................................
61. Lai YC, Osorio I, Harrison MA, Frei M. 2002

Correlation-dimension and autocorrelation
fluctuations in epileptic seizure dynamics. Phys. Rev.
E 65, 031921. (doi:10.1103/PhysRevE.65.
031921)

62. Lai YC, Harrison MAF, Frei MG, Osorio I. 2003
Inability of Lyapunov exponents to predict epileptic
seizures. Phys. Rev. Lett. 91, 068102.
(doi:10.1103/PhysRevLett.91.068102)

63. Lai YC, Harrison MAF, Frei MG, Osorio I. 2004
Controlled test for predictive power of Lyapunov
exponents: their inability to predict epileptic
seizures. Chaos 14, 630–642. (doi:10.1063/1.177
7831)

64. Harrison MAF, Osorio I, Frei MG, Asuri S, Lai YC. 2005
Correlation dimension and integral do not predict
epileptic seizures. Chaos 15, 033106. (doi:10.1063/
1.1935138)

65. Lai YC, Frei M, Osorio I. 2006 Detecting and
characterizing phase synchronization in
nonstationary dynamical systems. Phys.
Rev. E 73, 026214. (doi:10.1103/PhysRevE.73.
026214)

66. Lai YC, Frei MG, Osorio I, Huang L. 2007
Characterization of synchrony with applications to
epileptic brain signals. Phys. Rev. Lett. 98, 108102.
(doi:10.1103/PhysRevLett.98.108102)

67. Fujisaka H, Yamada T. 1985 A new intermittency in
coupled dynamical systems. Prog. Theor. Phys. 74,
918–921. (doi:10.1143/PTP.74.918)

68. Fujisaka H, Yamada T. 1986 Stability theory of
synchronized motion in coupled-oscillator
systems. IV Instability of synchronized chaos and

new intermittency. Prog. Theor. Phys. 75, 1087–1104.
(doi:10.1143/PTP.75.1087)

69. Fujisaka H, Ishii H, Inoue M, Yamada T. 1986
Intermittency caused by chaotic modulation. II
Lyapunov exponent, fractal structure, and power
spectrum. Prog. Theor. Phys. 76, 1198–1209.
(doi:10.1143/PTP.76.1198)

70. Platt N, Spiegel EA, Tresser C. 1993 On-off
intermittency: a mechanism for bursting. Phys. Rev.
Lett. 70, 279–282. (doi:10.1103/PhysRevLett.70.279)

71. Heagy JF, Platt N, Hammel SM. 1994
Characterization of on-off intermittency. Phys. Rev.
E 49, 1140–1150. (doi:10.1103/PhysRevE.49.1140)

72. Platt N, Hammel SM, Heagy JF. 1994 Effects of
additive noise on on-off intermittency. Phys. Rev.
Lett. 72, 3498–3501. (doi:10.1103/PhysRev
Lett.72.3498)

73. Hammer PW, Platt N, Hammel SM, Heagy JF, Lee
BD. 1994 Experimental observation of on-off
intermittency. Phys. Rev. Lett. 73, 1095–1098.
(doi:10.1103/PhysRevLett.73.1095)

74. Sommerer JC, Ott E. 1994 Blowout bifurcations—
the occurrence of riddled basins and on-off
intermittency. Phys. Lett. A 188, 39–47.
(doi:10.1016/0375-9601(94)90114-7)

75. Lai YC, Grebogi C. 1995 Intermingled basins and
two-state on-off intermittency. Phys. Rev.
E 52, R3313–R3316. (doi:10.1103/PhysRevE.52.
R3313)

76. Venkataramani SC, Antonsen Jr TM, Ott E,
Sommerer JC. 1995 Characterization of on-off
intermittent time-series. Phys. Lett. A 207, 173–179.
(doi:10.1016/0375-9601(95)00710-K)

77. Ashwin P, Stone E. 1996 Influence of noise near
blowout bifurcation. Phys. Rev. E 56, 1635–1641.
(doi:10.1103/PhysRevE.56.1635)

78. Lai YC. 1996 Symmetry-breaking bifurcation with
on-off intermittency in chaotic dynamical systems.
Phys. Rev. E 53, R4267–R4270. (doi:10.1103/
PhysRevE.53.R4267)

79. Lai YC. 1996 Distinct small-distance scaling of on-off
intermittency in chaotic dynamical systems. Phys.
Rev. E 54, 321–327. (doi:10.1103/PhysRevE.
54.321)

80. Venkataramani SC, Antonsen Jr TM, Ott E,
Sommerer JC. 1996 On-off intermittency: power
spectrum and fractal properties of time-series.
Phys. D 96, 66–99. (doi:10.1016/0167-2789(96)
00014-0)

81. Marthaler D, Armbruster D, Lai YC, Kostelich EJ. 2001
Perturbed on-off intermittency. Phys. Rev. E 64,
016220. (doi:10.1103/PhysRevE.64.016220)

82. Rempel EL, Chian AC. 2007 Origin of transient and
intermittent dynamics in spatiotemporal chaotic
systems. Phys. Rev. Lett. 98, 014101. (doi:10.1103/
PhysRevLett.98.014101)

83. Nagai Y, Hua XD, Lai YC. 1996 Controlling on-off
intermittent dynamics. Phys. Rev. E 54, 1190–1199.
(doi:10.1103/PhysRevE.54.1190)

84. Rilling G. 2007 http://perso.ens-lyon.fr/patrick.
flandrin/emd.html (accessed 1 March 2007).

 on January 19, 2017http://rsos.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1103/PhysRevE.65.031921
http://dx.doi.org/doi:10.1103/PhysRevE.65.031921
http://dx.doi.org/doi:10.1103/PhysRevLett.91.068102
http://dx.doi.org/doi:10.1063/1.1777831
http://dx.doi.org/doi:10.1063/1.1777831
http://dx.doi.org/doi:10.1063/1.1935138
http://dx.doi.org/doi:10.1063/1.1935138
http://dx.doi.org/doi:10.1103/PhysRevE.73.026214
http://dx.doi.org/doi:10.1103/PhysRevE.73.026214
http://dx.doi.org/doi:10.1103/PhysRevLett.98.108102
http://dx.doi.org/doi:10.1143/PTP.74.918
http://dx.doi.org/doi:10.1143/PTP.75.1087
http://dx.doi.org/doi:10.1143/PTP.76.1198
http://dx.doi.org/doi:10.1103/PhysRevLett.70.279
http://dx.doi.org/doi:10.1103/PhysRevE.49.1140
http://dx.doi.org/doi:10.1103/PhysRevLett.72.3498
http://dx.doi.org/doi:10.1103/PhysRevLett.72.3498
http://dx.doi.org/doi:10.1103/PhysRevLett.73.1095
http://dx.doi.org/doi:10.1016/0375-9601(94)90114-7
http://dx.doi.org/doi:10.1103/PhysRevE.52.R3313
http://dx.doi.org/doi:10.1103/PhysRevE.52.R3313
http://dx.doi.org/doi:10.1016/0375-9601(95)00710-K
http://dx.doi.org/doi:10.1103/PhysRevE.56.1635
http://dx.doi.org/doi:10.1103/PhysRevE.53.R4267
http://dx.doi.org/doi:10.1103/PhysRevE.53.R4267
http://dx.doi.org/doi:10.1103/PhysRevE.54.321
http://dx.doi.org/doi:10.1103/PhysRevE.54.321
http://dx.doi.org/doi:10.1016/0167-2789(96)00014-0
http://dx.doi.org/doi:10.1016/0167-2789(96)00014-0
http://dx.doi.org/doi:10.1103/PhysRevE.64.016220
http://dx.doi.org/doi:10.1103/PhysRevLett.98.014101
http://dx.doi.org/doi:10.1103/PhysRevLett.98.014101
http://dx.doi.org/doi:10.1103/PhysRevE.54.1190
http://perso.ens-lyon.fr/patrick.flandrin/emd.html
http://perso.ens-lyon.fr/patrick.flandrin/emd.html
http://rsos.royalsocietypublishing.org/

	Introduction
	Results
	Pretreatment of datasets
	Empirical mode decomposition analysis of electroencephalogram data
	Detection of high-frequency oscillations and population spikes
	Automated detection and classification of high-frequency oscillations
	Statistical and scaling properties of high-frequency oscillations

	Discussion
	Material and methods
	Setting of experimental data collection
	Data acquisition and file structures
	Empirical mode decomposition of electroencephalogram data

	References

