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Learning to learn ecosystems from limited data
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A fundamental challenge in developing data-driven approaches to ecological systems for tasks
such as state estimation and prediction is the paucity of the observational or measurement
data. For example, modern machine-learning techniques such as deep learning or reservoir
computing typically require a large quantity of data. Leveraging synthetic data from
paradigmatic nonlinear but non-ecological dynamical systems, we develop a meta-learning
framework with time-delayed feedforward neural networks to predict the long-term behaviors
of ecological systems as characterized by their attractors. We show that the framework is
capable of accurately reconstructing the “dynamical climate” of the ecological system with
limited data. Three benchmark population models in ecology, namely the Hastings-Powell
model, a three-species food chain, and the Lotka-Volterra system, are used to demonstrate
the performance of the meta-learning based prediction framework. In all cases, enhanced
accuracy and robustness have been achieved using five to seven times less training data as
compared with the corresponding machine-learning method trained solely from the ecosystem
data. In addition, two real-world ecological benchmark datasets: the microbial time series
dataset and global population dynamics database, are tested to demonstrate the applicability
of the meta-learning framework to the real world. A number of issues affecting the prediction
performance are addressed.

meta learning | ecosystems forecasting | machine learning | nonlinear dynamics

Recent years have witnessed a growing interest in applying machine learning to
complex and nonlinear dynamical systems for tasks such as prediction (1–23),

control (24), signal detection (25), and estimation (26). For example, a seminal
work (5) exploited reservoir computing (27, 28) to accurately predict the state
evolution of a spatiotemporal chaotic system for about half dozen Lyapunov times
(one Lyapunov time is the time needed for an infinitesimal error to grow by the factor
of e) - a remarkable achievement considering the sensitivity of a chaotic system to
uncertainties in the initial conditions). Subsequently, long-term prediction of chaotic
systems with infrequent state updates was achieved (12), and a parameter-adaptive
reservoir computing was developed to predict critical transitions in chaotic systems
based on historical data (15, 21).

The demonstrated power of modern machine learning in solving challenging
problems in nonlinear dynamics and complex systems naturally suggest applications
to ecological systems that are vital to the well being of the humanity. Ecosystems in
the modern era are nonautonomous in general due to the human-influences-caused
climate change, and it is of paramount interest to be able to predict the future
state of the ecosystems. However, to enable applications of machine learning to
ecosystems, a fundamental obstacle must be overcome. Specifically, a condition
under which the existing machine-learning methods can be applied to complex
dynamical systems is the availability of large quantities of data for training. For
physical systems accessible to continuous observation and measurements, this
data requirement may not pose a significant challenge. However, for ecosystems,
the available empirical datasets are often small and large datasets are generally
notoriously difficult to obtain (29). A compounding factor is that ecosystems are
subject to constant disturbances (30), rendering noisy the available datasets. In
recent years, machine learning has been applied to ecosystems (31). For example,
support vector machines and random forests were widely used in ecological science for
tasks such as classifying invasive plant species, identifying the disease, forecasting the
effects of anthropogenic (32, 33), estimating the hidden differential equations (34),
and reconstructing the “climate” of the entire system (35). More recently, deep
learning was applied in species recognition from video and audio analysis (36, 37).
We note that the existing methods of finding equations require sparsity condition,
a condition that many ecological dynamical systems do not satisfy, making such
methods unsuitable for ecological systems (34, 38).

Significance Statement

In recent years, machine learning
has been successfully applied to
complex and nonlinear dynamical
systems for improved prediction of
the future state, but ecological sys-
tems represent a great challenge
because of the scarcity of the ob-
servational data. This work de-
velops a meta-learning framework
with time-delayed feed-forward neu-
ral networks to predict the long-
term behaviors of ecological sys-
tems by leveraging synthetic data
from paradigmatic nonlinear and
non-ecological dynamical systems
for effective machine-learning train-
ing. The capability of accurately
reconstructing the “dynamical cli-
mate” of the system with limited
data is demonstrated using three
benchmark population models and
two real-world ecological datasets.
The meta-learning framework can
be generalized to other fields where
forecasting the dynamics is the goal
but the available empirical data is
limited.

Author affiliations: aSchool of Electrical, Computer and
Energy Engineering, Arizona State University, Tempe,
AZ 85287, USA; bVehicle Technology Directorate,
CCDC Army Research Laboratory, 2800 Powder Mill
Road, Adelphi, MD 20783-1138, USA; cVehicle Tech-
nology Directorate, CCDC Army Research Laboratory,
6340 Rodman Road, Aberdeen Proving Ground, MD
21005-5069, USA; dDepartment of Environmental
Science and Policy, University of California, Davis,
CA 95616; eSanta Fe Institute, Santa Fe, NM 87501;
fDepartment of Physics, Arizona State University,
Tempe, Arizona 85287, USA

Z.-M.Z., B.G., M.H., A.H. and Y.-C.L. designed the
research project, the models, and methods. Z.-
M.Z. performed the computations.Z.-M.Z. and Y.-C.L.
analyzed the data. Z.-M.Z. and Y.-C.L. wrote the paper.
Y.-C.L. edited the manuscript.

Competing interests statement:The authors declare
no competing interest.
1To whom correspondence should be addressed.
Email: Ying-Cheng.Lai@asu.edu

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX PNAS — June 13, 2025 — vol. XXX — no. XX — 1–9

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

To overcome the data-shortage difficulty, we exploit meta-
learning (39, 40) to predict the long-term dynamics or the
attractors of ecosystems. Meta-learning is a learning-to-
learn paradigm that enhances the learning algorithm through
experience accumulation across multiple episodes. Differing
from the conventional machine learning approaches, a well-
trained meta-learning framework can adapt to new tasks more
swiftly and efficiently by leveraging its prior experience, thus
reducing the necessity for extensive retraining and data collec-
tion. Owing to its unique features, meta-learning has found
broad applications in fields such as computer vision (41),
time series forecasting (42, 43), reinforcement learning (44),
and identification of special quantum states (45). Our goal
is to use meta-learning to reconstruct the “climate” of the
target ecosystems, addressing the challenge of data scarcity.
Specifically, we take advantage of a number of classical
chaotic systems for training a conventional machine-learning
architecture to gain “experience” with complex dynamics
anticipated to occur in ecosystems, and then update or fine-
tune the machine-learning algorithm using the small amount
of available data from the actual ecosystem. The outcome
is a well-adapted machine-learning framework capable of
predicting the complex dynamical behavior of ecosystems
with only limited data.

What machine learning architecture is appropriate to
combine the meta-learning algorithm for predictive modeling
of ecosystems? Recurrent neural networks (24, 46, 47) such as
reservoir computing can be a candidate since the prediction
requires historical information. For computational efficiency
and broad applicability, we choose a foundational architecture,
time-delayed feedforward neural networks (FNNs, see SI
Appendix, Note 1) (19, 20, 25, 48), a variant of reservoir
computing, where the present and historical information of
the time series is input into the neural network through
time-delayed embedding. With time-delayed FNNs, the
meta-learning framework becomes adept at handling the
intricate and often nonlinear temporal dependencies typical
of ecological data, thereby enabling it to adapt and learn
rapidly from new, limited, and noisy data.

In this work, we demonstrate the capability of the meta-
learning framework in predicting the long-term behavior of
ecological systems with limited data on (1) three prototypical
models: the chaotic Hastings-Powell system, a chaotic food
chain, and the chaotic Lotka-Volterra system, and (2) two real-
world ecological datasets: the microbial time series dataset
and global population dynamics database. In all cases, the
meta-learning based framework yields more accurate and
robust predictions than the model without meta-learning
(vanilla model).

Results

The proposed meta-learning framework consists of two dis-
tinct phases: adaptation and deployment. In the adaptation
phase, a meta-learning neural-network architecture is exposed
to a diverse array of synthetic datasets from a number of
chaotic systems, allowing it to acquire a broad range of
“experiences,” as illustrated in Fig. 1(a). This phase is crucial
as it equips the neural networks with a versatile learning
strategy, nurturing its ability to tackle new and unseen
tasks from ecosystems. The variables sampled depend on
the dimension of the time series used in the deployment

phase. For example, if the target ecological system is three-
dimensional, the number of the sampled variables is three. For
meta-learning of the empirical datasets during the adaptation
phase, we choose the variable dimension to match that of the
datasets. In particular, we choose the first dimension of the
synthetic data. For meta-learning, the Reptile algorithm, a
gradient-based method is implemented, as shown in Fig. 1(b).
Figure 1(c) illustrates the deployment phase, in which the
well-trained meta-learning scheme is applied to a specific
ecosystem of interest. With only limited time series data
from the target ecosystem, the scheme adeptly generates
accurate long-term predictions of the “climate” of dynamical
systems, as well as reliable short-term forecasts for real-world
targets. An issue is, as compared with a vanilla machine-
learning scheme, defined as one with the same neural network
structure but without the adaptation phase with synthetic
chaotic data, how much data reduction can be achieved with
our meta-learning approach. This issue can be addressed by
performing numerical experiments to determine the training
duration required to achieve similar performance by meta-
learning based framework and the conventional FNN model
in reconstructing an ecosystem. Figure 1(d) presents a
representative result from the Hastings-Powell ecosystem,
where the meta-learning algorithm is able to reduce the length
of the training data approximately five times.

The core of meta-learning is the gradient-based Reptile
algorithm, as shown in Fig. 1(b). Articulated in (49), it
has become a widely used method due to its simplicity
and efficiency. In particular, differing from more complex
meta-learning algorithms, Reptile requires less memory and
computational resources, making it particularly suitable for
ecosystem prediction from limited data. The algorithm begins
by initializing the parameters. It then iteratively samples
tasks, performs gradient descent, and updates the parameters.
Let ϕ denote the parameter vector of the machine-learning
architecture, s denote a task, and SGD(L, ϕ, k) be the
function performing k gradient steps on loss L starting with ϕ
and returning the final parameter vector, where SGD stands
for stochastic gradient descent. The Reptile algorithm can
be described as:

• Initialize ϕ

• For iteration = 1, 2, . . ., sample tasks s1, s2, . . . , sn

• For i = 1, 2, . . . , n, compute Wi = SGD(Lsi , ϕ, k)

• Update ϕ← ϕ + ϵ 1
k

∑n

i=1(Wi − ϕ)

• Continue

A more detailed analysis on Reptile, and comparative analysis
of Reptile with other meta-learning methods such as MAML
(Model Agnostic Meta-Learning) is presented in SI Appendix,
Note 2, and the differences between meta-learning and
traditional transfer learning is discussed in SI Appendix,
Note 3.

We present forecasting results for three ecosystems models:
the three-dimensional chaotic Hastings-Powell system (50),
a three-species food chain system (51), and the Lotka-
Volterra system (52) with three species. The hypothesis
is that the observational data from each system is quite
limited (to be quantified below), so it is necessary to invoke
meta-learning by first training the neural network using
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make predictions

make predictions
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Fig. 1. Illustration of the proposed meta-learning framework for reconstructing ecosystems from limited data. (a) Adaptation phase, where the neural-network architecture is
trained on various datasets from synthetic nonlinear chaotic systems so it learns the skill of learning and therefore can better learn the target ecosystem. (b) Illustration of
the Reptile algorithm, a gradient-based meta-learning method - see text for details. The dashed arrows denote the intermediate states while the solid arrows indicate the
final updating direction. (c) Deployment phase in which the trained meta-learning framework is applied to the target ecosystem, accomplishing the objective of predicting its
long-term dynamics or attractor from limited time-series data. (d) An illustration of the comparison of the data requirements for achieving similar performance by the proposed
meta-learning framework and standard machine-learning (vanilla model) in reconstructing the Hastings-Powell system.

synthetic time series from the computational models of a
number of prototypical chaotic systems. Since the target
ecosystems are three-dimensional, the chosen chaotic systems
should have the same dimension. We prepare 27 such
chaotic systems, as described in SI Appendix, Note 4. More
specifically, during the adaptation phase, the neural-network
architecture is trained and the values of the hyperparameters
are determined with time-series data from the 27 synthetic
systems. In the deployment phase, further training with
appropriate adjustments to the hyperparameter values is
done with the limited data from the target ecosystem,
followed by prediction of its long-term dynamics. It is worth
noting that the continuous adjustments and fine-tuning of
the parameters is the key feature that distinguishes meta-
learning from transfer leaning, as further explained in SI
Appendix, Note 3. To demonstrate the superiority of meta-
learning to conventional machine learning, we train the same
neural-network architecture but using time series from the
ecosystems only without any pre-training - the so-called
vanilla or benchmark machine-learning scheme. For the
vanilla scheme, typically much larger datasets are required to
achieve comparable prediction performance by meta-learning.
To validate the efficiency of the proposed framework, we
tested it on real ecological systems, many of which exhibit
chaos (53). In particular, we first adapt the meta-learning on
synthetic chaotic systems and then deploy it on two real-world
ecological benchmarks: the microbial time-series dataset and
global population dynamics database, taking four time series

from each. Since the datasets are one-dimensional, only the
first dimension of the chaotic systems is used for adaptation.

To make the presentation succinct, in the main text
we focus on the results from the chaotic Hastings-Powell
system with a brief mentioning of the summarizing results
for the three-species food chain and the chaotic Lotka-
Volterra systems and the gut microbiome data. The detailed
results from the two synthetic systems are presented in SI
Appendix, Note 5. In addition, the detailed results from
population database are presented in SI Appendix, Note
7. It is worth noting that the chaotic Hastings-Powell
system is a seminal model in population dynamics. It
describes the feeding relationships in a food chain from prey
to predators (50) and has inspired numerous variations and
studies. The three-species food chain system (51) is in fact
one variant of the Hastings-Powell system, exhibiting a wide
range of behaviors due to the incorporation of additional
factors and bioenergetically derived parameters. There
were also substantial works based on the original chaotic
Hastings-Powell model (54–57), making it a benchmark and
prototypical model in theoretical ecology.

Forecasting the chaotic Hastings-Powell system. The chaotic
Hastings-Powell system (50) has three dynamical variables,
corresponding to the resource, consumer, and predator
abundances, respectively. The system is described by the
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Fig. 2. Long-term ecosystems prediction by the meta-learning and vanilla frameworks. (a,b) Attractor reconstruction by the two frameworks. (c,d) Intercepted snippets of the
three time series of the ground truth and prediction by the two frameworks. (e) DV versus the training length for the meta-learning and vanilla frameworks. (f) Stability indicator
of prediction (Rs(DVc)) versus the training length for the meta-learning and vanilla frameworks. The upper, middle, and lower panels in (e) and (f) are from the chaotic
Hastings-Powell, food chain, and Lotka-Volterra systems, respectively. To reduce the statistical fluctuations, the DVs, their shaded variabilities and the Rs(DVc) values are
calculated from an ensemble of 50 independently trained neural machines.

following set of differential equations (58):
dV

dt
= V (1− V )− a1V H

b1V + 1 ,

dH

dt
= a1V H

b1V + 1 −
a2HP

b2H + 1 − d1H, [1]

dP

dt
= a2HP

b2H + 1 − d2P,

where V , H, and P are the biomass of the vegetation (or
resource), herbivore (or consumer), and predator species,
respectively. Alternatively, they can also represent vegetation,
host, and parasitoid. The parameters a1, a2, b1, b2, d1, and d2
are chosen to be biologically reasonable (50) as 5, 0.1, 3, 2, 0.4
and 0.01, respectively, which contain the information about
the growth rate, the carrying capacity of the vegetation, etc.

To characterize the performance of long-term prediction of
the attractor, we use two measures: deviation value (DV) and
prediction stability, where the former describes the distance
between the ground truth and predicted attractors and the
latter (denoted as Rs(DVc)) is the probability that meta-
learning generates stable dynamical evolution of the target
ecosystem in a fixed time window. The definition of the three-
dimensional DV here is extended from its two-dimensional
version (22). To calculate the DV value, we place a uniform
lattice in the three-dimensional phase space with the cell size
∆ = 0.04 and count the number of trajectory points in each
cell for both the true and predicted attractors in a fixed time
interval. The DV is given by

DV ≡
mx∑
i=1

my∑
j=1

mz∑
k=1

√
(fi,j,k − f̂i,j,k)2, [2]

where mx, my, and mz are the total numbers of cells in the
x, y, and z directions, respectively, fi,j,k and f̂i,j,k are the

frequencies of visit to the cell (i, j, k) by the true and predicted
trajectories, respectively. When the predicted trajectory
leaves the square, we count them as if they belonged to the
cells at the boundary where the true trajectory never visits.
To obtain the prediction stability, we perform the experiment
n times and calculate the probability that the DV is below a
predefined stable threshold, which is given by

Rs(DVc) = 1
n

n∑
i=1

[DV < DVc], [3]

where DVc is the DV threshold, n is the number of iterations
and [·] = 1 if the statement inside is true and zero otherwise.

Figure 2 presents the comparative forecasting results,
where Figs. 2(a) and 2(b) show the ground truth and
the predicted attractors in the three-dimensional space by
the meta-learning and vanilla frameworks, respectively. It
can be seen that the attractor predicted by meta-learning
has a lower DV, indicating that the predicted attractor is
closer to the ground truth. Figures 2(c) and 2(d) display
some representative time-series segments of the predicted
and true attractors from the meta-learning and vanilla
frameworks, respectively, using the same training data from
the ecosystem. Apparently, the vanilla framework fails to
predict the attractor correctly. Figures 2(e) and 2(f) show,
respectively, the DV and prediction stability values versus
the length of the training data from the three ecosystems.
The meta-learning framework yields a lower testing DV
and higher prediction stability compared to those from the
vanilla framework, indicating that meta-learning not only
predicts more accurately the long-term dynamics on the
attractor but the results are also more stable and reliable.
These advantages are particularly pronounced with shorter
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Meta learning Vanilla model

Fig. 3. Short-term gut microbiome prediction by meta-learning and the vanilla framework. Shannon diversity index (Sd) of female and male predictions by meta-learning (a, c)
and vanilla model (b, d), respectively. (e-h) Testing RMSEs for the two frameworks, for female, male, donor A, and donor B, respectively. To reduce the statistical fluctuations,
the RMSEs and their shaded variabilities are calculated from an ensemble of 50 independently trained machine-learning realizations.

training lengths. In terms of the DV indicator, the vanilla
framework requires approximately 5 to 7 times the amount
of training data in meta-learning to achieve a similar level of
performance. In terms of the prediction stability, the vanilla
framework fails to match the performance of meta-learning,
regardless of the training length. In addition, by presenting
the performance varying with the number of cycles, we can
connect the simulated data with real-world experiments. For
example, with different training cycles in the real data, the
meta-learning framework can make predictions with varying
levels of performance and outperforms the vanilla model.

In meta-learning, determining the optimal values of the
hyperparameters is key to achieving reliable and accurate
prediction results, which is done through standard Bayesian
optimization. The procedure and the role of the optimal
hyperparameter values are discussed in SI Appendix, Note 8.

Prediction of microbial time series data. To demonstrate the
applicability of our proposed meta-learning framework in
the real world, we use two empirical datasets: the microbial
time series dataset [61] and the global population dynamics
database [70]. For conciseness of presentation, we describe
the first dataset and the machine-learning prediction results
here in the main text, while providing the results from the
second dataset in SI Appendix.

The temporal dynamics of the gut microbiome for both
individual bacterial species and clusters are essential for
understanding human health and disease. We utilize the
preprocessed gut microbiome dataset (59), originally derived
from two publicly accessible 16S rRNA gene sequencing
datasets (60, 61). The dataset contains gut microbiome
profiles from four healthy adult participants without any
reported diseases. We preserve the name from the original
source, i.e., the first dataset uses gender-based labels (female
and male subjects), while the second dataset employs
alphanumeric names (donor A and donor B). The Shannon
diversity (Sd) index is used to characterize the collective
dynamics. The numbers of points in the datasets are 185,
443, 365, and 252 for female, male, donor A, and donor B,

respectively. Further details about data analysis can be found
in the original paper (59).

We focus on short-term predictions for the following
reasons. First, the dynamics generating the empirical data
can be significantly more complicated than those described by
a set of differential equations. For example, for the microbial
time series dataset, the underlying dynamical system can
be extremely high-dimensional due to external factors such
as antibiotic treatments or travel, while the dataset is one-
dimensional. Second, real-world ecological datasets often
do not contain sufficient points for validating long-term
predictions. Low resolution or low sampling density of the
empirical datasets are also an issue, as the available data
points are too few to describe the underlying dynamics. For
example, to faithfully represent a cycle of oscillations, three
or four points are not sufficient and can lead to misleading
results. This issue of low resolution can be partly addressed
by preprocessing the data using linear interpolation, where
certain number li of points are added between any two original
data points. We use li = 3 for the microbial time series
dataset. Let Tp be the prediction horizon, i.e., the forward
prediction time step, at each time step. The output of the
machine learning model is fed back to the input, forming a
closed-loop dynamical system generating Tp-step predictions.
After making these predictions, we supply the historical
ground truth data and make predictions Tp steps forward
again. Iterating this process allows us to evaluate the machine-
learning testing performance. For Tp = 1, the prediction is
one-step, termed as nowcasting (62).

Figure 3 presents the comparative short-term prediction
results, where Figs. 3(a,b) and 3(c,d) show representative
prediction examples of Tp = 4 for the female and male dataset,
respectively, from the meta-learning and vanilla models. The
examples show that the short-term predictions from meta-
learning are more accurate than those from the vanilla model.
To quantify the performance of the short-term predictions,
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we use the root-mean-square error (RMSE) defined as (62)

RMSE(y, ŷ) =

√√√√ 1
Tp

Tp∑
t=i

[y(t)− ŷ(t)]2, [4]

where y(t) and ŷ(t) are the true and predicted time series,
respectively. The RMSEs can be calculated by taking the
average over the whole testing length. Figure 3 (e-h) displays
the RMSEs versus the prediction step Tp from the four
empirical gut datasets: female, male, donor A, donor B.
The meta-learning framework yields lower testing RMSEs
compared to those from the vanilla model, indicating that
meta-learning is able to generate more accurate short-term
prediction results. In addition, the variabilities (represented
by the shaded region) by meta-learning are also smaller
than those from the vanilla model, suggesting more robust
and stable predictions. These advantages are particularly
pronounced with longer prediction steps.

Optimal selection of synthetic systems for meta-learning. As
described previously, the superiority of the meta-learning
framework lies in gathering experience during the adap-
tation phase. However, indiscriminately utilizing different
alternative chaotic systems as adaptation tasks in general
does not lead to desired performances, and even worse, can
destroy the training performance owing to the diversity of
such systems. This raises the question of how to choose the
proper adaptation systems for meta learning. To address
this question, we employ the greedy algorithm to choose
the optimal synthetic chaotic systems and use the chaotic
Hastings-Powell system as a testing case for this algorithm.
The test is performed, as follows. At each iteration, we
perform a testing loop that involves adding a candidate
system to the existing pool of chosen systems and monitoring
the corresponding decrease in the resulting DV. Afterward,
we remove this system and test another candidate system.
After looping over all the candidate systems, we select one
or several systems that lead to the maximal reduction of the
average DV value calculated from 50 independent runs. Once
a system has been selected, it will become a member of the
chosen system pool in the iterative process that follows.

Figure 4(a) depicts this selection process, where the initial
sampled system pool is ns = 3. Looping at Stage one informs
us that a new system should be added to the sampled system
pool, so at Stage two the pool size becomes ns = 4. Repeating
this process iteratively, we collect the ensemble-averaged DV
and the corresponding sampled system pool ns, as shown in
Fig. 4(b). We observe that the average DV decreases rapidly
as the number of systems increases from one to twenty but
begins to increase again when more systems are included.
Consequently, guided by the greedy algorithm, we select the
five most effective systems: Aizawa, Bouali, Chua, Sprott
third, and Sprott fourteen (See SI Appendix, Note 4 for a
detailed description of these systems). While certain synthetic
systems are selected for the chaotic Hastings-Powell system,
we apply them in the adaptation phase for the other two
target model systems, and two target real datasets, which
yields satisfactory performance as well. It is worth noting that
we do not expect the greedy algorithm to produce globally
optimal solutions in the space of all possible chaotic systems.
It might miss useful systems, each alone would not reduce

the DV but their combination would. Considering that this
feature selection process is NP-hard, finding some locally
optimal solutions is reasonable. This also implies that, while
the performance of meta-learning is remarkable, there is
ample room for improvement.

(a)

(b)

𝑛! = 3

𝑛! = 4

𝑛! = 5

𝑛! = 7

𝑛! = 9

Stage 1

Stage 2

Stage 4

Stage 3

Stage 5

Fig. 4. Selecting the synthetic chaotic systems for the adaptation phase of meta-
learning. (a) Illustration of greedy algorithm. Stated with the three systems in the
sampled systems pool, one or several systems is (are) selected which lead to the
best improvement in performance. (b) Ensemble averaged DV (with 50 independent
realizations) versus the number of sampled systems pool ns. As ns increases, the
average DV decreases rapidly but later increases again.

Discussion

Exploiting machine learning to predict the behaviors of
dynamical systems has attracted extensive research in recent
years, and it has been demonstrated that modern machine
learning can solve challenging problems in complex and
nonlinear dynamics that were previously deemed unsolvable.
However, machine-learning algorithms often require extensive
data for training, and this presents a significant challenge
for ecosystems. Indeed, the observational datasets for
ecosystems, especially those described by the population
dynamics, are often small, preventing a straightforward and
direct application of machine learning to these systems.

This work develops an “indirect,” meta-learning framework
for forecasting the long-term dynamical behaviors of chaotic
ecosystems through a faithful reconstruction of the attractor
using only limited data. Given a chaotic ecosystem of interest,
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the idea is to use a large number of alternative chaotic
systems of the same dimension, which can be simulated
to generate massive training data for a suitable machine-
learning scheme such as the time-delayed feedforward neural-
network architecture. The neural networks are trained using
the synthetic data first, and are then “fine-tuned” with the
data from the actual target ecosystem. As a result of the
pre-training or first-stage training for adaptation, the neural
machine is sufficiently exposed to the climate of the dynamical
evolution of characteristically similar systems, which can
then be readily adapted to the ecosystem. Specifically, we
employed Reptile as the meta-learning algorithm. During
the adaptation phase, the algorithm begins by gaining
“experience” from learning a synthetic chaotic system. This
process continues with data from different non-ecological
chaotic systems until the machine is well-trained, experienced,
and able to learn new tasks with limited data. In the
deployment phase, the neural machine is further trained
using the limited data from the target ecosystem - the second-
stage training. we emphasize that the first-stage training uses
massive data from a large number of model chaotic systems,
and the second-stage training is done with limited data from
the target ecosystem. After the second-stage training, the
neural machine is capable of generating the correct attractor
of the ecosystem, realizing accurate and reliable forecasting
of its long-term dynamics.

For real ecological systems, due to the limited data,
accurate predictions can be achieved but only for a limited
number of time steps. While our results from the synthetic
datasets demonstrate that meta-learning outperforms the
vanilla model on longer predictions, long-term predictions
based on the available empirical data are generally not reliable
for both empirical datasets. In fact, with the limited data
amount, the training of any machine-learning model can be
done with at most a few hundred data points. As a result, the
neural networks will not be able to fully learn the “dynamical
climate” of the target ecological system that is likely to be
vastly complex, rendering infeasible any long-term prediction.

One feature of our meta-learning framework is the in-
tegration of time-delayed feedforward neural networks for
processing sequential data. It incorporates the concept
of time delays into the conventional FNN architecture so
as to take the advantage of the present and historical
information in the time series. It is important to note that,
while reservoir computing has demonstrated its capability in
chaotic time series prediction and attractor reconstruction (63–
66), time-delayed FNN is chosen for our meta-learning
algorithms as they are effectively gradient descent-based
networks. To our knowledge, so far reservoir computing has
not been incorporated into meta-learning. We have tested
the meta-learning framework on three benchmark ecosystems.
More accurate and robust prediction was achieved by the
meta-learning based framework, whereas the vanilla model
requires 5 − 7 times the training data to achieve a similar
performance. Issues such as the effect of noise and the number
of synthetic systems used in the adaptation phase of the
training were addressed. Since the aim of this work is to
facilitate the prediction of real ecological time series with
limited data, and there are a variety of open-source datasets
available online (59, 67–69), we selected two benchmarks -
the microbiome dataset and the global population dynamics

database - for validation. For these empirical datasets, meta-
learning gave more accurate and stable predictions compared
to the vanilla model.

In general, meta-learning is a powerful machine-learning
tool for solving prediction and classification problems in
situations where the available data amount is small. A recent
example is detecting quantum scars in systems with chaotic
classical dynamics. In particular, in a closed quantum system
in the semiclassical regime where the particle wavelength is
much smaller than the system size, a vastly large number
of eigenstates are permitted, among which are those whose
wavefunctions are not uniformly distributed in the physical
space but instead concentrate on some classical periodic orbits
of low periods. The emergence of such scarring eigenstates
is counterintuitive, as the classical trajectories are uniform
due to ergodicity (70, 71). In the field of quantum chaos,
traditionally identifying quantum scarring states was done
in a “manual” way through a visual check of a large number
(e.g., 104) of eigenstates (72). This was challenging as the
percentage of scarring states is typically small - less than 10%
of all the eigenstates. A recent work demonstrated that meta-
learning can be powerful for accurately detecting quantum
scars in a fully automated and efficient way (45), where a
standard large dataset called Omniglot from the field of image
classification was used for training in the adaptation phase.

Our meta-learning framework incorporating time-delayed
FNNs possesses a high level of sensitivity to the temporal
variations in the data, making it potentially feasible for
extension beyond ecosystems to challenging problems such
as epidemic spread prediction and traffic forecasting, where
effective data collection is often a hurdle. Moreover, our
framework can potentially be used to improve the prediction
performance of spatiotemporal chaotic systems or nodal
dynamics of large networks (73). There is also room for
enhancing the performance of the framework. For example,
in the present work, we employed the greedy algorithm for
selecting synthetic chaotic systems for the adaptation phase
of the training and implement meta-learning using the Reptile
algorithm. Alternative algorithms can be exploited to achieve
better performance.

There have been recent works on exploiting reservoir com-
puting for predicting system collapse induced by crisis (15, 21)
and tipping (74) as a bifurcation parameter passes through
a critical point. A basic requirement is that the machine-
learning model learn how the dynamical climate of the target
system changes with the bifurcation parameter, which can be
accomplished by conducting the training from extensive time
series from a number of distinct parameter values. For real-
world ecological systems, due to the lack of such datasets, at
the present time it is difficult to predict population collapse,
bifurcations, or tipping points. To develop meta-learning
based model tailored to ecological systems is an interesting
but extremely challenging task worth further development.

The meta-learning framework has broad application poten-
tial in real-world ecological systems. We have demonstrated
that the framework, when applied to synthetic systems, can
improve the predictions on real ecological benchmark systems.
It may also be useful to meta-learn multiple examples of
short time-series from similar ecological systems and then
train the neural network to predict new time series from
the same ecosystem. This could potentially reveal the
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underlying dynamics in an effective manner (75). For instance,
training on data from certain plankton populations and
then predicting unused plankton data could provide better
predictions due to similar dynamics.

Materials and Methods

Given a target system, time series are generated numerically
by integrating the synthetic system models with the time
step dt = 0.01. The initial states of both the dynamical
process and the neural network are randomly chosen from a
uniform distribution. An initial segment of the time series
is removed to ensure that the trajectory has reached the
attractor. The training and testing data are obtained by
sampling the time series at the interval ∆s. Specifically,
for the chaotic Hastings-Powell, food-chain, and Lotka-
Volterra systems, we set ∆s = 60dt = 0.6, 0.5, and 0.2,
corresponding to approximately 1/77, 1/83, and 1/71 cycles
of oscillation, respectively. The term “cycles” is referred to
as the oscillations of the fast-evolving variable. Specifically,
we estimated the average number of “cycles” for each system
by counting the local minima within a specific range of the
fast-evolving variable. The time series data are preprocessed
by using min-max normalization so that they lie in the unit
interval [0,1]. Considering the omnipresence of noise, we add
Gaussian noise of amplitude σ = 0.003 to the normalized
data. The training and predicting lengths of systems are set
as 20,000 and 50,000, respectively.

For the time-delayed FNN, the embedding dimension is
1,000, so the dimension of the input vector is 3,000 (three-
dimensional systems). The neural network comprises three
hidden layers with the respective sizes [1024,512,128], and its
output layer has the size of three (for three-dimensional target
systems). The batch size is set to be 128. In meta-learning,
we specify 20 inner iterations (Ii) and 30 outer iterations (Io),
with the inner and outer learning rates of α = 10−3 and ϵ = 1,
respectively. We apply Bayesian optimization to systemati-

cally determine the optimal hyperparameters and and test
the effects of the hyperparameters on the performance. When
studying real-world datasets, the machine-learning parameter
settings are similar to those used for the synthetic data, such
as the amplitude of added Gaussian noise and the chaotic
systems used for adaptation. However, due to the fact that
the empirical data are one-dimensional and short in length,
we adjust two hyperparameters to better suit these data:
reduced embedding time from 1000 to 30 and the dimension
of the input vector set to be the embedding. Consequently,
the neural network size is reduced to [128,64,16] and the batch
size is set to 16. In the meta-learning process, the number of
outer iterations (Io) is set to 20. For the real data, the first
70% is used for training and the remaining 30% is reserved for
testing to evaluate the performance. The simulations can be
run locally without requiring high-performance computational
resources. GPU computers are recommended to accelerate
the experiments. In our study, simulations are run using
Python on two desktop computers, each with 32 CPU cores,
128 GB memory, and one RTX 4000 NVIDIA GPU.

Data, Materials, and Software Availability

The simulated data are available at Zenodo:
https://doi.org/10.5281/zenodo.14261464.
The empirical ecological datasets are from:

https://github.com/bioinf-mcb/dynamo and
https://knb.ecoinformatics.org/view/doi:10.5063/F1BZ63Z8.
The code for reproducing the results presented in this work is
available on GitHub: https://github.com/Zheng-Meng/Meta-
learning-Ecosystems.
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