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I. Locating sources in continuous-time dynamical networks

A linear, time-invariant, and continuous-time dynamical network system can be described in the follow-

ing state-space form 
ẋ(t) = Ax(t)

y(t) = Cx(t),

(S1)

where x(t) ∈ RN represents the complete state of the network system at time t, N is the number of

nodes, y(t) is the vector of q outputs at time t, A ∈ RN×N is the system matrix, and C ∈ Rq×N is the

output matrix. If the full initial state of the system, x(t0), can be obtained from the outputs in the time

interval [t0, t], the system is observable [S1].

To be concrete, we present a general method of reconstructing the initial states of an arbitrary linear

time-invariant network using the diffusion model

ẋi(t) = β
N∑
j=1

[wijxj(t)− wjixi(t)] , (S2)

where xi(t) is the state of node i at the time t, β is the diffusion coefficient (constant), and wij (wji) is

the weight of a directed link from node j to i (i to j). Combining Eqs. (S2) and (S1), we have


ẋ(t) = βLx(t)

y(t) = Cx(t),

(S3)

where L = (W −D), W ∈ RN×N is the adjacency matrix of elements wij , D ∈ RN×N is the diagonal

matrix with element di representing the total out-weight
∑

j∈Γi
wji of node i (Γi is the set of neighbors

of node i). The output response of the system is

y(t) = CeβL(t−t0)x(t0). (S4)

For convenience, we can stack all the outputs y(t) into a vector: Y = [y(t0), · · · ,y(t0+0.1), · · · ,y(t0+
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0.2), · · · ,y(t0 + t)]T . Intuitively, N snapshot measurements of the network state are needed to achieve

a unique solution. Without loss of generality, we sample the same time interval T to obtain



y(t0)

y(t0 + T )

...

y(t0 + (N − 1)T )


=



C

CeβLT

...

Ce(N−1)βLT


x(t0) = O · x(t0), (S5)

where the matrix O ∈ RqN×N is the so-called observability matrix in canonical control theory. A unique

solution of Eq. (S5) exists and the state vector x(t0) at initial time is observable if and only if the rank

condition rank(O) = N is satisfied [S2]. Our goal is to identify the minimum set of messenger nodes to

satisfy the observability full rank condition.

To achieve our goal, we exploit the recently developed exact controllability theory [S1] and the

duality between controllability and observability [S2], which enables us to find Nm, the minimum number

of messengers in an efficient manner. In particular, for an arbitrary network, Nm is determined by the

maximum geometric multiplicity maxi{µ(λL
i )} of the eigenvalues λL

i of matrix L, as

Nm = max
i

{N − rank[λL
i I − L]}, (S6)

which is exactly the same as that for discrete-time dynamical networks studied in the main text. Insofar as

Nm is determined, the key to source localization is then to identify messengers to obtain the output matrix

C. The method of identifying messengers is essentially the same as that for the discrete time case: by

using the Popov-Belevitch-Hautus (PBH) test theory [S3], we obtain the output matrix C associated with

Nm messenger nodes through rank

λmaxI − L

C

 = N , where λmax is the eigenvalue corresponding

to the maximum geometric multiplicity µ(λmax) of matrix L. To determine the output matrix C, we

implement elementary row transformation on matrix λmaxI − L to obtain the row canonical form of

the matrix. The nodes whose numbers correspond to the linearly-dependent columns are the messenger

nodes. Finally, combining with Eq. (S5), we can locate sources in continuous-time dynamic networks.

Therefore, our theoretical framework of source localization, including the minimum output theory

for determining a minimum set of messenger nodes and identifying the messenger nodes is exactly the

same for both discrete and continuous dynamical network systems.
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II. Proof of the minimum output theory

According to the exact controllability theory [S4] and the dual relation between network controllability

and observability [S1], for system (2) in the main text, Nm is determined by the maximum geometric

multiplicity of the eigenvalue λi of the matrix I + βL, i.e.,

Nm = max
i

{N − rank[λiI − (I + βL)]}. (S7)

We can prove that Nm is independent of β in the sense that β can be eliminated from Eq. (S7). For matrix

I + βL, we have

(I + βL)v = v + βLv,

= v + βλL
i v,

= (1 + βλL
i )v, (S8)

where λL
i is the eigenvalue of matrix L and v is the associated eigenvector. Equation (S8) gives the

eigenvalue λi of matrix I + βL, i.e.,

λi = 1 + βλL
i . (S9)

Inserting the expression of λi into Eq. (S7), we have

Nm = max
i

{N − rank[(1 + βλL
i )I − (I + βL)]},

= max
i

{N − rank[β(λL
i I − L)]},

= max
i

{N − rank[λL
i I − L]}, (S10)

which indicates that the minimum output Nm is independent of the value of β. The exact minimum

output theory for arbitrary network [Eq. (5) in the main text] is proved.

For system (2) in the main text with an arbitrary undirected network, according to the exact con-

trollability theory [S4] and the dual relation between network controllability and observability, Nm is

determined by the maximum eigenvalue degeneracy of matrix I + βL, i.e.,

Nm = max
i

{δ(λi)}, (S11)
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where δ(λi) is the eigenvalue degeneracy of matrix I + βL. Equation (S9) demonstrates that there is a

one-to-one correspondence between the eigenvalue λi of matrix I + βL and the eigenvalue λL
i of matrix

L. Thus, I + βL and L have exactly the same eigenvalue degeneracy, which yields the exact minimum

output theory [Eq. (6) in the main text] for undirected networks, i.e.,

Nundirect
m = max

i
{δ(λL

i )}, (S12)

and the diffusion parameter β is eliminated.

Furthermore, Eq. (S10) indicates that the geometric multiplicity of the eigenvalues of L is equal

to that of I + βL, and the output matrix C of L is identical to that of I + βL as well. Utilizing the

Popov-Belevitch-Hautus (PBH) test theory [S3], we can get the output matrix C from

rank

λmaxI − L

C

 = N, (S13)

instead of

rank

λ̂maxI − (I + βL)

C

 = N, (S14)

where λ̂max is the maximum geometric multiplicity of the eigenvalues of I + βL. This implies that the

diffusion parameter β has no influence on identifying messenger nodes based on PBH test as well, as

described in the subsection Identification of messenger node set.
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III. Analytical treatment of locatability of ER and SF networks

In general, for an undirected network (symmetric matrix), eigenvalue degeneracy is exactly the same as

its geometric multiplicity. Thus, according to the ET formulas, e.g., Eqs. (5) and (6) in the main text,

the eigenvalue λmax with the maximum geometric multiplicity in Eq. (5) is nothing but the eigenvalue

with the maximum degeneracy (the number of appearances in the eigenvalue spectrum). In this regard,

if we are able to evaluate the eigenvalue with the maximum degeneracy a priori, the calculation of the

all eigenvalues in Eq. (6) and that of matrix ranks for all possible eigenvalues in Eq. (5) can be saved,

leading to a fast estimation of nm by inserting the estimated eigenvalue into Eq. (5).

For a sparse undirected network (symmetric matrix), the diagonal elements of the network matrix

often dominate eigenvalue spectrum [S5]. Hence, the diagonal elements with the maximum multiplicity

(the largest number of appearances in the diagonal) could be a proxy of the eigenvalue with maximum

degeneracy. However, for Laplacian matrix L, in additional to the diagonal elements, zero could domi-

nate eigenvalue spectrum as well in the absence of any zero diagonal elements, because of the existence

of isolated components. Note that each isolated component or node will contribute one null eigenvalue to

the eigenvalue spectrum of a Laplacian matrix. Thus, diagonal elements and zero are possible candidates

for formulating a fast estimation of the source locatability measure nm:

nsparse
m ≈ 1− rank(aI − L)

N
, (S15)

where a is either zero or the diagonal element of L with the maximum multiplicity.

In an undirected ER network with small connection probability, there are a number of isolated nodes

and isolated components, accounting for the dominance of zero in the eigenvalue spectrum. Thus, the

source locatability nm can be estimated by examining the isolated nodes without links and the nodal

pairs. Using the degree distribution P (k) of ER networks, e−⟨k⟩⟨k⟩k/k!, we have

nUER
m ≈ max{1/N, P (k = 0) + P (k = 1)2}, (S16)

which gives

nUER
m = δ(0) ≈ e−⟨k⟩ + ⟨k⟩2e−2⟨k⟩. (S17)

For a directed network, let kout and kin be the out-degree and in-degree, respectively, and suppose

that the links are unidirectional. The average degree of the network is ⟨k⟩ = ⟨kout⟩/2 = ⟨kin⟩/2. A fast
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estimation of the source locatability yields

nsparse
m ≈ 1− rank(aI − L)

N
, (S18)

where a is 0, -1 or -2, due to the fact that the diagonal element of matrix L is dominated by 0, -1 or -2 for

small average degree ⟨k⟩. Numerical calculations suggest that the main contributions to nm come from

eigenvalues 0, -1 and -2.

For a directed ER network with a small connection probability 2⟨k⟩/N , analogous to the undirected

case, we only need to consider isolated nodes and nodal pairs to obtain

nDER
m ≃ max{1/N, P (kout = 0, kin = 0) + P (kout = 1, kin = 0)P (kout = 0, kin = 1)}. (S19)

Since kin is independent of kout, we have

nDER
m ≈ e−⟨k⟩ +

⟨k⟩2e−2⟨k⟩

4
. (S20)

For a directed SF network, nodes of zero out-degree must be the messengers. In this case, we can

estimate nm as

nDSF
m ≃ max{1/N,

N−1∑
m

P (kout = 0|k)P (k)}, (S21)

where P (k) = P (kin + kout) follows a power law, and P (kout|k) is the conditional probability that one

node has out-degree kout when its degree is k. According to binomial theorem, we have

P (kout|k) =
(

k

kout

)(
1

2

)kout(1

2

)k−kout

, (S22)

which yields

P (kout = 0|k) = 2−k (S23)

and consequently,

nDSF
m ≈

N−1∑
k=m

2−kP (k). (S24)
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IV. Cavity method for estimating locatability

In Ref. [S6], the cavity method was used to quantify the network controllability via the density of the

driver nodes for directed networks. The method was subsequently extended to undirected networks [S4].

Because of the duality between controllability and observability, we can use the cavity method to estimate

the locatability nm for general complex networks. In particular, for a directed network with similar in-

and out-degree distribution P (k), the locatability nm is given by

nm = G(w2) +G(1− w1)− 1 + ⟨k⟩w1(1− w2), (S25)

where G(x) is the generating function satisfying

G(x) =
∞∑
k=0

P (k)xk. (S26)

The quantities w1 and w2 in Eq. (S25) can be obtained through the following self-consistent equations:

w1 = H[1−H(1− w1)], (S27)

w2 = 1−H[1−H(w2)], (S28)

where H(x) is a generating function defined as

H(x) =

∞∑
k=0

Q(k + 1)xk, (S29)

and Q(k) = kP (k)/⟨k⟩.

In Ref. [S5], the cavity method was used to calculate the controllability measure for directed networks

with multiple types of self loops, where the diagonal elements of matrix L were regarded as self loops.

This is key to calculating the locatability measure nm for matrix L − aI . Adopting the method in

Ref. [S5], we have that, if a diagonal element of L − aI is nonzero, the in- and out-degree of the

corresponding node is increased by 1, while the degrees of the other nodes remain the same in the

original weighted network. For an undirected network, if a diagonal element of L − aI is nonzero, the

degree of the node is increased by 2. Finally, based on the new node degrees, we can obtain nm by

combining Eqs. (S25-S29).
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V. Characteristics of real networks studied

In the main text, results from a number of real networks are presented to test our ET and FE methods.

The details of the real networks are listed in table S1, which include the names of the data sets, the data

type, the number of nodes N , the number of links E, and brief descriptions of the networks.

VI. Performance assessment of source localization

The area under a receiver operating characteristic (AUROC) for the source localization is defined in

terms of true positive rate (TPR) and false positive rate (FPR). TPR and FPR are defined as follows:

TPR(s) =
TP(s)

P
and FPR(s) =

FP(s)

Q
, (S30)

where s is the cutoff (threshold) in the list of reconstructed state xi(t) at time t, TP(s) (FPR(s)) is the

number of true (false) positives in the top s reconstructed values of xi(t) and P (Q) is the number of

positives (negatives) in the gold standard. AUROC is the area under the TPR-FPR curve.
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VII. More examples of source localization

A. An example of locating sources in undirected weighted ER network without noise

To be concrete, we set Data = 0.5 and assume that the initial triggering time t0 is unknown. In Fig. S1A,

we show that measurements from any single node are sufficient to locate the sources, as the network has

a single connected component with random link weights. Fig. S1B shows that our method can accurately

infer both the number of sources and their locations, as well as the initial triggering time t0. Fig. S1C

shows, for different initial observation time tini, that the number of sources and their locations can be

determined in a large range after t0 is detected as in Fig. S1B.

The performance of our method can be assessed, as follows. For concreteness, we assume tini =

t0 + 10. Fig. S1D shows that the value of AUROC will reach unity at tini − 10, which is the triggering

time t0, and the AUROC value decreases more significantly when the inferred time is t < t0 as compared

with the case of t > t0. From Fig. S1E, we see that AUROC reaches unity when the observation time

is tini ≈ 3 time steps before t0, and AUROC is almost unchanged as tini is increased. These results are

similar to those of SF networks (Fig. 3 in the main text).

B. Examples of locating sources in undirected weighted SF and ER networks in presence

of noise

We extend our source localization framework to cases where there is noise for SF and ER networks.

Assuming σ = 0.5 and setting Data = 0.5, we reconstruct x(t0) with four random sources. Fig. S2

and Fig. S3 show essentially the same results as Fig. S1, indicating the robustness of our localization

framework.
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VIII. Robustness of our source localization framework

We systematically investigate source localization for undirected and weighted ER and SF networks in

terms of data requirement and noise resistance. Supplementary Fig. S4A and Fig. S4B show, for σ = 0,

relatively small data amount, and both ER and SF networks, that the value of AUROC increases when

the number of sources is decreased. This means that the localization accuracy tends to increase with the

sparsity of vector x(t0). We also see that the value of AUROC exceeds 0.9 even though data amount

is only 0.3, and unity value of AUROC can be achieved for Data ≥ 0.5. For σ = 0.5, as shown

in Supplementary Fig. S4C and Fig. S4D, similar results are obtained, except that the corresponding

AUROC values are slightly smaller. As can be seen from Supplementary Fig. S4E and Fig. S4F, for

Data = 0.5, the AUROC values are nearly indistinguishable for different values of Ns. For σ ≤ 0.3, the

value of AUROC reaches unity but will decrease with σ for σ > 0.3, regardless of the values of Ns. The

AUROC reaches unity with error less than 5% despite that σ is as large as 0.5. All the results provide

additional evidence for the robustness of our method against noise and insufficient data.
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IX. Effects of diffusion parameter

We investigate the effects of the diffusion parameter β on the accuracy of source localization for different

data amounts and values of the noise variance. In principle, to ensure that system (1) in the main text can

characterize a diffusion process, the parameter β should be less than certain critical value. Specifically,

we rewrite system (1) in the main text as

xi(t+ 1) = xi(t)− β

N∑
j=1,j ̸=i

wjixi(t) + β

N∑
j=1,j ̸=i

wijxj(t),

=

1− β
N∑

j=1,j ̸=i

wji

xi(t) + β
N∑

j=1,j ̸=i

wijxj(t). (S31)

Note that the coefficient of the first term on the right hand side of Eq.(S31) should be positive, for

otherwise, the state xi(t + 1) may become negative if xi(t) is large and positive and the value of the

second term of Eq.(S31) is small. An example is shown in Fig. S5, where β is 0.15 and the coeffi-

cient 1 − β
∑N

j=1,j ̸=iwji associated with some nodes is negative. As a result, the state of a node, say

x7(t), exhibits a negative value, causing the system to diverge. However, this scenario is not physi-

cally meaningful for describing a diffusion process. Thus, the following constraint on the coefficient

1− β
∑N

j=1,j ̸=iwji > 0 should be imposed:

β <
1∑N

j=1,j ̸=iwji

. (S32)

We find that, under the constraint, the choice of different values of β has little influence on the accuracy

of source localization with respect to different data amounts and values of noise variance, as shown in

Figs. S6 and S7. We see that, as β is decreased, e.g., β = 0.01, the localization accuracy is slightly

reduced (Fig. S6), due to the computational errors associated with the iterative process in the implemen-

tation of the compressive sensing algorithm.
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Supplementary Figures
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Fig. S1. An example of locating sources in undirected weighted ER networks. (A) Illustration of
a ER network with four sources with colors representing the initial state values. One messenger node
is specified as a blue square. The thickness of links represents their weight and the size of the nodes
corresponds to their degrees. (B) Reconstructed state xi(t) of each node for t ≤ tini, where the initial
observation time is tini (tini ≥ t0). Colors represent the values of xi(t) with t ≤ tini. (C) Reconstructed
initial state xi(t0) of each node from different initial observation time tini when t0, the true triggering
time, is being successfully inferred. Colors represent the reconstructed values of xi(t0). The colors have
the same meanings as those in (A). The four sources are randomly selected and their xi(t0) values are
larger than zero. (D) AUROC as a function of t (t ≤ tini) for a fixed initial observation time tini. (E)
AUROC versus t for different initial observation time tini and different number of sources (Ns). For both
(D) and (E), there is no noise, cases for different number of sources are illustrated, Ns, and t0 is the true
triggering time. In all cases, the network size is N = 50, the average degree is ⟨k⟩ = 4, the link weights
are uniformly distributed in (0, 2), the diffusion parameter β = 0.1, and Data = 0.5. The results in (D)
and (E) are obtained by averaging over 30 independent simulations. The other parameters are the same
as in Fig. 5 in the main text.
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Fig. S2. An example of locating sources in undirected weighted SF network with noise. (A) Recon-
structed state xi(t) of each node at time step t, for t ≤ tini and initial observation time tini (tini ≥ t0).
(B) Reconstructed state xi(t) of each node for different initial observation time tini when t0 is known.
(C-D) AUROC as a function of (C) time t (t ≤ tini) when the initial observation time is tini and as a
function of (D) initial observation time tini. Network size is N = 50, the average degree is ⟨k⟩ = 4, and
the link weights are uniformly distributed in (0, 2). Four sources are randomly selected and their initial
states xi(t0) assume positive values. We set β = 0.05, σ = 0.5, and Data = 0.5. The results in (C) and
(D) are obtained by averaging over 30 independent simulations. The other parameters are the same as in
Fig. 5 in the main text.
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Fig. S3. An example of locating sources in undirected weighted ER network with noise. (A) Recon-
structed state xi(t) of each node at time step t for t ≤ tini and for initial observation time tini (tini ≥ t0).
(B) Reconstructed state xi(t) of each node for different initial observation time tini and for known t0.
(C-D) AUROC as a function of (C) time t (t ≤ tini) when the initial observation time is tini and as a
function of (D) initial observation time tini. Network size is N = 50, the average degree is ⟨k⟩ = 4, and
the link weights are uniformly distributed in (0, 2). Four sources are randomly selected and their initial
state values xi(t0) are positive. We set σ = 0.5, β = 0.1, and Data = 0.5. The results in (C) and (D) are
obtained by averaging over 30 independent simulations. The other parameters are the same as in Fig. 5
in the main text.
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Fig. S4. Locating sources in weighted ER and SF networks. (A-B) In absence of noise, AUROC as
a function of Data for different source number Ns for ER and SF networks, respectively. (C-D) The
corresponding plots but with noise of amplitude σ = 0.5. (E-F) For Data= 0.5, AUROC as a function
of σ for different values of Ns for ER and SF networks, respectively. The observational noise is modeled
as y(t)[1 + N (0, σ2)], where N (0, σ2) is the Gaussian distribution. The baseline of AUROC is 0.5
(corresponding to random identification). The average degree is ⟨k⟩ = 4 for both ER and SF networks
and the link weights are uniformly distributed in (0, 2). The network size is N = 50. We set β = 0.1
for ER networks and β = 0.05 for SF networks. The results are obtained by averaging over 1000
independent simulations. The other parameters are the same as in Fig. 5 in the main text.
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Fig. S5. Illustration of nodal state if the constraint on β is violated. The state x7(t) of node No. 7
as a function of time step t for β = 0.15 that violates the constraint on β (Eq. (S32)). x7(t) presents
negative value and tends to diverge as t increases. The degree ki of node No. 7 is 10, the average degree
⟨k⟩ of the unweighted SF network is 4 and the network size N is 50. The number of sources Ns is 3.
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Fig. S6. Effect of β on source localization in networks from different amounts of data. (A-F)
AUROC as a function of Data for different number Ns of sources for (A-C) weighted ER networks and
(D-F) for unweighted SF networks, respectively. For ER networks, ⟨k⟩ = 2 and for SF networks ⟨k⟩ = 4.
For weighted networks, the link weights are randomly selected from an uniform distribution in the range
(0, 2). The network size N is 50 and noise variance σ = 0. The results are obtained by averaging over
100 independent simulations. The other parameters are the same as in Fig. 5 in the main text.
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Fig. S7. Effect of β on source localization in networks from noisy data. (A-F) AUROC as a function
of noise variance σ for (A-C) weighted ER and (D-F) unweighted SF networks, respectively. The white
Gaussian noise is in the form y(t)[1+N (0, σ2)], where N (0, σ2) is the Gaussian distribution. Data= 0.5
and the results are obtained by averaging over 300 independent simulations. The other parameters are
the same as in fig. S6.
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Supplementary Table

Table S1. Summary of the real networks used in Fig. 3 in the main text. The quantities N and E
denote the network size and the number of links, respectively. UD (D) in the Type column indicates
undirected (directed) networks. The structural data of all the networks are available online. The data
of Erdös971 can be downloaded via http://vlado.fmf.uni-lj.si/pub/networks/pajek/data/gphs.htm, and the
data of USAir can be downloaded via http://vlado.fmf.uni-lj.si/pub/networks/data/map/USAir97.net.

Data sets Name Type N E Description

ca-GrQc [S7] UD 5242 14496
collaboration network of

Arxiv General Relativity category

ca-HepTh [S7] UD 9877 25598
collaboration network of Arxiv

High Energy Physics Theory category

Erdös971 UD 433 1314
all of Paul Erdös’s coauthors

and their respective coauthors

dolphin [S8] UD 62 159
associations between dolphins in a

community living off Doubtful Sound

football [S9] UD 115 613
American football games between Division

IA colleges during regular season Fall 2000

Jazz [S10] UD 198 2742 links of the network of Jazz musicians

Zachary’s karate club [S11] UD 34 78
social network of friendships of a karate

club at a US university in the 1970s

Political blogs [S12] D 1224 19025
hyperlinks between weblogs on US

politics in 2005 by Adamic and Glance

Wiki-Vote [S13, 14] D 7115 103689
all the Wikipedia voting data from the

inception of Wikipedia till January 2008

E-mail [S15] UD 1133 5451
interchanges between members of the

Univeristy Rovira i Virgili (Tarragona)

p2p-Gnutella [S16] D 6301 20777
Gnutella peer-to-peer

network on August 8 2002

PGP [S17] UD 10680 24236
links of the giant component of the

network of users of the Pretty-Good-Privacy

algorithm for secure information interchange

USAir UD 332 2126 US Air flights, 1997
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