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Reservoir computing has emerged as a promising machine-learning approach to prediction and control of
complex nonlinear dynamical systems, rendering important exploring schemes of physical realization. We
articulate two frameworks of physical reservoir computing based on the electrophysiological mechanisms in
mammalian neuronal networks. The first emulates sensory-motor coordination triggered by external stimuli,
while the second mirrors modulatory inputs that regulate the neural state transitions. Both frameworks
utilize a simplified yet dynamically rich, map-based behavioral neural model that preserves the essential neu-
ronal functionalities. Computations conducted with sparse random interconnected networks and uncoupled
topologies establish the workings of the proposed frameworks in terms of training, validation, and testing.
These findings underline the potential of the proposed frameworks as foundational models for actual physical
implementation of reservoir computing.

Recent years have witnessed a growing interest in
reservoir computing, a machine-learning architec-
ture that is particularly suited for nonlinear and
complex dynamical systems. This is so because
of (1) the basic property of any dynamical sys-
tem: its state naturally evolves in time according
to a set of rules that mathematically can be de-
scribed by differential equations or discrete-time
maps, and (2) a reservoir computer can be trained
and designed to evolve itself in time as a so-called
“closed-loop” system. Since its first articulation
in 2001 and successful application in predicting
spatiotemporal dynamical systems in 2019, reser-
voir computing has been demonstrated to have
the potential to provide solutions for various chal-
lenging problems in nonlinear dynamics. For ex-
ample, in nonlinear dynamical systems, various
bifurcations leading to chaos and system collapse
can take place and the bifurcation parameters can
change with time. Reliably predicting the occur-
rence of future bifurcations, especially the criti-
cal ones leading to a catastrophic system collapse,
based solely on historical data, has been deemed
as a significant challenge since there are no data
available from the future. Recent advances have
indicated that reservoir computing may provide a
practically viable solution. In view of the capabil-
ities of reservoir computing, a question is whether
it can actually be physically implemented, ren-
dering physical reservoir computing as an active
area of research with the goal to realize neural
computing based on designing the reservoir net-
work from physical or biological systems. This
article introduces two frameworks of neuromor-
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phic reservoir computing based on the electro-
physiological mechanisms in mammalian neuronal
networks: one based on sensory-motor coordina-
tion triggered by external stimuli and the other
inspired by modulatory inputs that regulate the
neural state transitions. Both frameworks exploit
a dynamically rich, map-based behavioral neural
model, in which the essential neuronal function-
alities are preserved. Computations conducted
using using random reservoir networks and un-
coupled topology established the workings of the
frameworks in terms of training, validation, and
testing, suggesting their potential as the founda-
tional models for actual implementation of bio-
physical reservoir computing.

I. INTRODUCTION

Reservoir computing is a machine-learning paradigm
that leverages the natural dynamics of a complex system
- typically a complex dynamical network in the reservoir
or hidden layer. Specifically, an input vector, typically
of low dimension, is projected into the high-dimensional
vector in the phase space of the reservoir network, and
a straightforward readout is then be trained to produce
the desired output vector. The nodes in the reservoir
network are neurons and are mutually coupled, gener-
ating memory and rendering the neural network recur-
rent. Unlike traditional recurrent neural networks, in
reservoir computing only the output weights are trained,
while the internal connections in the reservoir network
remain fixed1–3. This drastically simplifies the training
in terms of computational efficiency, while maintaining
the power to accommodate nonlinear and complex dy-
namics. The original idea was articulated in the early
2000s with machine-learning models such as echo-state
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network (ESN)4,5 and liquid state machine (LSM)6, and
the term “reservoir computing” was later coined to unify
these concepts7. More specifically, an ESN uses a re-
current analog network of artificial neurons (e.g., with
sigmoid/tanh units) satisfying the so-called “echo state
property,” while an LSM employs a network of spiking
neurons. In both cases, it has been demonstrated that an
arbitrary, predefined recurrent neural network, such as a
randomly connected network with fixed weights, can per-
form complex temporal computations if a linear readout
is properly trained8. In recent years, there has been an
explosive growth of research in reservoir computing9–51,
on a variety of topics ranging from chaotic time series
prediction13,19,22,31, classification of time-varying or se-
quential patterns14,33, control systems and robotics41,52

and signal processing and filtering34 to system modeling
and identification35 as well as anticipating critical tran-
sitions29 and tipping45.

In view of the computational power and capability of
reservoir computing, a natural question is whether it can
actually be implemented by using some nonlinear physi-
cal systems. This leads to an area of research: physical
reservoir computing, where the neural computing is real-
ized by using physical or natural systems as the reservoir
instead of a simulated network20. In principle, any phys-
ically implementable nonlinear dynamical system with
memory can serve as a computational substrate, from
optical lasers to sloshing water53. The appeal is twofold:
(1) one can exploit the rich dynamics inherent in phys-
ical processes to potentially achieve computation with
lower energy or hardware cost and (2) studying physical
reservoir computing can lead to insights into how natural
systems themselves process information.

A brief review of the history of physical reservoir com-
puting is as follows. In a landmark early demonstration,
a bucket of water was demonstrated to act as a comput-
ing reservoir54. By vibrating water with input signals
and observing the surface waves with a camera, a “liquid
brain” was built, which was exploited for solving pat-
tern recognition tasks. In this framework, the bucket is
the reservoir: it takes inputs (stones) and produces a
complex pattern (ripples). There is no need to control
the exact dynamics inside, but just observe the patterns
and learn to interpret them for tasks such as predicting
weather or recognizing speech54. Throughout the 2010s,
physical reservoir computing diversified into many forms,
such as optical devices, analog circuits, spintronic and
quantum systems55,56. These studies demonstrated that
a wide range of physical media can serve as reservoirs in-
sofar as they have nonlinearity, high dimensionality, and
a fading memory4,57.

By the late 2010s and early 2020s, the convergence
of unconventional computing and biology became more
concrete. Notably, biological systems were recognized as
natural candidates for reservoir computing, where two di-
rections of research were opened. The first one used living
organisms or natural phenomena for reservoir computing.
For example, the gene regulatory network of E. coli was

explored for a liquid state machine58, and the recordings
from a cat’s primary visual cortex were analyzed with
the finding that the recurrent neural microcircuit natu-
rally had the properties of reservoir computing59. Later,
an echo-state network was trained to mimic the mon-
key prefrontal cortex activity during a cognitive task and
it was found that the network’s mixed dynamics closely
mirrored the biological neural dynamics60. Other studies
reported that living neurons can be stimulated with in-
puts and their activity can be used as the reservoir state,
although training such systems may be challenging due to
their plasticity61,62. Another study found that biological
neural reservoirs can act as filters, where linear readouts
could classify input patterns from the collective spikes63.
A recent study treated human soft tissue (the viscoelastic
muscle and skin of an arm) as a reservoir that processes
inputs in a prosthetic control system64. The concept of
ecological reservoir computing was introduced and im-
plemented65, providing the first proof-of-concept that an
ecological system can perform computation65. In 2022,
the first experimental demonstration of physical reservoir
computing using a living plant - strawberry (Fragaria Ö
ananassa), was reported66.

The second direction in biologically inspired reservoir
computing expands upon the concept in biophysical sys-
tems engineered or designed to mimic natural processes,
such as how neurons fire in the brain or how muscles con-
tract in animals. For example, a soft robotic arm inspired
by an octopus used its flexible movements, similar to how
the octopus navigates, to process information67. Bio-
inspired reservoir computing incorporating neuronal in-
trinsic plasticity and multi-clustered network structures
was studied68. Reservoir computing has also been im-
plemented within multicellular populations by leverag-
ing diffusion-based cell-to-cell signaling, a common bi-
ological communication method69. A soft bio-inspired
propulsor serving as a physical reservoir to perform state
estimation tasks in autonomous underwater vehicles was
developed70. These diverse studies collectively aimed to
exploit the inherent efficiency and adaptability biological
systems for applications in robotics, biomedical engineer-
ing, and other related fields.

In this paper, we articulate two frameworks of biophys-
ical reservoir computing based on the electrophysiological
mechanisms in mammalian neuronal networks. The first
framework is based on sensory-motor coordination trig-
gered by external stimuli, while the second is inspired by
modulatory inputs that regulate the neural state transi-
tions. Both frameworks utilize a simplified yet dynami-
cally rich map-based behavioral neural model, in which
the essential neuronal functionalities are preserved. We
conduct computations using random reservoir networks
and uncoupled topology, and establish the workings of
the proposed frameworks in terms of training, validation,
and testing. The results suggest the potential of the pro-
posed frameworks as possible foundational models for ac-
tual implementation of biophysical reservoir computing.

In Sec. II, we provide the background on reservoir com-
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puting and an overview of neural dynamics in the hu-
man brain. In Sec. III, we introduce the two biophysical
reservoir-computing frameworks inspired by neural dy-
namics and study the computational capability of two
distinct reservoir network topologies: one with random
nodal connections and the other uncoupled. Numerical
results are presented in Sec. IV. Section V summarizes
the key findings and offers a comprehensive discussion.
A detailed and comprehensive account of the workings of
reservoir computing in terms of data preparation, train-
ing, validation, hyperparameter optimization and testing
can be found in Appendix A.

II. BACKGROUND

A. Reservoir computing

A reservoir computer consists of an input, hidden, and
an output layers, as shown in Fig. 1(a). The input
layer feeds the time-varying input u(t) (typically a low-
dimensional vector) into the hidden layer. The hidden
layer, or the reservoir, hosts a dynamical neural network,
typically of a large number of nodes, and all the nodal
dynamical variables constitute a state vector, denoted as
r(t), in the corresponding high-dimensional phase space.
Mathematically, the mapping from the low-dimensional
vector u(t) to the high-dimensional state vector r(t) is
governed by the input matrix Win:

r(t) = Win · u(t),

where the elements of Win are randomly chosen and then
fixed throughout the training process. Because of its
high dimensionality, the state vector r(t) implicitly con-
tains the memory of the input vector from the past. The
nodes of the reservoir network are nonlinear activation
units defined, e.g., by the hyperbolic tangent function.
The structure or topology of the reservoir network is de-
scribed by the matrix A that is typically asymmetric,
weighted and fixed through the training process. The
nodal interactions described by A are thus mutual: there
is information flow between any pair of nodes, rendering
recurrent the dynamical network. Explicitly, in discrete
time, the dynamical evolution of the state vector is gov-
erned by

r(t+ 1) = (1− α)r(t) + αf [A · r(t) +Win · u(t)] , (1)

where α is the leakage parameter (one of the hyperpa-
rameters) and f denotes the vector field of all the nodal
activation functions. After an update of the state vector
from r(t) to r(t + 1), the readout or output layer com-
putes the vector y(t) from r(t+1) (by a simple weighted
sum) through the output matrix Wout:

y(t) = Wout · r(t), (2)

where the elements of Wout are determined through the
training process by linear regression to fit the target out-
put.

Let d be the dimension of the input vector u(t): u ∈
Rd, and let the number of nodes in the reservoir network
be N . The inequality d ≪ N typically holds. In applica-
tions of reservoir computing in nonlinear dynamical sys-
tems prediction, it is often the case that the output vector
y(t) has the same dimension as that of the input vector:
y ∈ Rd. The dimensions of the input matrix Win, the
reservoir network matrix A, and the output matrix Wout

are thus N×d, N×N , and d×N , respectively. Since the
randomly matrices Win and A are predefined and fixed,
and only the output matrix Wout needs to be determined
through training, the number of trainable parameters is
dN , which can be determined through standard linear
regression. In particular, given the input vector u(t) at
time step t, the dynamical evolution of the reservoir state
gives the output vector y(t + 1) at the next time step.
The error between u(t+1) and y(t+1), accumulated over
a large number of time steps, provides the base for deter-
mining the elements of the output matrix through linear
regression. This makes learning fast and computationally
efficient, avoiding the instability issues of training deep
recurrent neural networks that rely on backpropagation
for training71. This principle is analogous to the “random
projection” idea in extreme learning machines72 with the
coupling matrix A = 0 (not even self-coupling).
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FIG. 1. Basic structure and function of reservoir computing.
(a) Open-loop operation for training and validation. During
training, the input vector u(t) is the time series data from
the target system, and the reservoir computer generates the
output vector y(t+1). The accumulative error between y(t+
1) and u(t+1) is used to calculate the elements of the output
matrix through linear regression. In the validation phase, the
output matrix is fixed and the same error can be used for fine-
tuning the hyperparameter values. (b) Closed-loop operation
for testing. The output vector connects with the input vector,
forming a self-evolved dynamical system.

Following training, a validation dataset (distinct from
the training dataset) is used to evaluate the generaliza-
tion performance of the reservoir computer and to tune
the hyperparameter values. Within the open-loop frame-
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work as shown in Fig. 1(a), similar to the training phase,
the reservoir network is externally driven by a validation
input sequence that is not from the training data and the
corresponding target outputs are used to evaluate the
predictive performance. In particular, given the input
vector u(t) at time t, the reservoir computer generates
the output vector y(t + 1) at time t + 1, and the differ-
ence between y(t+1) and u(t+1) is used to assess if the
training is satisfactory in the sense that the accumulative
error, e.g., the root mean square error (RMSE), must be
below a predefined small threshold value. If not, more
training steps will be needed to update the elements of
the output matrix. This process should be repeated until
the training is deemed satisfactory. Unlike the training
phase, during the validation phase, the output matrix is
fixed and not updated.

In the testing phase, the trained reservoir computer is
evaluated in a closed-loop (autonomous) configuration, as
shown in Fig. 1(b), where the system generates outputs
without access to any ground-truth input. Instead, the
predicted output is recurrently fed back into the reser-
voir as the next input, allowing the reservoir computer
to evolve autonomously based on its internal dynamics
and previous output. This setup is essential for applica-
tions involving multi-step-ahead forecasting, digital twin,
or autonomous system modeling. The closed-loop struc-
ture tests the reservoir computer’s ability to sustain accu-
rate prediction over an extended time horizon, maintain
internal stability, and reproduce complex dynamics with-
out external corrections. In this phase, the reservoir state
vector is typically initialized with a short sequence of real
inputs to ensure that the dynamical state of the reservoir
network does not depend on the initial condition. This
is known as the “listening” stage. From this point for-
ward, the reservoir-computing system evolves in time en-
tirely on its own generated output. The closed-loop per-
formance, or the reservoir-computer’s long-term perfor-
mance can be evaluated using statistical measures such as
the Lyapunov exponents73, deviation value (DV)74, and
Kullback–Leibler (KL) divergence75 that quantify how
well the reservoir computer can reconstruct or emulate
the underlying dynamics without external guidance.

B. Electrophysiological mechanisms in neuronal networks

To motivate our articulation of the two biophysically
inspired reservoir-computing frameworks, we briefly de-
scribe the basics of electrophysiological mechanisms in
neuronal networks

Neuronal activities have stimulated research in differ-
ent fields, specially in computer science where artificial
neural networks originated. From the point of view of
electrophysiology, neuronal activities are complex but
they can be categorized into two types: a fast response
mode and a slow modulatory mode76–79. In the first
mode, rapid electrical signals in the neurons are triggered
by an external sensory stimulus (e.g., a touch or a flash

of light), which directly drives a chain of excitation and
inhibition, leading to an immediate motor action. The
second slow mode is more about adjusting and regulating
the normal, spontaneous, ongoing patterns of neurons fir-
ing with neuromodulatory inputs that are chemicals such
as dopamine or serotonin arriving from specialized cen-
ters. This mode adjusts the excitability of the neurons
without instantly causing new spikes. The two types of
neuron activities, one of sensory-motor integration and
one of state modulation, illustrate how the nervous sys-
tem uses different bioelectrophysiological mechanisms to
achieve coordinated behavior and adaptive brain states.

1. External stimuli and sensory-motor coordination

Sensory stimulus (pain/heat) caused by an action
(touching a hot spot or being exposed to a sudden light)
starts a rapid chain of events that shapes preventing re-
actions. In such a situation, specific neural populations
(e.g., touch receptors or retinal cells) are directly acti-
vated with external stimuli, and the activity propagates
to other neurons in connected pathways through exci-
tatory synapses (often using glutamate)78. However, to
prevent over-excitability that spreads too broadly or in-
tensely, inhibitory feedback is activated where interneu-
rons using inhibitory transmitters (e.g., GABA) quickly
fire in response to the excitation and suppress excessive
activity in other neurons. These ionotropic actions cre-
ate neural circuit dynamics with feedforward excitation
and feedback inhibition that result in a balanced and
controlled coherent output80. For instance, experiments
show that sensory inputs often evoke a “center excita-
tion, surround inhibition” pattern in motor areas, which
yields smooth and targeted motor coordination instead
of chaotic contractions.
A hypothesis to model such complex neural behavior

is considering them as threshold-based mechanism, such
that each neuron is in a resting state and, after reach-
ing a level of depolarization (an activation threshold), it
fires an action potential78. The external stimuli needs
to be powerful enough to reach this threshold and make
the neuron spike, and further increases in input produce
higher firing rates until approaching a saturation point.
Otherwise, the neuron stays silent and acts as minor noise
filtering.

2. Modulatory inputs for state transitions

A neural circuit has other stimuli than immediate sen-
sory inputs (the ionotropic mechanism), which contains
firing rhythmically during normal activity on its own,
e.g., the slow oscillations of deep sleep or the complex
firing patterns of quiet wakefulness)78. These normal
activities also have external stimuli that influence the
overall behavior later in the form of neuromodulators,
which are chemical signals (e.g., dopamine, serotonin,
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norepinephrine, acetylcholine, etc.)81. These inputs come
after the neurons are already active, and they do not
initiate the activity from scratch. Instead, they alter
the dynamics of the activities, which is different from
the direct, fast action of excitatory/inhibitory transmit-
ters. By this mechanism, after a neuromodulator (in-
put) reaches a neuron, it typically binds to metabotropic
receptors (G-protein-coupled receptors) on the neuron’s
membrane and sets off a cascade of intracellular signals,
leading to chemical modifications inside the cell82. Bio-
physically, neuromodulators act as a regulator that alter
the activity of the neuron by tweaking its ion channels.
For instance, closing a type of potassium channel makes
the cell less leaky (so it holds a depolarization longer),
or opening a K+ channel makes it more hyperpolarized
(requiring more excitation to fire). While this process
does not have a direct effect at the moment, it tunes the
neuron’s excitability or responsiveness.

III. BIO-INSPIRED RESERVOIR COMPUTING

Inspired by the two basic electrophysiological mech-
anisms observed in neuronal networks as described in
Sec. II B, we propose two distinct reservoir-computing
architectures with the aim to enhance both the inter-
pretability and implementability of physical reservoir
computing. For simplicity and basic physical under-
standing, we utilize a discrete-time, map-based behav-
ioral neural model, neglecting non-essential biophysical
details while preserving the core functional dynamics of
the neuronal activities. Such behavioral models have
in fact attracted considerable attention over the past
decade, recognized as effective and efficient alternatives
to overly detailed biological neuron models83. This at-
tention is underpinned by the fundamental principle that
increased complexity and biophysical detail in neuronal
modeling do not necessarily correlate with improved pre-
dictive performance.

    

    

           

FIG. 2. Behavioral neural network model inspired by brain
dynamics, incorporating both excitatory and inhibitory in-
teractions. The network features a feedforward path with a
hyperbolic tangent (tanh) activation function and a feedback
loop to balance the neural activities. The parameters aex,
ainh, bex, and binh are set to mimic the interplay between in-
hibitory and excitatory interactions in neuronal circuits.

We exploit the behavioral neural model originally in-
troduced for encapsulating the essential neuronal dynam-

ics through the interplay of feedforward and feedback
pathways, mirroring key aspects of neuronal circuits84.
As illustrated in Fig. 2, input signals propagate along a
feedforward pathway consisting of both excitatory and
inhibitory interactions, each mathematically modeled in
terms of hyperbolic tangent activation functions. The
balance between excitation and inhibition, critical for
maintaining balance and stability of neuronal dynamics,
is modeled via a recurrent feedback mechanism embed-
ded within the neural-network architecture. The evolu-
tion of the neural state can be formulated as

x(t+ 1) = bex tanh [aexx(t)]− binh tanh [ainhx(t)], (3)

where aex, ainh, bex, and binh are the inhibitory and exci-
tatory factors associated with the brain synapse weights
regulated by the release of different neurotransmitters.

A. Reservoir computing inspired by external stimuli and
sensory-motor coordination

FIG. 3. Two proposed bio-inspired reservoir-computing ar-
chitectures. (a) Reservoir computing inspired by sensory-
motor coordination in mammals, where external stimuli di-
rectly drive the reservoir’s internal states prior to the nonlin-
ear activation, mimicking fast sensory processing. (b) Reser-
voir computing inspired by neuromodulatory mechanisms in
the brain, where external inputs act after the activation func-
tion to modulate ongoing reservoir-network dynamics, reflect-
ing slow, regulatory influence typical of neuromodulators such
as dopamine or serotonin.

Here we propose a reservoir-computing framework in-
spired by the dynamics of cortical neural assemblies re-
sponsible for sensory-motor coordination in mammals,
as schematically illustrated in Fig. 3(a). This reservoir-
computing scheme consists of interconnected behavioral
sensory neural models (3) as shown in Fig. 2. Each be-
havioral model captures aggregate neuronal activities,
simplifying the detailed physiological dynamics while
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preserving the essential behavior of neuronal populations.
External sensory stimuli (u(t) ∈ Rd) representing envi-
ronmental inputs such as tactile or visual signals directly
modulate the reservoir network’s internal state. The dy-
namical evolution of the reservoir state is governed by
the following discrete-time equation:

r(t+ 1) =bex tanh [aexA · r(t) +Win · u(t)]
− binh tanh [ainhA · x(t) +Win · u(t)],

(4)

where r ∈ RN is the high-dimensional reservoir state vec-
tor, A ∈ RN×N is the internal recurrent coupling matrix
that captures the connectivity within the reservoir net-
work, and Win ∈ RN×d is the input weight matrix that
projects external sensory inputs into the reservoir’s state
space. Biologically, this framework mimics the cortical
processing pathways wherein sensory inputs propagate
through excitatory connections, activating targeted neu-
ronal sub-populations. Concurrently, inhibitory path-
ways regulate the neuronal excitability, thus preventing
hyperactivity and ensuring balanced dynamics. The non-
linear hyperbolic tangent activation functions ensure the
neural activity remains within biological constraints, sat-
urating at high stimulus intensities. Consequently, the
balanced excitatory-inhibitory recurrent network archi-
tecture generates coherent neural activity patterns that
underpin coordinated motor responses.

B. Reservoir computing inspired by modulatory inputs and
behavioral state transitions

In a complementary scenario illustrated in Fig. 3(c),
we propose a bio-inspired reservoir-computing structure
composed of interconnected behavioral neural models de-
scribed by Eq. (3), where the external inputs (u(t) ∈ Rd)
influence the neural network after the nonlinear activa-
tion stage. In contrast to the reservoir-computing scheme
described in Sec. III A, here the input signal acts pri-
marily as a neuromodulatory mechanism rather than a
direct sensory driver, akin to the effects of biological neu-
romodulators such as dopamine or serotonin. These neu-
romodulators typically alter neural excitability and re-
sponsiveness, rather than directly triggering action po-
tentials. The discrete-time dynamic evolution of the
reservoir states mimicking this scenario is governed by

r(t+ 1) = bex tanh [aexA · r(t)]− binh tanh [ainhA · x(t)]
+ g [Win · u(t)] , (5)

where r ∈ RN , A ∈ RN×N , and Win ∈ RN×d describe
the same characteristics of reservoir computing as de-
scribed in Sec. IIIA. In Eq. (III B), the nonlinear func-
tion g(·) captures the intrinsic nonlinear characteristics
of the neuromodulatory signaling pathways, modeling ef-
fects such as saturation, optimal dosing, and threshold-
dependent modulation of neuronal activities. Under this
arrangement, the neural ensemble inherently generates

spontaneous and recurrent activity patterns that reflect
baseline cognitive or behavioral states. The modulatory
input adjusts the amplitude or threshold of these spon-
taneously emerging patterns, facilitating transitions be-
tween distinct neural states or behavioral regimes. For
example, an appropriate modulatory signal can shift the
network from a resting state into an alert or attentive
state, thereby increasing sensitivities to subtle environ-
mental cues or enhancing cognitive functions.

IV. RESULTS

To evaluate the performance of the proposed bio-
inspired RC frameworks, we employ chaotic time series
data generated by the Lorenz system - a benchmark for
evaluating the predictive capabilities of reservoir comput-
ing:

ẋ1 = σ(x2 − x1),

ẋ2 = x1(ρ− x3)− x2,

ẋ3 = x1x2 − βx3,

(6)

where the parameters are set as σ = 10, ρ = 28, and
β = 8/3. Numerical integration is performed using the
fourth-order Runge-Kutta (RK4) method with the inte-
gration step size of h = 10−3. The three state variables
(x1, x2, x3) are sampled at the discrete time interval of
∆t = 0.1 and normalized to fit within the range [0, 1].
Our experimental evaluation is structured into three

distinct phases: training, validation, and testing. The
training and validation phases constitute an open-loop
configuration, during which the reservoir computer is
provided with external input data to optimize and as-
sess its predictive accuracy, as shown in Fig. 1(a). The
testing phase adopts a closed-loop configuration, where
the reservoir computer operates autonomously by feed-
ing its output back as input, enabling the generation of
self-sustained prediction, as shown in Fig. 1(b). A de-
tailed description of the evaluation method is provided
in Appendix.

A. Interconnected bio-inspired reservoir computing

We present the results obtained from two bio-inspired
reservoir-computing structures, each configured as a net-
work of interconnected nodes. Each node in the reservoir
network represents an aggregate neural unit, whose inter-
actions are defined by the coupling matrix A. The pa-
rameter values in Eq. (3) are set to bex = 1.5, aex = 0.2,
binh = 1, and ainh = 0.1.

To construct the reservoir network, we set the connec-
tivity structure to be an undirected (symmetric) random
network. The elements of the network coupling matrix
with N number of interconnected nodes (A ∈ RN×N )
are independently drawn from a normal distribution with
zero mean. Additionally, we fix the elements of the input
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FIG. 4. Performance of the coupled bio-inspired reservoir computers with 30 coupled nodes. (a-d) Results from the first
reservoir computing scheme driven by an external sensory input before activation (RC 1). Results from the second reservoir

computing scheme are shown in (e-h) with g(x) = tanh(x) (RC 2) and in (i-l) with g(x) = 0.5e−x2

(RC 3), where modulatory
input enters after the activation stage. The left two columns show the training and validation results (open-loop), while the
right two columns illustrate autonomous testing results (closed-loop), including long-term trajectory reconstruction.

TABLE I. Statistical analysis comparison between the attractor generated by the bio-inspired coupled reservoir computers and
the ground truth

System
Index Training

RMSE
Validation
RMSE

Testing
DV

Testing
LLE

Testing
KL divergence

Bio-inspired RC 1 0.005 0.005 0.157 0.057 1.14× 10−4

Bio-inspired RC 2 0.003 0.003 0.165 0.056 7.67× 10−4

Bio-inspired RC 3 0.003 0.003 0.159 0.056 7.88× 10−5

weight matrix Win ∈ RN×d to be uniformly distributed
within the range [−1, 1]. Once the coupled bio-inspired
RC system is constructed, its performance can be evalu-
ated. Figure 4 illustrates the predictive performance of
all interconnected bio-inspired reservoir-computing con-
figurations across training, validation, and autonomous
testing phases.

Figures 4(a-d) show results from the first bio-inspired
reservoir-computing scheme, where external sensory in-
puts directly drive the neural activation stages. Fig-
ures 4(e-h) present results form the second configuration
with g(x) = tanh(x), where modulatory inputs affects
the neural dynamics after activation. Results from the

same configuration but with g(x) = 0.5e−x2

are shown in
Figs. 4(i-l). In all cases, the hidden-layer reservoir net-
work has 30 interconnected nodes. In comparison with
conventional reservoir computing9–20,22–35,37,40,41,45, this
network size is small, but the results in Figs. 4(a-l)

demonstrate that the scheme is capable of effectively
capturing and reproducing the dynamics of the Lorenz
chaotic system.

To quantitatively evaluate the performance of the bio-
inspired reservoir computing, we employ the NRMSE
during the training and validation phases. For the au-
tonomous testing phase, we assess the long-term pre-
diction fidelity using statistical measures including the
largest Lyapunov exponent (LLE)73, deviation value
(DV)74, and Kullback–Leibler (KL) divergence75. The
results are summarized in Tab. I, demonstrating that
the proposed bio-inspired reservoir-computing schemes
are fully capable of long-term statistical prediction of
chaotic systems by generating the correct chaotic Lorenz
attractor. In particular, the results Tab. I indicate that
both bio-inspired reservoir-computing architectures ex-
hibit low training and validation errors, suggesting ef-
fective learning with little or no overfitting. Notably,
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FIG. 5. Performance of the uncoupled bio-inspired reservoir computers with 30 independent nodes. Legends are the same as
those in Fig. 4.

TABLE II. Statistical analysis comparison between the attractor generated by the bio-inspired uncoupled reservoir computers
and the ground truth

System
Index Training

RMSE
Validation
RMSE

Testing
DV

Testing
LLE

Testing
KL divergence

Bio-inspired RC 1 0.005 0.005 0.144 0.056 8.4× 10−5

Bio-inspired RC 2 0.004 0.004 0.132 0.057 1.21× 10−5

Bio-inspired RC 3 0.003 0.003 0.153 0.056 3.75× 10−4

the LLEs estimated from the autonomous testing phase
closely match the ground truth value for the Lorenz at-
tractor (about 0.058). This alignment demonstrates that
both architectures successfully reproduce the characteris-
tic chaotic behavior of the original system in the closed-
loop operation, generating trajectories that remain on
the same attractor. These findings are further supported
by the small values observed for the DV and the KL di-
vergence, reinforcing the reservoir computer’s ability to
maintain the statistical and dynamical structure of the
Lorenz system over long-term autonomous prediction.

B. Uncoupled bio-inspired reservoir-computing
architecture

While the coupled bio-inspired reservoir-computing ar-
chitectures discussed in Sec. IVA exhibit predictive ca-
pabilities, hardware realization of the complex coupling
structure could be a challenge. More specifically, the

architectures require a precisely controlled network of
interconnected nodes, which poses considerable difficul-
ties in terms of scalability, hardware complexity, and
long-term stability. To address these limitations, we ex-
plore an alternative that is potentially more hardware-
implementable: uncoupled reservoir computing85. In
this framework, each node in the reservoir network oper-
ates independently of the others: there are no recurrent
connections among the nodes. Mathematically, this en-
tails setting the coupling matrix to the identity matrix:
A = IN so that each node is only influenced by its own
past state. Each node acts as a stand-alone nonlinear
dynamical unit driven by the same input stream.

To enable a fair comparison with the coupled architec-
tures, we use the same network size N = 30. Both bio-
inspired models are implemented on this uncoupled con-
figuration and simulations for training, validation, and
testing phases are carried out. Figures 5(a-d) show the
results from the first configuration. Figures 5(e-h) and
5(i-l) present results from the second configuration with
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g(x) = tanh(x) and g(x) = 0.5e−x2

, respectively. In all
cases, the uncoupled reservoir computer is capable of ac-
curately learning and reproducing the dynamics of the
Lorenz chaotic system. Results of quantitative evalua-
tion, including the NRMSE for the training and valida-
tion phases and DV, LLE, and the KL divergence for
the testing phase are summarized in Tab. II. It can be
seen that all the configurations exhibit low NRMSE val-
ues (below 0.005), indicating effective short-term learn-
ing without overfitting. The reconstructed trajectories
remain on the Lorenz attractor for an extended time
period. The estimated values of the LLE are remark-
ably close to the ground-truth value, confirming faith-
ful reproduction of the chaotic dynamics. These find-
ings suggest that the uncoupled bio-inspired reservoir-
computing framework is capable of not only matching
the predictive performance of the coupled counterpart
but also offering substantial practical advantages with
respect to physical implementation. By eliminating the
need for node-to-node coupling, the uncoupled reservoir-
computing scheme permits more efficient, scalable, and
physically realizable implementation for neuromorphic
and analog computing platforms.

V. DISCUSSION

In recent years, biological systems have emerged as
powerful sources of inspiration for unconventional com-
puting. While prior efforts exploited living organisms
directly as computational substrates, our approach be-
longs to designing engineered physical systems that imi-
tate fundamental biological principles. In this paper, we
distill essential electrophysiological motifs from neuronal
behavior and translate them into discrete-time reservoir-
computing dynamics capable of efficient and robust pre-
diction tasks. In particular, we draw from two distinct
modes of neuronal function: (1) fast sensory-driven ac-
tivity, in which external stimuli directly trigger cascades
of excitation and inhibition and (2) slow neuromodu-
latory regulation, where ongoing spontaneous dynamics
are adjusted in response to modulatory inputs such as
dopamine or serotonin. These models provide insights
into biological information processing between direct re-
active behavior and context-sensitive modulation and
serve as the foundation for our two complementary de-
signs of bio-inspired reservoir computing.

Our first reservoir-computing structure is inspired by
sensory-motor integration, where external input is ap-
plied prior to the activation function, which models sce-
narios where sensory inputs immediately trigger neuronal
firing and the following responses. Our second reservoir-
computing scheme captures the modulatory paradigm by
introducing the external input after the activation stage,
thereby altering the ongoing reservoir network dynam-
ics rather than initiating them. The role of neuromod-
ulators is further emphasized by incorporating nonlinear
transformations of the modulatory input, using either a

saturating hyperbolic tangent or a Gaussian-like function
to model the biologically plausible dose-response charac-
teristics of such signals. Our experimental evaluations
conducted using time-series data from the benchmark
chaotic Lorenz system tested both reservoir-computing
architectures across training, validation, and autonomous
testing phases. The results consistently demonstrate that
the proposed schemes are capable of learning and repro-
ducing the complex dynamics of the paradigmatic chaotic
system. In particular, during training and validation,
low NRMSE values indicate strong short-term predictive
accuracy and generalizability in an open-loop configura-
tion. In the closed-loop testing phase where the reser-
voir computer operates without external input, the au-
tonomous trajectories generated remain bounded within
the ground-truth Lorenz attractor for an extended time
span. This is confirmed through multiple statistical in-
dices such as LLE, DV and KL divergence. For exam-
ple, the agreement between the predicted and ground
truth LLE values is strong indication that the dynam-
ical system structure has been faithfully captured by
the bio-inspired reservoir computers, not merely approx-
imated. These results suggest that all the proposed bio-
inspired reservoir-computing schemes possess the core
properties required of physical reservoir computing: non-
linearity, fading memory, and insensitivity to initial con-
ditions, alongside the ability to support autonomous, self-
sustained output generation - a critical requirement for
applications such as tipping point prediction, robotics,
and real-time feedback control.

A possible extension of our work involves the compar-
ison between the coupled and uncoupled architectures.
While the coupled reservoir-computing systems demon-
strate strong predictive performance, their hardware im-
plementation is challenging due to the requirement of
maintaining precisely synchronized and densely intercon-
nected nodes. To overcome the limitations, we tested
uncoupled reservoir computing - a simplified architec-
ture in which each reservoir node operates independently.
By setting the internal coupling matrix to the identity,
we effectively eliminated inter-node communication, sim-
plifying both design and physical realization. Remark-
ably, our results show that uncoupled reservoir comput-
ing can match the performance of their coupled counter-
parts in every metric in that the uncoupled scheme suc-
ceeds in learning the Lorenz dynamics and maintaining
autonomous trajectories over a long duration, while re-
quiring significantly less structural complexity. This key
result reinforces the idea that the essential computational
capability of reservoir computing needs not rely on com-
plex connectivity. Instead, it can be achieved through
a collection of nonlinear responses in a parallel struc-
ture with different inputs. The implications for hard-
ware design encouraging: uncoupled reservoir computing
may pave the way for more scalable, energy-efficient, and
fault-tolerant physical implementations, particularly in
neuromorphic and analog computing platforms.

Taken together, our proposed bio-inspired reservoir-
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computing schemes represent a conceptual and practi-
cal stepping stone toward physical implementation. Bio-
inspired reservoir computing is more than just effective
predictors of chaotic dynamics - they are prototypes of
physical computation devices that combine the adapt-
ability of neuronal systems with the efficiency and re-
producibility of engineered hardware. The proposed bio-
inspired reservoir frameworks grounded in fast and slow
neural signaling dynamics have the potential of serving
not only as computational tools but also as conceptual
foundations for the future of physical reservoir comput-
ing.
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Appendix A: Reservoir computing: preparation, training,
validation, hyperparameter optimization, and testing

1. Input data preprocessing

Any modeling task begins with preparing the input
data. Time series data often require preprocessing to
ensure the reservoir computer can effectively learn the
underlying dynamics of the target system. A commonly
used method is normalization, by which the time series
data are scaled or normalized so that the input and out-
put lie in a convenient range, e.g., [0, 1]. For example,
one might apply min-max or z-score normalization. In
particular, given a scalar time series X(t) with minimum
Xmin and maximum Xmax, min-max normalization lead
to the normalized time series X̄(t) given by

X̄(t) ≡ X(t)−Xmin

Xmax −Xmin
.

For z-score normalization, the given time series X(t) is
modified to

Z(t) ≡ X(t)− µ

σ
,

where µ and σ are the mean and standard deviation of
X(t), respectively. The normalization prevents possible
outliers in the input from driving the dynamical state of
the reservoir network into saturation of the nodal acti-
vation function in the reservoir network (e.g., ±1 output
if the activation function is tanh). The saturation re-
gion should be avoided because it will diminish mem-
ory and lead to unpredictable behavior. Keeping the
data bounded and approximately zero-centered helps the
reservoir computer operate in its active regime.

For training and validation (essentially one-step-ahead
prediction tasks), the reservoir network’s input at dis-
crete time t will be the time series value at time t (with-
out any delays) and the target output is the value at time
t + 1. In the simplest case, the reservoir computer will
be trained as an autoregressive model that consumes the
previous output to predict the next one. In this cases,
the data can be formatted as sequences of input-output
pairs [u(t),ytarget(t)] at consecutive time steps.

2. Initialization of reservoir network

To prepare a reservoir network, the values of some
structural parameters need to be initialized, such as the
reservoir-network size N (the number of neurons in the
network). Intuitively, a larger reservoir network can cap-
ture more complex dynamics but the computational cost
will be high. For d-dimensional input, the weights or el-
ements of the input matrix Win ∈ RN×d are randomly
initialized with entries drawn from a uniform or the nor-
mal distribution. The range of the input weights is of-
ten controlled by a small input scaling factor βin. For
instance, in case of tanh as an activation function, a
smaller input scale keeps the nodes in the reservoir net-
work in the linear region centered at zero, while a larger
scale can push them into saturation (±1) more frequently,
enhancing nonlinearity. The reservoir network coupling
matrix A ∈ RN×N is often chosen as a sparse random
network. After A is initialized, the desired spectral ra-
dius ρ(A), the largest absolute eigenvalue of A, is ad-
justed to ensures the reservoir computer’s behavior is
stable and dependent on input history rather than on
initial conditions. The so-called leaking-rate parameter
α (0 ≤ α ≤ 1) controls the speed at which the reser-
voir network updates its state. In particular, for α = 1,
the state of the reservoir network is updated fully with
the new input influence at each step. This corresponds
to the case of “no leak.” A small value of α effectively
“slows down” the dynamics of the reservoir network in
the sense of partial state update, meaning that the reser-
voir network changes more slowly and retains some of its
previous state. The initial condition of the state vector
of the reservoir network, r(0), is usually set to zero or
near-zero random values. To remove any effect of r(0)
on the performance, a listening/washout period can be
used to remove any transient dynamical evolution from
the initial condition.

3. Training

The goal of training is to determine the reservoir out-
put matrix Wout from the input data. Depending on the
specific type of reservoir-network dynamics, for breaking
the symmetries in the reservoir state and improving the
predictive power, the reservoir state matrix should be
slightly augmented or changed.
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The input time series is fed into the reservoir network
one step at a time. At each time step t, the reservoir
state r(t) is updated according to Eq. (1). In a one-step-
ahead prediction task, the input u(t) is the actual values
of the time series at time t (the correct value “forced”
by the “teacher”) and the reservoir computer is expected
to produce an output approximating the time series val-
ues at the next time step: y(t) = u(t + 1). As a result,
the reservoir computer is driven by the ground-truth se-
quence and transforms this input history into a trajec-
tory of the high-dimensional state vector in the reservoir
network.

To remove the effect of random reservoir initialization,
a sequence of length Ttransient + Ttrain + Tvalid is fed into

the reservoir network. The initial portion of the state
vector

r(1), r(2), . . . , r(Ttransient)

during which the reservoir is being “warmed up”, is dis-
carded as a listening/washout period to ensure that the
influence of the initial state will fade out.
For convenience, after the transient listening/washout

period, the time is reset to zero. The remaining reser-
voir state vector and the corresponding vector of the tar-
get system are utilized for training and validation. Let
the time lengths of the training and validation phases
be Ttrain and Tvalid, respectively. For the training and
validation phases, the time index thus runs from one to
Ttrain + Tvalid:

t : 1, 2, · · · , Ttrain︸ ︷︷ ︸
Training

, Ttrain + 1, Ttrain + 2, · · · , Ttrain + Tvalid︸ ︷︷ ︸
Validation

. (A1)

To describe the procedure, it is useful to concatenate the
reservoir state vector r(t) horizontally in terms of the
time index to obtain an N × Ttrain dimensional training
state matrix:

Rtrain ≡
(
r(1), r(2), . . . , r(Ttrain)

)
N×Ttrain

(A2)

Since the N -dimensional state vector r(t) is generated
by the hyperbolic tangent, odd activation function of
the reservoir node via the iterative process governed by
Eq. (1), the map r(t) → −r(t) leaves the reservoir equa-
tions invariant. For zero-mean inputs, the network can
lock onto an inverted copy of the true attractor, leading
to large prediction errors due to the “mirror-attractor.”
In addition, if the input amplitude is small and around
origin, the reservoir network remains in the near-linear
region of the hyperbolic tangent activation function, so
the state matrix Rtrain can become rank-deficient, which
could present difficulties for determining the output ma-
trix Wout via Eq. (2) and making the least-squares so-
lution for the read-out weights ill-conditioned. There
are different ways to overcome these difficulties. One
method13 was to take the square of all even elements of
the reservoir state vector r(t) for all the time indices spec-
ified in (A1). In this case, the dimension of the reservoir

state matrix R̂train is unchanged. Another method is to
augment the reservoir states with their quadratic (and
higher) terms, e.g.,

r̂(t) = [r(t), r2(t)]t, (A3)

where the dimension of the reservoir state matrix R̂train

is changed to R2N×Ttrain .
An alternative low-cost approach to addressing the

“mirror-attractor” problem is designating an additional
“bias” node in the reservoir network that injects a small,

time-independent driving signal into the reservoir dy-
namics. The additional bias has no connection with
any other node in the network, whose state variable
is a constant b, e.g., b = 1. Specifically, by this ap-
proach, the dimension of the state vector becomes (N+1)
and the corresponding state matrix has the dimension
(N + 1)× Ttrain. Let the state vector r(t) in terms of its
component be written as

r(t) = (r1(t), r2(t), . . . , rN (t))
T
.

Explicitly, the augmented reservoir state matrix for train-
ing can be written as

R̂train =


r1(1) r1(2) · · · r1(Ttrain)
r2(1) r2(2) · · · r2(Ttrain)
...

... · · ·
...

rN (1) rN (2) · · · rN (Ttrain)
1 1 · · · 1

 (A4)

where the notation R̂train is used to distinguish it from
the original matrix Rtrain and the dimension of R̂train is
(N +1)×Ttrain. As a result of this state matrix augmen-
tation, the output matrix Wout needs to be augmented
to the dimension d × (N + 1) to keep the dimension of
the output vector y(t) unchanged, which can be denoted

as Ŵout, whose dimension is d× (N + 1).

Let Ŷtrain be the matrix concatenating all the output
vectors from the initial time to time Ttrain:

Ŷtrain ≡
(
y(1),y(2), . . . ,y(Ttrain)

)
, (A5)

whose dimension is d×Ttrain. Based on Eq. (2), Ytrain can
be expressed in terms of the augmented reservoir state
matrix R̂train and the augmented output matrix Ŵout as

Ŷtrain = Ŵout · R̂train. (A6)
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Let Ytrain be the matrix concatenating all the ground-
truth output vectors that are essentially the correspond-
ing input vectors for training. The augmented output
matrix Ŵout can be calculated through linear regression
of Eq. (A6) with the following loss function:

L = ∥Ytrain − Ŵout · R̂train∥2 + β∥Ŵout∥2, (A7)

where ∥Ŵout∥2 is the sum of squared elements of Ŵout

and λ > 0 is the Tikhonov regularization parameter in-
troduced for preventing overfitting by imposing a penalty
on large values of the fitting parameters. The standard
linear regression leads to

Ŵout = Ytrain · R̂T
train ·

(
R̂train · R̂T

train + λI
)−1

, (A8)

where I is the (N + 1) × (N + 1) dimensional identity
matrix.

4. Validation and hyperparameter optimization

A machine-learning architecture often has a small
number of “global” or hyperparameters. In reservoir
computing, the hyperparameters include the input scal-
ing factor βin, the size N and the spectral radius ρ(A)
of the reservoir network, the leaking rate α, and the reg-
ularization parameter λ. Unlike the parameters deter-
mined by training, e.g., all elements of the output ma-
trix Ŵout, the hyperparameters are those that define the
overall machine-learning architecture and are initially set
prior to the training process. The hyperparameter values
can significantly impact the performance of the machine-
learning model. To achieve the best possible testing per-
formance and to minimize the probability of overfitting,

after training is done, it is necessary to optimize the hy-
perparameters through fine tuning.

For reservoir computing, after training is done in the
sense that the optimal output matrix Ŵout has been
found, the process of optimizing the hyperparameter val-
ues can begin, which is crucial for complex tasks. For
this purpose, a validation dataset can be used through
evaluating the performance of the trained reservoir com-
puter on unseen data - a kind of generalization test. This
dataset thus should have no overlap with the training
data, which can be conveniently chosen to be a specifi-
cally allocated portion of the available time series, often
a data segment following the training dataset. Different
methods can be used for fine-tuning the hyperparameter
values, such as random search and Bayesian optimiza-
tion. Specifically, random search is a method in which
the hyperparameter values are selected randomly within
the search domain. Suppose there are six hyperparame-
ters that need to be tuned, each with many possible val-
ues. Testing every combination (known as grid search)
would require high computation cost. Random search
selects a combination of random values for each hyper-
parameter from its respective pool at each time step and
test the reservoir-computing performance, which is more
efficient than the brute-force type of grid search. Al-
ternatively, the fine-tuning of the hyperparameters can
be done through different optimization methods such as
Bayesian18, surrogate86, or genetic algorithm87. We use
the Bayesian method, which is general and efficient for
optimizing complex functions. It uses a probabilistic
model to guide the search for optimal hyperparameter
values, balancing exploration and exploitation.

Concretely, the state matrix of the reservoir network
produced by the validation dataset, denoted as R̂valid, is
given by

R̂valid =


r1(Ttrain + 1) r1(Ttrain + 2) · · · r1(Ttrain + Tvalid)
r2(Ttrain + 1) r2(Ttrain + 2) · · · r2(Ttrain + Tvalid)

...
... · · ·

...
rN (Ttrain + 1) rN (Ttrain + 2) · · · rN (Ttrain + Tvalid)

1 1 · · · 1

 (A9)

The predicted validation output with the reservoir out-
put matrix determined during the training phase can be
written as

Ŷvalid = Ŵout · R̂valid, (A10)

which can be compared with the corresponding ground-
truth matrix Yvalid be the matrix concatenating all the
ground-truth output vectors that are the corresponding
input vectors for validation. To measure the one-step-
ahead prediction error for hyperparameter tuning, an er-
ror metric such as the normalized root mean square error
(NRMSE) over the training and validation datasets can

be used

NRMSE =

√
⟨∥Ŷvalid − Yvalid∥2⟩

σy
, (A11)

where σy is the standard deviation of the ground-truth
output vector y and ⟨·⟩ denotes the average over a num-
ber of statistical realizations of validation. The training
and validation processes are repeated until the optimal
hyperparameters are identified, with the validation error
falling below a predefined threshold.
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5. Testing

After training and validation, the reservoir computer
can be tested for multi-step prediction performance.
During testing, the output of the reservoir computer is
connected to its input: u(t) = y(t), leading to a closed-
loop operation and making the machine a self-evolving,
autonomous dynamical system without any external in-
put. The dynamical evolution of the state of the reservoir
network is now governed by

r(t+ 1) = (1− α)r(t) + αf [A · r(t) +Wout · r(t− 1)] .
(A12)

This is effectively an echo-state network with the state at
time t+1 depending on the states at time t and t−1. Let
the asymptotic state of the target system on some kind of
invariant set, e.g., a chaotic attractor, be ytarget(t), which
represents the ground truth. Setting the initial condition
of the reservoir computer as y(0) = ytarget(0), one can
compare the output vector y(t) of the reservoir computer
with the ground truth ytarget(t) for an arbitrarily long
time interval. For short-term prediction, the root-mean
square difference between the two vectors can be used
to characterize the performance. If the target system is
chaotic, the output vector y(t) will diverge exponentially
from the ground-truth vector ytarget(t) with the rate de-
termined by the largest Lyapunov exponent of the target
system. After a few Lyapunov times, the distance be-
tween y(t) and ytarget(t) can be as large as the range
of either vector. The long-term prediction performance
can be evaluated by examining whether the reservoir-
computer generated attractor is in the neighborhood of
the ground-truth attractor. The statistical measures that
can be used for this purpose include the Lyapunov expo-
nents73, deviation value (DV)74, and Kullback–Leibler
(KL) divergence75.
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