
Bridging known and unknown dynamics: machine

learning inference from sparse observations

Zheng-Meng Zhai1, Benjamin D. Stern2, Ying-Cheng Lai1,3*

1*School of Electrical, Computer and Energy Engineering, Arizona State
University, Tempe, AZ, 85287, USA.

2Doctor of Physical Therapy Program, Tufts University School of
Medicine, 101 E Washington St Suite 950, Phoenix, AZ, 85004, USA.
3Department of Physics, Arizona State University, Tempe, AZ, 85287,

USA.

*Corresponding author(s). E-mail(s): Ying-Cheng.Lai@asu.edu;

Abstract

In applications, an anticipated issue is where the system of interest has never
been encountered before and sparse observations can be made only once. Can
the dynamics be faithfully reconstructed? We address this challenge by devel-
oping a hybrid transformer and reservoir-computing scheme. The transformer is
trained without using data from the target system, but with essentially unlim-
ited synthetic data from known chaotic systems. The trained transformer is then
tested with the sparse data from the target system, and its output is further fed
into a reservoir computer for predicting its long-term dynamics or the attractor.
The power of the proposed hybrid machine-learning framework is demonstrated
using various prototypical nonlinear systems, where the dynamics can be faith-
fully reconstructed even with a high degree of sparsity. The framework provides
a paradigm of reconstructing complex and nonlinear dynamics in the extreme
situation where training data do not exist and the observations are random and
sparse.

In applications of complex systems, observations are fundamental to tasks such as
mechanistic understanding, dynamics reconstruction, state prediction, and control.
When the available data are complete in the sense that the data points are sampled
according to the Nyquist criterion and no points are missing, it is possible to extract the
dynamics or even find the equations of the system from data by sparse optimization [1,

1

2]. In machine learning, reservoir computing has been widely applied to complex and
nonlinear dynamical systems for tasks such as prediction [3–22], control [23], and signal
detection [24]. Quite recently, Kolmogorov-Arnold networks (KANs) [25], typically
small neural networks, were proposed for discovering the dynamics from data, where
even symbolic regression is possible in some cases to identify the exact mathematical
equations and parameters. It has also been demonstrated [26] that the KANs have
the power of uncovering the dynamical system in situations where the methods of
sparse optimization fail. In all these applications, an essential requirement is that the
time-series data are complete in the Nyquist sense.

A challenging but not uncommon situation is where a new system is to be learned
and eventually controlled based on limited observations. Two difficulties arise in this
case. First, being “new” means that the system has not been observed before, so no
previous data or recordings exist. If one intends to exploit machine learning to learn
and reconstruct the dynamics of the system from observations, no training data are
available. Second, the observations may be irregular and sparse: the observed data
are not collected at some uniform time interval, e.g., as determined by the Nyquist
criterion, but at random times with the total data amount much less than that from
Nyquist sampling. It is also possible that the observations can be made only once. The
question is, provided with one-time sparse observations or time-series data, is it still
possible to faithfully reconstruct the dynamics of the underlying system?

Limited observations or data occur in various real-world situations [27, 28]. For
example, ecological data gathered from diverse and dynamic environments inevitably
contain gaps caused by equipment failure, weather conditions, limited access to remote
locations, and temporal or financial constraints. Similarly, in medical systems and
human activity tracking, data collection frequently suffers from issues such as patient
noncompliance, recording errors, loss of followup, and technical failures. Wearable
devices present additional challenges, including battery depletion, user error, signal
interference from clothing or environmental factors, and inconsistent wear patterns
during sleep or specific activities where devices may need to be removed. A com-
mon feature of these scenarios is that the available data are only from random times
without any discernible patterns. This issue becomes particularly problematic when
the data is sparse. Being able to reconstruct the dynamics from sparse and random
data is particularly challenging for nonlinear dynamical systems due to the possibil-
ity of chaos leading to a sensitive dependence on small variations. For example, large
errors may arise when predicting the values of the dynamical variables in various inter-
vals in which data is missing. However, if training data from the same target system
is available, machine learning can be effective for reconstructing the dynamics from
sparse data [29]. (Additional background on machine-learning approaches is provided
in Supplementary Note 1.)

It is necessary to define what we mean by “random and sparse” data. We con-
sider systems whose dynamics occur within certain finite frequency band. For chaotic
systems with a broad power spectrum, in principle the “cutoff” frequency can be arbi-
trarily large, but power contained in a frequency range near and beyond the cutoff
frequency can often be significantly smaller than that in the low frequency domain and

2

thus can be neglected, leading realistically to a finite yet still large bandwidth (see Sup-
plementary Note 3). A meaningful Nyquist sampling frequency can then be defined.
An observational dataset being complete means that the time series are recorded at
the regular time interval as determined by the Nyquist frequency with no missing
points. In this case, the original signal can be faithfully reconstructed. Random and
sparse data mean that the data points are sampled at irregular time intervals and
some portion of the data points as determined by the Nyquist frequency are miss-
ing at random times. We aim to reconstruct the system dynamics from random and
sparse observations by developing a machine-learning framework to generate continu-
ous time series that meet the Nyquist criteria, i.e., time series represented by regularly
sampled data points of frequency close to the Nyquist frequency. When the governing
equations of the underlying system are unknown and/or when historical observations
of the full dynamical trajectory of the system are not available, the resulting lack of
any training data makes the reconstruction task extremely challenging. Indeed, since
the system cannot be fully measured and only irregularly observed data points are
available, direct inference of the dynamical trajectory from these points is infeasible.
Furthermore, the extent of the available observed data points and the number of data
points to be interpolated can be uncertain.

In practice, the natural sampling rate ∆s is chosen to generate the complete dataset
of a dynamical system. It should ensure that the attractor remains sufficiently smooth
while limiting the number of sampled points. Let the total number of samples in the
dataset be Ls and the actual number of randomly selected observational points be LO

s .
The sparsity measure of the dataset can be defined as Sm = (Ls − LO

s)/Ls. However,
this measure depends on the natural sampling rate of the dynamical system.

To quantitatively describe the extent of sparsity in the observational data from
an information-theoretic perspective, we introduce a metric that incorporates the
constraints from the Nyquist sampling theorem:

Sr =
Ls − LO

s

Ls − LN
s

,

where LN
s = 2fmax · T represents the minimum number of samples required according

to the Nyquist theorem with fmax being the effective cutoff frequency of the signal
and T the total time duration corresponding to Ls. In this definition, Sr = 0 indicates
fully observed data (at the natural sampling rate), Sr = 1 corresponds to the theoret-
ical minimum sampling case (at the Nyquist rate), and Sr > 1 indicates sub-Nyquist
sampling where perfect reconstruction becomes theoretically impossible without addi-
tional constraints. Our framework takes into account not only high sparsity but also
the randomness in observations. More information about the determination of “cutoff”
frequency of chaotic systems can be found in Supplementary Note 3.

In this paper, we develop a machine-learning framework to address the problem
of dynamics reconstruction and prediction from random and sparse observations with
no training data from the target system. Our key innovation is training a hybrid
machine-learning framework in a laboratory environment using a variety of synthetic
dynamical systems other than data from the target system itself, and deploy the
trained architecture to reconstruct the dynamics of the target system from one-time

3

sparse observations. More specifically, we exploit the machine-learning framework of
transformers with training data not from the target system but from a number of
known, synthetic systems that show qualitatively similar dynamical behaviors to those
of the target system, for which complete data are available. The training process can
thus be regarded as a “laboratory-calibration” process during which the transformer
learns the dynamical rules generating the synthetic but complete data. The so-trained
transformer is then deployed to a real application with the random and sparse data,
and is expected to adapt to the unseen data and reconstruct the underlying dynamics.
To enable long-term prediction of the target system, we exploit reservoir computing
that has been demonstrated to be particularly suitable for predicting nonlinear dynam-
ics [3–22] by feeding the output of the transformer into the reservoir computer. The
combination of transformer and reservoir computing constitutes a hybrid machine-
learning framework. We demonstrate that it can successfully reconstruct the dynamics
of approximately three dozen prototypical nonlinear systems with high reconstruc-
tion accuracy even when the available data is only 20% of that required to faithfully
represent the dynamical behavior of the underlying system. Our framework provides
a paradigm of reconstructing complex and nonlinear dynamics in the extreme situa-
tion where training data from the target system do not exist and the observations or
measurements are severely insufficient.

Figure 1 highlights the challenge of reconstructing the dynamics from sparse data
without training data. In particular, Fig. 1(a) shows the textbook case of a random
time series uniformly sampled at a frequency higher than the Nyquist frequency, which
can be completely reconstructed. To illustrate random and sparse data in an intuitive
setting, we consider a set of six available data points from a unit time interval, as
shown in Figs. 1(b) and 1(c). The time interval contains approximately two periods
of oscillation, which defines a local frequency denoted as flocal = 2. As the signal is
chaotic or random, the cutoff frequency fmax in the power spectrum can be higher
than the frequency represented by the two oscillation cycles as shown. As a concrete
example, we assume fmax = 3flocal, so the Nyquist frequency is fNyquist = 6flocal. If the
signal is sampled at the corresponding Nyquist time interval ∆T = 1/fNyquist = 1/12,
12 data points would be needed. If these 12 points are sampled uniformly in time,
then the signal in the two oscillation cycles can be reconstructed. The task becomes
quite challenging due to two factors: the limited availability of only six data points and
their random distribution across the unit time interval. Consider points #5 and #6,
which occur during a downward oscillation cycle in the ground truth data. Accurately
reconstructing this downward oscillation presents a key challenge. When training data
from the same target system is available, standard machine learning techniques can
faithfully reconstruct the dynamics [29], as illustrated in Fig. 1(b). However, without
access to training data from the target system, previous methods were unable to
reconstruct the dynamics from such sparse observations. A related question is, after the
reconstruction, can the long-term dynamics or attractor of the system be predicted?
We shall demonstrate that both the reconstruction and long-term prediction problems
can be solved with hybrid machine learning, as schematically illustrated in Figs. 1(d-f).

4

(f) Case study(e) Feature

Adaptation dynamics [𝒉!, 𝒉",⋯ , 𝒉#]

Deployment dynamics [𝒇!,⋯ , 𝒇$]

…

…

(a) Traditional method (Nyquist criterion)

𝑡

(b) Machine learning

(c) Our scheme: hybrid machine learning

No training data from
the target system

Given: Measurement &𝑿

(d) Problem Statement

Goal: Recover the dynamics %𝒙
%'
= 𝒇(𝒙, 𝑡)

…

Transformer

Training data from
the target system

1

2
3 4

5
6

1 2

3
4

5
6

Fig. 1 Dynamics reconstruction from random and sparse data. (a) The textbook case of a random
time series sampled at a frequency higher than the Nyquist frequency. (b) Training data from the
target system (left) and a segment of time series of six data points in a time interval containing
approximately two cycles of oscillation. According to the Nyquist criterion, the signal can be faithfully
reconstructed with more than 12 uniformly sampled data points (see text). When the data points are
far fewer than 12 and are randomly sampled, reconstruction becomes challenging. However, if training
data from the same target system are available, existing machine-learning methods can be used to
reconstruct the dynamics from the sparse data [29]. (c) If no training data from the target system
are available, hybrid machine learning proposed here provides a viable solution to reconstructing the
dynamics from sparse data. (d) Problem statement. Given random and sparse data, the goal is to
reconstruct the dynamics of the target system governed by dx/dt = f(x, t). A hurdle that needs to
be overcome is that, for any given three points, there exist infinitely many ways to fit the data, as
illustrated on the right side. (e) Training of the machine-learning framework using complete data from
a large number of synthetic dynamical systems [h1,h2, · · · ,hk]. The framework is then adapted to
reconstruct and predict the dynamics of the target systems [f1, · · · , fm]. (f) An example: in the testing
(deployment) phase, sparse observations are provided to the trained neural network for dynamics
reconstruction.

1 Results

We test our approach on three nonlinear dynamical systems in the deployment phase:
a three-species chaotic food chain system [30], the classic chaotic Lorenz system [31],
and Lotka-Volterra system [32]. The transformer had no prior exposure to these sys-
tems during its training (adaptation) phase. We use sparse observational data from
each system to reconstruct their underlying dynamics. For clarity, in the main text,
we present the results from the food-chain system, with those the other two testing
systems in Supplementary Information.

Altogether, 28 synthetic chaotic systems with same dimensions as the target sys-
tems are used to train the transformer, enabling it to learn to extract dynamic

5

(a) Training (Adaptation)

… …

𝐿!	~	𝑈 1, 𝐿!"#$ 	 𝑆%	~	U(0,1)

(b) Testing (Deployment)

Sparse and random observation

The testing systems are distinct from those in the training phase

MSE loss

Smoothness penalty

Ground truth

…
outputs

Fig. 2 Illustration of the transformer-based dynamics reconstruction framework. (a) Training (adap-
tation) phase, where the model is trained on various synthetic chaotic systems, each divided into
segments with randomly distributed sequence lengths Ls and sparsity Sr. The data is masked before
being input into the transformer, and the ground truth is used to minimize the MSE loss and smooth-
ness loss with the output. By learning a randomly chosen segment from a random training system
each time, the transformer is trained to handle data with varying lengths and different levels of spar-
sity. (b) Testing (deployment) phase. The testing systems are distinct from those in the training
phase, i.e., the transformer is not trained on any of the testing systems. Given sparsely observed set
of points, the transformer is able to reconstruct the dynamical trajectory.

behaviors from sparse observations (see Supplementary Note 2 for a detailed descrip-
tion). To enable the transformer to handle data from new, unseen systems of arbitrary
time series length Ls and sparsity Sr, we employ the following strategy at each training
step: (1) randomly selecting a system from the pool of synthetic chaotic systems and
(2) preprocessing the data from the system using a uniformly distributed time series
length Ls ∼ U(1, Lmax

s), and uniformly distributed sparse measure Sm ∼ U(0, 1). By
so doing, we prevent the transformer from learning any specific system dynamics too
well, thereby encouraging it to treat each set of inputs as a new system. In addition, the
strategy teaches the transformer to master as many features as possible. Figure 2(a)
illustrates the training phase, with examples shown on the left side. On the right side,
the sampled examples are encoded and fed into the transformer. The performance is
evaluated by MSE loss and smoothness loss between the output and ground truth, and
is used to update the neural-network weights. For predicting the long-term dynamics,

6

reservoir computing (Supplementary Note 4) is used. (Hyperparameter optimization
for both the transformer and reservoir computer is described in Supplementary Note
5.)

(b)

(b2)

(b1)

(b3)

(a)

… …

𝐿! = 300, 𝑆" = 0.87 𝐿! = 1200, 𝑆" = 0.99

…

…

…

…

1

𝐅#$%&'

𝐅($$)*+',-

𝐅?

Well-trained model

(c) (d) (d1) (d2) (d3)

𝐿! = 300, 𝑆" = 0.89 𝐿! = 1200, 𝑆" = 1.01

Fig. 3 Performance of dynamics reconstruction. (a) Illustration of reconstruction results for the
chaotic food-chain and Lotka-Volterra systems as the testing targets that the transformer has never
been exposed to. For each target system, two sets of sparse measurements of different length Ls and
sparsity Sr are shown. The trained transformer reconstructs the complete time series in each case.
(b) Color-coded ensemble-averaged MSE values in the parameter plane (Ls, Sr) (b1). Examples of
testing MSE versus Sr and Ls only are shown in (b2) and (b3), respectively. (c) Ensemble-averaged
reconstruction stability indicator Rs(MSEc) versus Sr and Ls, the threshold MSE is MSEc = 0.01.
(d) Robustness of dynamics reconstruction against noise: ensemble-averaged MSE in the parameter
plane (σ, Sr) (d1) and (σ, Ls) (d2), with σ being the noise amplitude. An example of reconstruction
under noise of amplitude σ = 0.1 is shown in (d3). The values of the performance indicators are the
result of averaging over 50 independent statistical realizations.

1.1 Dynamics reconstruction

The three species food-chain system [30] is described by

dR

dt
= R(1 − R

K
) − xcycCR

R + R0
,

dC

dt
= xcC(

ycR

R + R0
− 1) − xpypPC

C + C0
, (1)

dP

dt
= xpP (

ypC

C + C0
− 1),

where R, C, and P are the population densities of the resource, consumer, and predator
species, respectively. The system has seven parameters: K, xc, yc, xp, yp,R0,C0 > 0.

7

Figure 2(b) presents an example of reconstructing the dynamics of the chaotic food-
chain system for Ls = 2000 and Sr = 1 (Sm = 0.86). The target output time series
for each dimension should contain 2000 points (about 40 cycles of oscillation), but
only randomly selected LN

s = 280 points are exposed to the trained transformer. The
right side of Fig. 2(b) shows the reconstructed time series, where the three dynamical
variables are represented by different colors, the black points indicate observations,
and the gray dashed lines are the ground truth. Only a segment of a quarter of the
points is displayed. This example demonstrates that, with such a high level of sparsity,
directly connecting the observational points will lead to significant errors. Instead,
the transformer infers the dynamics by filling the gaps with the correct dynamical
behavior. It is worth emphasizing that the testing system has never been exposed to
the transformer during the training phase, requiring the neural machine to explore the
underlying unknown dynamics from sparse observations based on experience learned
from other systems. Extensive results with varying values of the parameters Ls and
Sr for the three testing systems can be found in Supplementary Note 6.

1.2 Performance of dynamics reconstruction

To characterize the performance of dynamics reconstruction, we use two measures:
MSE and prediction stability Rs(MSEc), the probability that the transformer gener-
ates stable predictions (see Methods). Figure 3(a) shows the working of the framework
in the testing phase: a well-trained transformer receives inputs from previously unseen
systems, with random sequence length Ls and sparsity Sr, and is able to reconstruct
the dynamics. Some representative time-series segments of the reconstruction and
the ground truth are displayed. Figures 3(b) and 3(c) depict the ensemble-averaged
reconstruction performance for the chaotic food chain system. As Ls increases and
Sr decreases, the transformer can gain more information to facilitate reconstructions.
When the available data become more sparse, the performance degrades. Overall,
under conditions with random noisy observations, satisfactory reconstruction of new
dynamics can be achieved for Sr ≤ 1.0 and a sequence length larger than 500 (about
10 cycles of oscillation).

It is essential to assess how noise affects the dynamics reconstruction. Figure 3(d)
shows the effects of the multiplicative noise (see Methods) on the reconstruction per-
formance. The results indicate that, for reasonably small noise (e.g., σ < 10−1), robust
reconstruction with relatively low MSE values can be achieved. We have also studied
the effect of additive noise, with results presented in Supplementary Note 7.

1.3 Key features of dynamics reconstruction

Transformer has the ability to reconstruct the time series of previously unknown
dynamical systems, particularly under extreme sparsity. This capability stems from the
generalizability of the transformer during its training on sufficiently diverse chaotic sys-
tems with large data. OpenAI reported a power-law relation between the transformer
performance and model/data size [33]. Here we study how reconstruction performance
depends on the number of training systems. Specifically, we train the transformer on
k chaotic systems, where k ranges from 1 to 28. For each value of k, we randomly

8

(a) (b)

(c)
(d)

Fig. 4 Demonstration of the capabilities of the transformer-based dynamics reconstruction. (a)
Power-law decrease of MSE as the number of training systems k increase. (b) Entropy rate of the
observational data and the time series reconstructed by the transformer. The dashed line represents
the entropy rate of the ground truth. (c) Example of a time series reconstructed by the transformer,
compared with linear and spline interpolations, shown in blue, green, and orange, respectively. Tradi-
tional interpolation methods fail to recover the time series accurately due to their inability to capture
the underlying dynamics. (d) MSE versus sparsity. While all methods perform similarly under low
sparsity, the transformer outperforms the other two methods in reconstructing dynamics when the
observational points are sparse. In all cases, 50 independent realizations are used.

sample a subset from the pool of 28 chaotic systems and calculate the average MSE
over 50 iterations. To ensure robustness, the MSE is averaged across the sparsity mea-
sure Sm whose value ranges from 0 to 1 at the interval of 0.05. As shown in Fig. 4(a),
the MSE decreases with increasing k following a power-law trend with saturation,
demonstrating that training our transformer-based framework on a diverse of chaotic
systems with sufficient data is crucial for successful dynamics reconstruction. More-
over, once the model has acquired this generalization ability, it can infer the governing
dynamics of arbitrary new system from sparse observations. To demonstrate this, we
have shown that our trained transformer performs well on 28 additional unseen target
systems [34] (Supplementary Note 12).

How much information is contained in the chaotic systems being presented to and
interpolated by the transformer? We employ Kolmogorov-Sinai (KS) entropy [35, 36],
denoted as hKS , to estimate the entropy rate of the dynamical systems (Methods).
For the transformer outputs, i.e., the reconstructed time series, and the ground truth
data, we estimate hKS directly using this method. However, a challenge is that the
input to the transformer is sparse, which we meet by considering only those time steps
in the input sequence where all dimensions are observed, while discarding time points
with missing values in any variable. The processed input is then used to calculate the
entropy rate. The estimated hKS for both the input and the reconstructed time series
generated by the transformer are shown in Fig. 4(b), where the black dashed line

9

denotes the KS entropy calculated from the ground truth. While increased sparsity Sr

corresponds to a gradual increase in entropy in the reconstructed time series, it remains
closer to the ground truth than the entropy of the sparse observations, which exhibit
substantial divergence. From an information theoretic point of view, the transformer
receives sparse observations characterized by high uncertainty and disorder, yet it
successfully reconstructs the dynamics to closely match the ground truth.

While our method is applicable across a wide range of sparsity, traditional tech-
niques such as linear and spline interpolation can also achieve high accuracy when the
sparsity level is low. These classical methods are simple and computationally efficient,
and perform adequately in regimes with sufficient observational data. However, as the
data sparsity level increases, the limitations of traditional interpolation become evi-
dent. To explicitly demonstrate this, we take two examples of traditional interpolation
methods as an example: linear and spline interpolation, where the former approximates
missing values by connecting the nearest available data points with straight lines and
the latter constructs piecewise polynomial functions to produce smooth transitions
between observed points [37,38]. Both methods, despite their simplicity, by design lack
the capacity to capture the intrinsic dynamics of complex systems. Figure 4(c) shows a
representative example for sparsity Sr = 1.0 (Sm = 0.86), where the transformer suc-
cessfully reconstructs the underlying dynamics, but the linear and spline interpolation
methods fail to recover the correct temporal structure.

To quantify the performance, we calculate the MSE between the reconstructed
time series and the ground truth. Figure 4(d) shows the reconstruction performance
across a range of sparsity levels for a fixed sequence length, Ls = 2, 000 (approximately
400 oscillation cycles). Results are averaged over 50 independent realizations, with
shadowed areas indicating the standard deviation. When the sparsity measure Sr

is low, all three methods - transformer, linear, and spline interpolation - perform
comparably. However, once Sr exceeds approximately 0.7, the transformer begins to
outperform the other methods, with its advantage becoming more pronounced as the
available data become increasingly more sparse.

In addition to traditional interpolation methods, compressed sensing (CS) can also
work as a signal reconstruction framework. CS assumes the the signal is sparse in a
known basis and often employs optimization-based recovery [37, 38]. It is important
to note that the definition of the term “sparse” in CS is referred to as the signal
having only a few non-zero components when expressed in an appropriate basis (e.g.,
Fourier or wavelet). However, the strict assumption can limit the applicability of CS.
In contrast, our method is model-free, data-driven, and capable of generalizing across
unseen complex dynamical systems, regardless of the dynamics are sparse or not.
Simulation results show that for a target system, when the observational sparsity is
high, our framework outperforms CS significantly (Supplementary Note 10).

1.4 Prediction of long-term dynamical climate

The results presented so far are for reconstruction of relatively short term dynamics,
where the sequence length Ls is limited to below 3000, corresponding to approximately
60 cycles of dynamical oscillation in the data. Can the long-term dynamical behavior
or climate as characterized by, e.g., a chaotic attractor, be faithfully predicted? To

10

Transformer
Reservoir computing

Output

Observation

DV=0.13

(a)

(b) (c) (d)

Input

Reconstructed

Long-term prediction

Fig. 5 Reservoir-computing based long-term dynamics prediction. (a) An illustration of hybrid
transformer/reservoir-computing framework. The time series reconstructed by the transformer is used
to train the reservoir computer that generates time series of the target system of arbitrary length,
leading to a reconstructed attractor that agrees with the ground truth. (b) RMSE and DV versus
the sparsity parameter. (c) Color-coded ensemble-averaged DV in the reservoir-computing hyperpa-
rameter plane (Tl, Ns) for Sr = 0.93 (Sm = 0.8). (d) DV versus training length Tl for Ns = 500 and
versus reservoir network size Ns for Tl = 105. In all cases, 50 independent realizations are used.

address this question, we note that reservoir computing has the demonstrated ability
to generate the long-term behavior of chaotic systems [5, 7, 13, 16, 21]. Our solu-
tion is then employing reservoir computing to learn the output time series generated
by the transformer so as to further process the reconstructed time series. Assume
that a number of sparse data segments are available. The corresponding transformer-
reconstructed segments are then used as the training data for the reservoir computer
for it to find the relationship between the dynamical state at the current step and
that in the immediate future. The trained reservoir computer can predict or gen-
erate any length of time series of the target system, as exemplified in Fig. 5(a). It
can be seen that the reservoir-computing generated attractor agrees with the ground
truth. More details about reservoir computing, its training and testing can be found
in Supplementary Note 4.

To evaluate the performance of the reservoir-computing generated long-term
dynamics, we use two measures: root MSE (RMSE) and deviation value (DV)
(Methods). Figure 5(b) presents the short- and long-term prediction performance by
comparing the reservoir-computing predicted attractors with the ground truth. We
calculate the RMSE using a short-term prediction length of 150 (corresponding to
approximately 3 cycles of oscillation), and the DV using a long-term prediction length
of 10,000 (approximately to 200 cycles of oscillation). The reconstructed time series

11

and attractors are close to their respective ground truth when the sparsity parame-
ter Sr is below 0.93, i.e., sparse measure is below 0.8, as indicated by the low RMSE
and DV values. The number of available data segments from the target system tends
to have a significant effect on the prediction accuracy. Figures 5(c) and 5(d) show
the dependence of the DV on two reservoir-computing hyperparameters: the training
length Tl and the reservoir network size Ns. As the training length and network size
increase, DV decreases, indicating improved performance.

2 Discussion

Exploiting machine learning to understand, predict and control the behaviors of
nonlinear dynamical systems have demonstrated remarkable success in solving previ-
ously deemed difficult problems [23, 39]. However, an essential prerequisite for these
machine-learning studies is the availability of training data. Often, extensive and uni-
formly sampled data of the target system are required for training. In addition, in most
previous works, training and testing data are from the same system, with a focus on
minimizing the average training errors on the specific system and greedily improving
the performance by incorporating all correlations within the data (iid - indepen-
dently and identically distributed assumption). While the iid setting can be effective,
unforeseen distribution shifts during testing or deployment can cause the optimization
purely based on the average training errors to perform poorly [40]. Several strate-
gies have been proposed to handle nonlinear dynamical systems. One approach trains
neural networks using data from the same system under different parameter regimes,
enabling prediction of new dynamical behaviors including critical transitions [16].
Another method uses data from multiple systems to train neural networks in tasks
like memorizing and retrieving complex dynamical patterns [41, 42]. However, this lat-
ter approach fails when encountering novel systems not present in the training data.
Meta-learning has been shown to achieve satisfactory performance with only limited
data, but training data from the target systems are still required to fine-tune the net-
work weights [43]. In addition, a quite recent work used well-defined, pre-trained large
language models not trained using any chaotic data and showed that these models can
predict the short-term and long-term dynamics of chaotic systems [44].

We developed a hybrid machine-learning framework to construct the dynamics of
target systems, under two limitations: (1) the available observational data are random
sparse and (2) no training data from the system are available. We address this chal-
lenge by training the transformer using synthetic or simulated data from numerous
chaotic systems, completely excluding data from the target system. This allows direct
application to the target system without fine-tuning. To ensure the transformer’s effec-
tiveness on previously unseen systems, we implement a “triple-randomness” training
regime that varies the training systems, input sequence length, and sparsity level. As a
result, the transformer will treat each dataset as a new system, rather than adequately
learning the dynamics of any single training system. This process continues with data
from different chaotic systems with random input sequence length and sparsity until
the transformer is experienced and able to “perceive” the underlying dynamics from

12

the sparse observations. The end result of this training process is that the trans-
former gains “knowledge” through its experience by adapting to the diverse synthetic
datasets. It is worth noting that the dimension of the systems (i.e. the number of vari-
ables) provided to the transformer in the inference phase should match those in the
testing phase. During the testing or deployment phase, the transformer reconstructs
dynamics from sparse data of arbitrary length and sparsity drawn from a completely
new dynamical system. When multiple segments of sparse observations are available,
we are able to reconstruct the system’s long-term “climate” through a two-step pro-
cess. First, the transformer repeatedly reconstructs system dynamics from these data
segments. Second, reservoir computing uses these transformer-reconstructed dynamics
as training data to generate system evolution over any time duration. The combination
of the transformer and reservoir computing constitutes our hybrid machine-learning
framework, enables reconstruction of the target system’s long-term dynamics and
attractor from sparse data alone.

We emphasize the key feature of our hybrid framework: reconstructing the dynam-
ics from sparse observations of an unseen dynamical system, even when the available
data has a high degree of sparsity. We have tested the framework on two benchmark
ecosystems and one classical chaotic system. In all cases, with extensive training con-
ducted on synthetic datasets under diverse settings, accurate and robust reconstruction
has been achieved. Empirically, the minimum requirements for the transformer to be
effective are: the dataset from the target system should have the length of at least 20
average cycles of its natural oscillation and the sparsity degree is less than 1. For sub-
sequent reservoir computing learning, at least three segments of the time series data
from the transformer are needed for reconstructing the attractor of the target system.
We have also addressed issues such as the effect of noise and hyperparameter opti-
mization. The key to the success of the hybrid framework lies in versatile dynamics:
with training based on the dynamical data from a diverse array of synthetic systems,
the transformer will gain the ability to reconstruct the dynamics of the “never-seen”
target systems. In essence, the reconstruction performance on unseen target systems
follows a power-law trend with respect to the number of synthetic systems used dur-
ing the training phase. We have provided a counter example that, when dynamics are
lacking in the time series, the framework fails to perform the reconstruction task (see
Supplementary Note 8).

It is worth noting that both the training and target dynamical systems in our exper-
iments are autonomous. However, real-world systems can often be nonautonomous. To
adapt the framework to target nonautonomous systems, we have developed a mixed
training strategy that involves both autonomous and nonautonomous systems (Sup-
plementary Note 9). With regard to long-term prediction, climate dynamics are not
stationary but often time-variant, i.e., nonautonomous. When providing the reservoir
computer with high-fidelity outputs generated by the transformer from sparse observa-
tions, long-term climate prediction becomes feasible. Moreover, we have demonstrated
the superiority of our proposed hybrid machine-learning scheme to traditional inter-
polation methods, traditional recurrent neural networks, and compressed sensing
(Supplementary Note 10). Additional results from chaotic systems are presented in
Supplementary Note 12.

13

Our hybrid transformer/reservoir-computing (T-RC) framework represents a pow-
erful tool for dynamics reconstruction and prediction of long-term behavior in
situations where only sparse observations from a newly encountered system are
available. In fact, such a situation is expected to arise in different fields. Possible
applications extend to medical and biological systems, particularly in wearable health
monitoring where data collection is often interrupted. For instance, smartwatches and
fitness trackers regularly experience gaps due to charging, device removal during activ-
ities like swimming, or signal interference. Another potential application is predicting
critical transitions from sparse and noisy observations, such as detecting when an
athlete’s performance metrics indicate approaching over training, or when a patient’s
vital signs suggest an impending health event. In these cases, our hybrid framework
can reconstruct complete time series from incomplete wearable device data, serving
as input to parameter-adaptable reservoir computing [16, 45] for anticipating these
critical transitions. This approach is particularly valuable for continuous health mon-
itoring where data gaps are inevitable, whether from smart devices being charged,
removed, or experiencing connectivity issues.

3 Methods

3.1 Hybrid machine learning

Consider a nonlinear dynamical system described by

dx(t)

dt
= F(x(t), t), t ∈ [0, T], (2)

where x(t) ∈ RD is a D-dimensional state vector and F(·) is the unknown velocity
field. Let X = (x0, · · · ,xLs

)⊺ ∈ RLs×D be the full uniformly sampled data matrix of
dimension Ls ×D with each dimension of the original dynamical variable containing
Ls points. A sparse observational vector can be expressed as

X̃ = gα(X)(1 + σ · Ξ), (3)

where X̃ ∈ RLs×D is the observational data matrix of dimension Ls ×D and gα(·) is
the following element-wise observation function:

XO
ij = gα(Xij) =

{
Xij , if Xij is observed,

0, otherwise,
(4)

with α representing the probability of matrix element Xij being observed. In Eq. (3),
Gaussian white noise of amplitude σ is present during the measurement process, where
Ξ ∼ N (0, 1). Our goal is utilizing machine learning to approximate the system dynam-
ics function F(·) by another function F′(·), assuming that F is Lipschitz continuous
with respect to x and the observation function produces sparse data: g : X → X̃. To
achieve this, it is necessary to design a function F(X̃) = X that comprises implicitly
F′(·) ≈ F(·) so that it reconstructs the system dynamics by filling the gaps in the

14

Embedding

Positional
Encoding

Multi-Head
Attention

Add &
Layer Norm

Feed-
forward

Add &
Layer Norm

𝑁!×

Feed-
forward

Output

Input

Fig. 6 Transformer architecture. The transformer receives the sparse and random observation as
the input and generates the reconstructed output. See text for a detailed mathematical description.

observation, where F(X̃) should have the capability of adapting to any given unknown
dynamics.

Selecting an appropriate neural network architecture for reconstructing dynam-
ics from sparse data requires meeting two fundamental requirements: (1) dynamical
memory to capture long-range dependencies in the sparse data, and (2) flexibility to
handle input sequences of varying lengths. Transformers [46], originally developed for
natural language processing, satisfy these requirements due to their basic attention
structure. In particular, transformers has been widely applied and proven effective for
time series analysis, such as prediction [47–49], anomaly detection [50], and classifica-
tion [51]. Figure 6 illustrates the transformer’s main structure. The data matrix X̃ is
first processed through a linear fully-connected layer with bias, transforming it into

15

an Ls ×N matrix. This output is then combined with a positional encoding matrix,
which embeds temporal ordering information into the time series data. This projection
process can be described as [52]:

Xp = X̃Wp + Wb + PE, (5)

where Wp ∈ RD×N represents the fully-connected layer with the bias matrix Wb ∈
RLs×N and the position encoding matrix is PE ∈ RLs×N . Since the transformer model
does not inherently capture the order of the input sequence, positional encoding is
necessary to provide the information about the position of each time step. For a given
position 1 ≤ pos ≤ Lmax

s and dimension 1 ≤ d ≤ D, the encoding is given by

PEpos,2d = sin
(pos

100002d/N

)
, (6)

PEpos,2d+1 = cos
(pos

100002d/N

)
, (7)

The projected matrix Xp ∈ RLs×N then serves as the input sequence for Nb attention
blocks. Each block contains a multi-head attention layer, a residual layer (add &
layer norm), and a feed-forward layer, and a second residual layer. The core of the
transformer lies in the self-attention mechanism, allowing the model to weight the
significance of distinct time steps. The multi-head self-attention layer is composed
of several independent attention blocks. The first block has three learnable weight
matrices that linearly map Xp into query Q1 and key K1 of the dimension Ls × dk
and value V1 of the dimension Ls × dv:

Q1 = XpWQ1 , K1 = XpWK1 , V1 = XpWV1 , (8)

where WQ1 ∈ RN×dk , WK1 ∈ RN×dk , and WV1 ∈ RN×dv are the trainable weight
matrices, dk is the dimension of the queries and keys, and dv is the dimension of the
values. A convenient choice is dk = dv = N . The attention scores between the query
Q1 and the key K1 are calculated by a scaled multiplication, followed by a softmax
function:

AQ1,K1
= softmax

(
Q1K

T
1√

dk

)
, (9)

where AQ1,K1
∈ RLs×Ls . The softmax function normalizes the data with

softmax(xi) = exp(xi)/
∑

j exp(xj), and the
√
dk factor mitigates the enlargement of

standard deviation due to matrix multiplication. For the first head (in the first block),
the attention matrix is computed as a dot product between AQ1,K1

and V1:

O11 = Attention(Q1,K1,V1), (10)

= AQ1,K1
V1 = softmax

(
Q1K

T
1√

dk

)
V1,

16

where O11 ∈ RLs×dv . The transformer employs multiple (h) attention heads to capture
information from different subspaces. The resulting attention heads O1i (i = 1, . . . , h)
are concatenated and mapped into a sequence O1 ∈ RLs×N , described as:

O1 = C(O11,O12, · · ·O1h)Wo1, (11)

where C is the concatenation operation, h is the number of heads, and Wo1 ∈ Rhdv×N

is an additional matrix for linear transformation for performance enhancement. The
output of the attention layer undergoes a residual connection and layer normalization,
producing XR1 as follows:

XR1 = LayerNorm(Xp + Dropout(O1)) (12)

A feed-forward layer then processes this data matrix, generating output XF1 ∈ RLs×N

as:

XF1 = max(0,XR1WFa + ba)WFb
+ bb, (13)

where WFa ∈ RN×df , WFb
∈ Rdf×N , ba and bb are biases, and max(0, ·) denotes a

ReLU activation function. This output is again subjected to a residual connection and
layer normalization.

The output of the first block operation is used as the input to the second block.
The same procedure is repeated for each of the remaining Nb − 1 blocks. The final
output passes through a feed-forward layer to generate the prediction. Overall, the
whole process can be represented as Y = F(X̃).

The second component of our hybrid machine-learning framework is reservoir
computing, which takes the output of the transformer as the input to reconstruct
the long-term “climate” or attractor of the target system. A detailed description of
reservoir computing used in this context and its hyperparameters optimization are
presented in Supplementary Notes 4 and 5.

3.2 Machine learning loss

To evaluate the reliability of the generated output, we minimize a combined loss
function with two components: (1) a mean squared error (MSE) loss that measures
absolute error between the output and ground truth, and (2) a smoothness loss that
ensures the output maintains appropriate continuity. The loss function is given by

L = α1Lmse + α2Lsmooth, (14)

where α1 and α2 are scalar weights controlling the trade-off between the two loss
terms. The first component Lmse measures the absolute error between the predictions
and the ground truth:

Lmse =
1

n

n∑
i=1

(yi − ŷi)
2, (15)

17

with n being the total number of data points, yi and ŷi denoting the ground truth
and predicted value at time point i, respectively. The second component Lsmooth of
the loss function consists of two terms: Laplacian regularization and total variation
regularization, which penalize the second-order differences and absolute differences,
respectively, between consecutive predictions. The two terms are given by:

Llaplacian =
1

n− 2

n−1∑
i=2

(ŷi−1 + ŷi+1 − 2ŷ)2, (16)

and

Ltv =
1

n− 1

n−1∑
i=1

|ŷi − ŷi+1|. (17)

We assign the same weights to the two penalties, so the final combined loss function
to be minimized is

L = Lmse + αs(Llaplacian + Ltv). (18)

We set αs = 0.1. It is worth noting that the smoothness penalty is a crucial hyper-
parameter that should be carefully selected. Excessive smoothness leads the model to
learn overly coarse-grained dynamics, while absence of a smoothness penalty causes
the reconstructed curves to exhibit poor smoothness (Supplementary Note 5).

3.3 Computational setting

Unless otherwise stated, the following computational settings for machine learning are
used. Given a target system, time series are generated numerically by integrating the
system with time step dt = 0.01. The initial states of both the dynamical process and
the neural network are randomly set from a uniform distribution. An initial phase of
the time series is removed to ensure that the trajectory has reached the attractor.
The training and testing data are obtained by sampling the time series at the inter-
val ∆s chosen to ensure an acceptable generation. Specifically, for the chaotic food
chain, Lorenz and Lotka-Volterra systems, we set ∆s = 1, ∆s = 0.02, and ∆s = 0.1
respectively, corresponding to approximately 1 over 30 ∼ 50 cycles of oscillation. A
similar procedure is also applied to other synthetic chaotic systems (See Table S3 for
∆s values for each system). The time series data are preprocessed by using min-max
normalization so that they are in the range [0,1]. The complete data length for each
system is 1,500,000 (about 30,000 cycles of oscillation), which is divided into segments
with randomly chosen sequence lengths Ls and sparsity Sr. For the transformer, we
use a maximum sequence length of 3,000 (corresponding to about 60 cycles of oscilla-
tion) - the limitation of input time series length. We apply Bayesian optimization [53]
and a random search algorithm [54] to systematically explore and identify the optimal
set of various hyperparameters. Two chaotic Sprott systems - Sprott0 and Sprott1 -
are used to find the optimal hyperparameters, ensuring no data leakage from the test-
ing systems. The optimized hyperparameters for the transformer are listed in Table 1.

18

Table 1 Optimal transformer hyperparameter values

Hyperparameters Descriptions

Dl = 1, 500, 000 Training length for each system
df = 512 Number of Feedforward neurons
h = 4 Number of Transformer heads
Nb = 4 Number of Transformer blocks
N = 128 input embedded dimension
σ = 0.05 Measurement noise level

Lmax
s = 3000 Maximum input sequence length
bs = 16 Batch size

epoch = 50 Epoch
lr = 0.001 Learning rate
Pdrop = 0.2 Dropout rate

All simulations are run using Python on computers with six RTX A6000 NVIDIA
GPUs. A single training run of our framework typically takes about 30 minutes using
one of the GPUs.

3.4 Prediction stability

The prediction stability describe the probability that the transformer generates stable
predictions, which is defined as the probability that the MSE is below a predefined
stable threshold MSEc:

Rs(MSEc) =
1

n

n∑
i=1

[MSE < MSEc], (19)

where n is the number of iterations and [·] = 1 if the statement inside is true and zero
otherwise.

3.5 Deviation value

For a three-dimensional target system, we divide the three-dimensional phase space
into a uniform cubic lattice with the cell size ∆ = 0.05 and count the number of
trajectory points in each cell, for both the predicted and true attractors in a fixed
time interval. The DV measure is defined as [21]

DV ≡
mx∑
i=1

my∑
j=1

mz∑
k=1

√
(fi,j,k − f̂i,j,k)2, (20)

where mx, my, and mz are the total numbers of cells in the x, y, and z directions,

respectively, fi,j,k and f̂i,j,k are the frequencies of visit to the cell (i, j, k) by the
predicted and true trajectories, respectively. If the predicted trajectory leaves the
phase space boundary, we count it as if it has landed in the boundary cells where the
true trajectory never goes.

19

3.6 Noise implementation

We study how two types of noise affect the dynamics reconstruction in this work:
multiplicative and additive noise. We use normally distributed stochastic processes
of zero mean and standard deviation σ, while the former perturbs the observational
points x to x + x · ξ after normalization and the latter perturbs x to x + ξ. Note that
multiplicative (demographic) noise is common in ecological systems.

3.7 Entropy rate estimation

We estimate the entropy rate of the dynamical system using the Kolmogorov-Sinai
(KS) entropy, denoted as hKS . This quantity measures the average number of nats
of information produced per unit time by the system and reflects its intrinsic unpre-
dictability. Since the governing equations of systems are assumed to be unknown,
we apply a recurrence-based approach that is both data-driven and robust to sparse
observability [36]. This method is based on the distribution of first recurrence times,
i.e., the time it takes for the system to return close to a previous state. Given time
series X ∈ RLs×D, where x(t) is its state vector at time t, we compute the pairwise
Euclidean distances. Specifically, for each time point t, we identify the smallest time
lag τ such that:

||x(t) − x(t + τ)|| < r,

where r is a fixed recurrence threshold. Through this process, a set of recurrence times
τ(k) can be obtained, which defines the empirical distribution ρ(τ). The entropy rate
is then estimated as:

hKS ≈ 1

τmin

∑
τ

ρ(τ) log(
1

ρ(τ)
),

where τmin is the minimum observed recurrence time. In our work, we set the
recurrence threshold r = 0.5 after normalizing the data to unit variance.

4 Data availability

The data is publicly available via Zenodo at https://doi.org/10.5281/zenodo.
14014974 [55].

5 Code availability

The code is publicly available via Zenodo at https://doi.org/10.5281/
zenodo.14279347 [56] and via GitHub at https://github.com/Zheng-Meng/
Dynamics-Reconstruction-ML.

20

https://doi.org/10.5281/zenodo.14014974
https://doi.org/10.5281/zenodo.14014974
https://doi.org/10.5281/zenodo.14279347
https://doi.org/10.5281/zenodo.14279347
https://github.com/Zheng-Meng/Dynamics-Reconstruction-ML
https://github.com/Zheng-Meng/Dynamics-Reconstruction-ML

References

[1] Wang, W.-X., Yang, R., Lai, Y.-C., Kovanis, V., Grebogi, C.: Predicting catas-
trophes in nonlinear dynamical systems by compressive sensing. Phys. Rev. Lett.
106(15), 154101 (2011)

[2] Lai, Y.-C.: Finding nonlinear system equations and complex network structures
from data: A sparse optimization approach. Chaos 31, 082101 (2021)

[3] Haynes, N.D., Soriano, M.C., Rosin, D.P., Fischer, I., Gauthier, D.J.: Reservoir
computing with a single time-delay autonomous Boolean node. Phys. Rev. E 91,
020801 (2015) https://doi.org/10.1103/PhysRevE.91.020801

[4] Larger, L., Baylón-Fuentes, A., Martinenghi, R., Udaltsov, V.S., Chembo, Y.K.,
Jacquot, M.: High-speed photonic reservoir computing using a time-delay-based
architecture: Million words per second classification. Phys. Rev. X 7, 011015
(2017) https://doi.org/10.1103/PhysRevX.7.011015

[5] Pathak, J., Lu, Z., Hunt, B., Girvan, M., Ott, E.: Using machine learning to
replicate chaotic attractors and calculate Lyapunov exponents from data. Chaos
27, 121102 (2017)

[6] Lu, Z., Pathak, J., Hunt, B., Girvan, M., Brockett, R., Ott, E.: Reservoir
observers: Model-free inference of unmeasured variables in chaotic systems. Chaos
27, 041102 (2017)

[7] Pathak, J., Hunt, B., Girvan, M., Lu, Z., Ott, E.: Model-free prediction of large
spatiotemporally chaotic systems from data: A reservoir computing approach.
Phys. Rev. Lett. 120, 024102 (2018) https://doi.org/10.1103/PhysRevLett.120.
024102

[8] Carroll, T.L.: Using reservoir computers to distinguish chaotic signals. Phys. Rev.
E 98, 052209 (2018) https://doi.org/10.1103/PhysRevE.98.052209

[9] Nakai, K., Saiki, Y.: Machine-learning inference of fluid variables from data using
reservoir computing. Phys. Rev. E 98, 023111 (2018) https://doi.org/10.1103/
PhysRevE.98.023111

[10] Roland, Z.S., Parlitz, U.: Observing spatio-temporal dynamics of excitable media
using reservoir computing. Chaos 28, 043118 (2018)

[11] Griffith, A., Pomerance, A., Gauthier, D.J.: Forecasting chaotic systems with very
low connectivity reservoir computers. Chaos 29, 123108 (2019)

[12] Tanaka, G., Yamane, T., Héroux, J.B., Nakane, R., Kanazawa, N., Takeda,
S., Numata, H., Nakano, D., Hirose, A.: Recent advances in physical reservoir
computing: A review. Neu. Net. 115, 100–123 (2019)

21

https://doi.org/10.1103/PhysRevE.91.020801
https://doi.org/10.1103/PhysRevX.7.011015
https://doi.org/10.1103/PhysRevLett.120.024102
https://doi.org/10.1103/PhysRevLett.120.024102
https://doi.org/10.1103/PhysRevE.98.052209
https://doi.org/10.1103/PhysRevE.98.023111
https://doi.org/10.1103/PhysRevE.98.023111

[13] Fan, H., Jiang, J., Zhang, C., Wang, X., Lai, Y.-C.: Long-term prediction of
chaotic systems with machine learning. Phys. Rev. Res. 2, 012080 (2020) https:
//doi.org/10.1103/PhysRevResearch.2.012080

[14] Klos, C., Kossio, Y.F.K., Goedeke, S., Gilra, A., Memmesheimer, R.-M.: Dynam-
ical learning of dynamics. Phys. Rev. Lett. 125(8), 088103 (2020)

[15] Chen, P., Liu, R., Aihara, K., Chen, L.: Autoreservoir computing for multistep
ahead prediction based on the spatiotemporal information transformation. Nat.
Commun. 11(1), 4568 (2020)

[16] Kong, L.-W., Fan, H.-W., Grebogi, C., Lai, Y.-C.: Machine learning prediction
of critical transition and system collapse. Phys. Rev. Res. 3, 013090 (2021)

[17] Patel, D., Canaday, D., Girvan, M., Pomerance, A., Ott, E.: Using machine learn-
ing to predict statistical properties of non-stationary dynamical processes: System
climate, regime transitions, and the effect of stochasticity. Chaos 31(3), 033149
(2021)

[18] Kim, J.Z., Lu, Z., Nozari, E., Pappas, G.J., Bassett, D.S.: Teaching recurrent
neural networks to infer global temporal structure from local examples. Nat.
Machine Intell. 3(4), 316–323 (2021)

[19] Bollt, E.: On explaining the surprising success of reservoir computing forecaster
of chaos? The universal machine learning dynamical system with contrast to VAR
and DMD. Chaos 31(1), 013108 (2021)

[20] Gauthier, D.J., Bollt, E., Griffith, A., Barbosa, W.A.: Next generation reservoir
computing. Nat. Commun. 12(1), 1–8 (2021)

[21] Zhai, Z.-M., Kong, L.-W., Lai, Y.-C.: Emergence of a resonance in machine learn-
ing. Phys. Rev. Res. 5, 033127 (2023) https://doi.org/10.1103/PhysRevResearch.
5.033127

[22] Yan, M., Huang, C., Bienstman, P., Tino, P., Lin, W., Sun, J.: Emerging opportu-
nities and challenges for the future of reservoir computing. Nat. Commun. 15(1),
2056 (2024)

[23] Zhai, Z.-M., Moradi, M., Kong, L.-W., Glaz, B., Haile, M., Lai, Y.-C.: Model-free
tracking control of complex dynamical trajectories with machine learning. Nat.
Commun. 14(1), 5698 (2023)

[24] Zhai, Z.-M., Moradi, M., Kong, L.-W., Lai, Y.-C.: Detecting weak physical signal
from noise: A machine-learning approach with applications to magnetic-anomaly-
guided navigation. Phys. Rev. Appl. 19(3), 034030 (2023)

[25] Liu, Z., Wang, Y., Vaidya, S., Ruehle, F., Halverson, J., Soljačić, M.,

22

https://doi.org/10.1103/PhysRevResearch.2.012080
https://doi.org/10.1103/PhysRevResearch.2.012080
https://doi.org/10.1103/PhysRevResearch.5.033127
https://doi.org/10.1103/PhysRevResearch.5.033127

Hou, T.Y., Tegmark, M.: Kan: Kolmogorov-Arnold networks. arXiv preprint
arXiv:2404.19756 (2024)

[26] Moradi, M., Panahi, S., Bollt, E.M., Lai, Y.-C.: Data-driven model discovery with
Kolmogorov-Arnold networks. arXiv preprint arXiv:2409.15167 (2024)

[27] Sonnewald, M., Lguensat, R., Jones, D.C., Dueben, P.D., Brajard, J., Balaji,
V.: Bridging observations, theory and numerical simulation of the ocean using
machine learning. Environ. Res. Lett. 16(7), 073008 (2021)

[28] Cismondi, F., Fialho, A.S., Vieira, S.M., Reti, S.R., Sousa, J.M., Finkelstein, S.N.:
Missing data in medical databases: Impute, delete or classify? Artif. Intell. Med.
58(1), 63–72 (2013)

[29] Yeo, K.: Data-driven reconstruction of nonlinear dynamics from sparse observa-
tion. J. Comput. Phys. 395, 671–689 (2019)

[30] McCann, K., Yodzis, P.: Nonlinear dynamics and population disappearances. Am.
Nat. 144(5), 873–879 (1994)

[31] Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141
(1963)

[32] Vano, J., Wildenberg, J., Anderson, M., Noel, J., Sprott, J.: Chaos in low-
dimensional Lotka-Volterra models of competition. Nonlinearity 19(10), 2391
(2006)

[33] Kaplan, J., McCandlish, S., Henighan, T., Brown, T.B., Chess, B., Child, R.,
Gray, S., Radford, A., Wu, J., Amodei, D.: Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361 (2020)

[34] Gilpin, W.: Chaos as an interpretable benchmark for forecasting and data-driven
modelling. arXiv preprint arXiv:2110.05266 (2021)

[35] Latora, V., Baranger, M.: Kolmogorov-Sinai entropy rate versus physical entropy.
Phys. Rev. Lett. 82(3), 520 (1999)

[36] Baptista, M., Ngamga, E., Pinto, P.R., Brito, M., Kurths, J.: Kolmogorov-Sinai
entropy from recurrence times. Phys. Lett. A 374(9), 1135–1140 (2010)

[37] Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306
(2006)

[38] Duarte, M.F., Eldar, Y.C.: Structured compressed sensing: From theory to
applications. IEEE Trans. Signal Process. 59(9), 4053–4085 (2011)

[39] Kim, J.Z., Bassett, D.S.: A neural machine code and programming framework for
the reservoir computer. Nat. Mach. Intell. 5(6), 622–630 (2023)

23

[40] Liu, J., Shen, Z., He, Y., Zhang, X., Xu, R., Yu, H., Cui, P.: Towards out-of-
distribution generalization: A survey. arXiv preprint arXiv:2108.13624 (2021)

[41] Kong, L.-W., Brewer, G.A., Lai, Y.-C.: Reservoir-computing based associative
memory and itinerancy for complex dynamical attractors. Nat. Commun. 15(1),
4840 (2024)

[42] Du, Y., Luo, H., Guo, J., Xiao, J., Yu, Y., Wang, X.: Multi-functional reservoir
computing. arXiv preprint arXiv:2409.16719 (2024)

[43] Zhai, Z.-M., Glaz, B., Haile, M., Lai, Y.-C.: Learning to learn ecosystems from
limited data - a meta-learning approach. arXiv preprint arXiv:2410.07368 (2024)

[44] Zhang, Y., Gilpin, W.: Zero-shot forecasting of chaotic systems. arXiv preprint
arXiv:2409.15771 (2024)

[45] Panahi, S., Lai, Y.-C.: Adaptable reservoir computing: A paradigm for model-
free data-driven prediction of critical transitions in nonlinear dynamical systems.
Chaos 34, 051501 (2024)

[46] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, L., Polosukhin, I.: Attention is all you need. Adv. Neural Inf. Process.
Syst. 30 (2017)

[47] Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., Zhang, W.: Informer:
Beyond efficient transformer for long sequence time-series forecasting. In: Proc.
AAAI Conf. Artif. Intell., vol. 35, pp. 11106–11115 (2021)

[48] Wen, Q., Zhou, T., Zhang, C., Chen, W., Ma, Z., Yan, J., Sun, L.: Transformers
in time series: A survey. arXiv preprint arXiv:2202.07125 (2022)

[49] Liu, Y., Hu, T., Zhang, H., Wu, H., Wang, S., Ma, L., Long, M.: itransformer:
Inverted transformers are effective for time series forecasting. arXiv preprint
arXiv:2310.06625 (2023)

[50] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly
detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021)

[51] Foumani, N.M., Tan, C.W., Webb, G.I., Salehi, M.: Improving position encod-
ing of transformers for multivariate time series classification. Data Min. Knowl.
Discov. 38(1), 22–48 (2024)

[52] Yıldız, A.Y., Koç, E., Koç, A.: Multivariate time series imputation with trans-
formers. IEEE Signal Process. Lett. 29, 2517–2521 (2022)

[53] Nogueira, F.: Bayesian Optimization: Open source constrained global opti-
mization tool for Python (2014–). https://github.com/bayesian-optimization/
BayesianOptimization

24

https://github.com/bayesian-optimization/BayesianOptimization
https://github.com/bayesian-optimization/BayesianOptimization

[54] Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13(2) (2012)

[55] Zhai, Z.-M.: Time series of chaotic systems. Zenodo. https://doi.org/10.5281/
zenodo.14014974 (2023). https://doi.org/10.5281/zenodo.14014974

[56] Zhai, Z.-M.: Dynamics Reconstruction ML. Zenodo. https://doi.org/10.5281/
zenodo.14279347 (2023). https://doi.org/10.5281/zenodo.14279347

6 Acknowledgment

We thank J.-Y. Huang for discussions. This work was supported by the Air Force
Office of Scientific Research under Grant No. FA9550-21-1-0438 and by the Office of
Naval Research under Grant No. N00014-24-1-2548.

7 Author contributions

Z.-M.Z., B.D.S., and Y.-C.L. designed the research project, the models, and methods.
Z.-M.Z. performed the computations. Z.-M.Z., B.D.S., and Y.-C.L. analyzed the data.
Z.-M.Z. and Y.-C.L. wrote the paper. Y.-C.L. edited the manuscript.

8 Competing interests

The authors declare no competing interests.

9 Additional information

Supplementary information available at Supplementary Information.

10 Correspondence

Correspondence and requests for materials should be addressed to Ying-Cheng Lai.

25

https://doi.org/10.5281/zenodo.14014974
https://doi.org/10.5281/zenodo.14014974
https://doi.org/10.5281/zenodo.14014974
https://doi.org/10.5281/zenodo.14279347
https://doi.org/10.5281/zenodo.14279347
https://doi.org/10.5281/zenodo.14279347

	Results
	Dynamics reconstruction
	Performance of dynamics reconstruction
	blue Key features of dynamics reconstruction
	Prediction of long-term dynamical climate

	Discussion
	Methods
	Hybrid machine learning
	Machine learning loss
	Computational setting
	Prediction stability
	Deviation value
	Noise implementation
	blue Entropy rate estimation

	Data availability
	Code availability
	Acknowledgment
	Author contributions
	Competing interests
	Additional information
	Correspondence

