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In nonautonomous dynamical systems, rate-induced tipping (R-tipping) is a critical transition triggered by
the rate of change of a time-varying parameter, rather than its absolute value. In recent years, there is a
growing interest in R-tipping due to its relevance to significant problems of current interest, such as potential,
catastrophic collapse of various ecosystems induced by climate change. This brief Review provides an overview
of the basic concept, theory, and real-world implications of R-tipping from a global phase-space point of view.
The key quantity underlying the global approach is the probability of R-tipping defined with respect to initial
conditions in the phase space. A recently discovered scaling law governing this probability and the rate of
parameter change is introduced, which has so far been restricted to a class of high-dimensional, complex, and
empirical ecological networks: pollinator-plant mutualistic networks. Issues such as prediction of tipping and
protection of ecosystems from R-tipping are discussed.

Once upon a time, there was a donkey grazing
near a river. A flash flood occurred and the don-
key began to run towards the high ground some
distance away. If the flood front was sufficiently
slow, the donkey would reach the high ground in
time and survive. However, if the flood front was
too fast, the donkey would be swept into the wa-
ter and would not survive. Clearly, in addition
to the speed of the flood front, the survival of the
donkey also depends on its initial position: near
to or far away from the river. For any specific
position, there is a critical speed of the flood,
below which there is survival but above which
death or extinction occurs. This is an intuitive
picture of the phenomenon of rate-induced tip-
ping, or R-tipping. In nonlinear dynamics, if the
system is autonomous and bistable with two co-
existing steady-state attractors, one correspond-
ing to survival and another to extinction, each
with its own basin of attraction, the basin bound-
ary is stationary, i.e., it does not move in time.
When a parameter changes with time so that
the system becomes nonautonomous, the basin
boundary will move with time. Whether a spe-
cific initial condition will lead to system survival
or extinction depends on its location in the phase
space as well as the “speed” at which the basin
boundary moves. For an initial condition origi-
nally in the basin of the survival attractor, if it
moves more “slowly” than the basin boundary,
it will be swept into the basin of the extinction
attractor, leading to a tipping of its fate. For any
such initial condition, there exists a critical speed
of the movement of the basin boundary, or a crit-
ical rate of the parameter change, above which
R-tipping will occur. For a given rate of param-
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eter change, some initial conditions in the phase
space will experience R-tipping, while some oth-
ers will not by remaining in the basin of the sur-
vival attractor, in spite of the time variation of
the parameter. The probability of R-tipping can
then be defined for any given rate of parameter
change. How does this probability depend on the
rate? Characteristically, there are two possible
scenarios. If, as the rate becomes nonzero, this
probability increases from zero but slowly, a safe
interval will arise in the rate in which the proba-
bility remains at some near-zero value - a desired
situation. However, if the probability grows im-
mediately and drastically as soon as the rate of
parameter change increases from zero, no such
safe interval or region will exist. In this case,
in order to keep the probability of R-tipping di-
minishingly small, practically the rate of param-
eter change must be reduced to zero. Unfor-
tunately, in nonautonomous dynamical systems,
the dependence of the probability of R-tipping
on the rate of parameter change tends to follow
the second scenario. This brief Review presents
mathematical reasoning establishing such a de-
pendence, or the scaling law, which so far has
been computationally verified only for a class
of complex, high-dimensional empirical ecological
networks: plant-pollinator mutualistic networks.
One implication for such ecological networks is
dire: in order to protect ecosystems from climate
change, the rate of adverse parameter change,
such as the rate of emissions of chemicals into
the atmosphere, must be kept at near zero val-
ues.
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I. INTRODUCTION

A tipping point is a critical threshold within a complex
dynamical system where a small perturbation can lead
to significant and often irreversible system changes1–33.
Due to its implications for system stability and resilience,
the phenomenon of tipping has garnered substantial at-
tention across various scientific disciplines including cli-
mate science1,11,30, neuroscience6,14, and engineering7.
In autonomous dynamical systems, a tipping point is
the result of parameters reaching a critical level or of the
influence of noise, which are referred to as bifurcation-
induced tipping or noise-induced tipping11,32, respec-
tively. A common dynamical mechanism for tipping is
a backward saddle-node bifurcation where, as the bi-
furcation parameter increases through a critical point,
a stable steady state and an unstable one coalesce and
disappear together. Assume that the stable steady state
corresponds to a “healthy” or “survival” state of the sys-
tem. Before the bifurcation, there is bistability where the
“healthy” steady state and another steady state associ-
ated with the “collapse” or “extinction” of the system
coexist. After the bifurcation, the “healthy” steady state
no longer exists, leaving the “collapse” state as the only
attractor of the system. The backward saddle-node bi-
furcation thus leads to a tipping, after which the system
functions are destroyed.

Dynamical systems in the real world are often of the
nonautonomous type, due to the ubiquitous variations of
the system’s parameters with time. For example, influ-
enced by global climate change, the parameters of many
ecosystems can drift with time, making them nonau-
tonomous. When a parameter of the system changes
with time, its rate of change is of particular concern -
one example is the rate of carbon-dioxide emission into
the atmosphere, which has been increasing steadily in
recent decades. From the point of view of tipping, one
might tempt to think that the time rate of change of a
parameter may not be important, insofar as its value has
not reached the threshold for tipping. More specifically,
consider the two cases where a bifurcation parameter of
the system changes slowly or fast, respectively, and sup-
pose that the value of the parameter is still far away
from a tipping point from the bifurcation point of view.
In which case is a tipping event more likely? This ques-
tion was addressed in a series of seminal works6,11,34,
where the rate of the parameter change acts as a “super
parameter” of the system and can induce tipping. This
is known as rate-induced tipping or R-tipping.

Most previous studies on R-tipping were from a near-
equilibrium perspective, focusing on initial conditions
near the system’s steady state. This approach is par-
ticularly effective if the system is always near an equi-
librium point. In the real world, the state that an eco-
logical system is in depends not only on the determin-
istic dynamics, but more importantly, on random and
unexpected influences such as demographic stochastic-
ity35 and large-scale stochastic geographical and climatic

events36. As a result, an ecosystem can be far from a sta-
ble equilibrium but may still be in its basin of attraction
if the perturbations are not strong enough to push the
system across the basin boundary. In fact, for a high-
dimensional ecosystem, the probability that it is found
far from equilibrium and is in a transient state can be
quite appreciable37,38. The non-equilibrium initial con-
ditions can significantly influence a system’s response to
rapid parameter changes, rendering essential and impor-
tant considering initial conditions from a larger region
of the phase space rather than from the vicinity of some
equilibrium state31,39.
In a previous study, the global approach was employed

to demonstrate that different initial states of a ocean cir-
culation can lead to significantly different outcomes un-
der rapid climate changes40. This study focused on the
AMOC, revealing that certain initial ocean conditions
make the system more prone to tipping, while others
allow for more gradual transitions. Similarly, an exper-
imental study in thermoacoustic systems revealed that
R-tipping can occur when the system is preconditioned
with some specific initial states41, highlighting the role
of non-equilibrium dynamics in R-tipping in that even
initial conditions far from equilibrium can trigger a tip-
ping event. In ecological and climate systems, a re-
cent work showed that R-tipping depends not only on
the speed of parameter changes but also on the unsta-
ble state, basin boundaries, and transient dynamics32,
demonstrating that R-tipping is sensitive to initial con-
ditions, with different conditions having different critical
rates of change.

In this brief Review, we explore the intricate dynamics
of tipping points with a focus on R-tipping. In Sec. II,
we provide a brief historical overview of different types
of tipping phenomena, highlighting the distinct charac-
teristics of R-tipping compared to other forms of tip-
ping such as bifurcation and noise-induced tipping. In
Sec. III, the necessity of the global phase-space approach
beyond the conventional near-equilibrium analysis to un-
derstand R-tipping is described. Sections IV and V re-
view the key findings of Ref. [31], including a scaling
law between the probability of R-tipping and the rate
of parameter change, which were established for a par-
ticular class of high-dimensional ecological networks. In
Sec. VI, a discussion on the implications of the scaling
law for these empirical ecological networks is presented
and potential topics for further research of R-tipping in
complex systems are suggested.

II. TYPES OF TIPPING IN NONLINEAR DYNAMICAL
SYSTEMS

A tipping point is a critical threshold where a system
experiences a sudden and irreversible shift from one sta-
ble state to another due to internal or external drivers.
Tipping points have been extensively studied in vari-
ous fields, including climate science, biology, economics,
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and engineering. They can be classified into three main
types: bifurcation-induced tipping (B-tipping), noise-
induced tipping (N-tipping), and rate-induced tipping
(R-tipping). Each type arises from different mechanisms,
and their understanding is crucial in predicting and con-
trolling system transitions.

A. Bifurcation-induced tipping (B-tipping)

The study of B-tipping dates back to the discov-
ery of dynamical systems and bifurcation theory in the
late 19th and early 20th centuries, pioneered by Henri
Poincaré (1854–1912). Bifurcation theory explores how
small, continuous changes in system parameters can re-
sult in qualitative shifts in its overall behavior, such as
saddle-node (fold), transcritical, and pitchfork bifurca-
tions42. Among these, the saddle-node bifurcation is
particularly relevant to tipping, as it involves the colli-
sion and subsequent annihilation of a stable (node) and
unstable (saddle) equilibrium point43,44. When a saddle-
node bifurcation occurs, the system experiences a sud-
den, discontinuous shift to an alternative stable state -
the hallmark of B-tipping. In contrast, other bifurcation
types such as the transcritical or pitchfork typically lead
to smoother transitions, where the system evolves more
gradually between states without abrupt changes.

B-tipping has been studied across a wide range of
disciplines from ecology and climate science to neuro-
science and engineering. One of the first fields to adopt
B-tipping was ecology16,38,45–48. In the 1970s and 1980s,
ecological models began incorporating the idea that slow
changes in the environmental conditions could lead to
sudden, irreversible shifts in ecosystems49,50. For ex-
ample, a lake might gradually become more eutrophic
(nutrient-rich), but at a critical threshold, it tips from
a clear state to a turbid, algae-dominated state51,52 In
the 1990s and early 2000s, the study of critical tran-
sitions in the Earth’s climate system began to expand
rapidly53. Climate systems are highly nonlinear, and
many components (such as ice sheets, ocean circulation
patterns, and vegetation cover) were shown to exhibit
tipping points12,54–59. The idea of climate tipping points
was popularized60, where the major components of the
Earth’s system were identified that are susceptible to B-
tipping. For example, the AMOC could slow down and
collapse if fresh water from melting ice caps reduces its
salinity past a critical threshold40,61–63.
In physiology and medicine, B-tipping was also ap-

plied to the study of epilepsy and other neurological dis-
orders64–68 In engineering, it was studied for controlling
mechanical systems and power grids69–73.

B. Noise-induced tipping (N-tipping)

The concept of noise influencing system behavior was
first proposed through the phenomenon of stochastic res-

onance, associated with which noise can actually en-
hance the detection of weak periodic signals in nonlinear
systems74. Despite the seemingly disruptive nature of
noise, if a dynamical system exhibits a stochastic reso-
nance, some optimal level of noise can improve the sys-
tem’s sensitivity to small external forces75. In nonlin-
ear dynamical systems, noise can induce a critical tran-
sition such as a crisis76 or make a non-chaotic system
chaotic77,78. In biological sciences, it was demonstrated
that noise can also play a beneficial role in promoting
coexistence in ecological systems79–82 and enhancing sig-
nals in neural systems83. In slow-fast excitable systems,
a variety of noise-induced phenomena can arise84.

Noise-induced tipping, or N-tipping, is referred to as
a sudden shift in a system’s state caused by external
or internal stochastic fluctuations without requiring any
smooth changes in system parameters85,86. Differing
from B-tipping driven by a deterministic shift in some
system parameter leading to a critical transition, N-
tipping is triggered by random perturbations that can
destabilize a system and push it toward a new state, even
in the absence of a bifurcation85. In climate science, the
importance of stochastic fluctuations such as volcanic
eruptions or fluctuations in solar radiation in triggering
abrupt large-scale climate transitions has been widely
recognized55,87–90. In ecology, N-tipping was deemed
as a potential driver of sudden transitions91–93. While
deterministic changes in the environmental conditions
can cause B-tipping, random environmental fluctuations
such as seasonal changes, storms, or fires can also push
an ecosystem from one state to another, even in the ab-
sence of a parameter crossing a bifurcation threshold.
N-tipping has also been explored in neuroscience and en-
gineering, particularly in the context of brain dynamics
and disorders83,94–97.

C. Rate-Induced Tipping (R-Tipping)

R-tipping is a ubiquitous phenomenon in natural and
man-made systems33,98–101. It is particularly relevant to
phenomena induced by the global climate change102,103.
Rapid environmental changes, such as accelerated global
warming, can induce tipping events in various compo-
nents of the Earth’s climate system, including ice sheets,
ocean currents, and ecosystems99. For example, the
rapid melting of Arctic sea ice due to increasing tem-
peratures can trigger feedback mechanisms that further
accelerate ice loss and contribute to global climate insta-
bility104,105. Ecosystems, characterized by their complex
interactions and nonlinear dynamics, are also suscepti-
ble to R-tipping32,106. Rapid changes in environmen-
tal conditions, such as deforestation, pollution, or cli-
mate change, can push ecosystems past critical thresh-
olds, leading to regime shifts32. These shifts can re-
sult in significant biodiversity loss and altered ecosys-
tem services39. For instance, coral reefs are vulnerable
to rapid increases in sea temperature and acidification,
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which can cause widespread coral bleaching and degrada-
tion107. Engineering systems such as power grids, trans-
portation networks and industrial processes are not im-
mune to R-tipping99. These systems often operate under
dynamic conditions where parameters such as the load,
demand, or operational settings can change with time108.
If the rates of these changes surpass their corresponding
critical thresholds, system failures, cascading outages, or
catastrophic breakdowns can occur.

The phenomenon of R-tipping was first conceived in
2008 when the critical-rate hypothesis was proposed,
suggesting that the rate at which environmental changes
occur can be more significant than the magnitude of
those changes in determining the long-term ecosystem
states34. The concepts of critical ramping rate and rate-
dependent tipping were subsequently introduced6,11,18.
Insights into R-tipping can be gained through the bifur-
cation diagrams of the corresponding autonomous sys-
tem18,109. Another approach is constructing asymptotic
series expansions to characterize R-tipping110. The in-
terplay between noise and the rate of parameter change
in triggering a tipping event was studied111,112. R-
tipping was also investigated in cases where the quasi-
static attractor is not necessarily an equilibrium state
but periodic113, chaotic25 in multi-dimensional114–116,
discrete-time dynamical systems117, and spatiotemporal
dynamical systems118. Further, early warning signals,
which are a critical indicator for detecting tipping in dy-
namical systems, have been adapted to R-tipping119–121.

The R-tipping phenomenon can be better appreciated
from a global perspective with a special focus on mutu-
alistic networks31. These complex real-world ecological
networks, e.g., the plant-pollinator networks from differ-
ent geographical regions of the world. The key quan-
tity of interest is the probability of R-tipping in these
systems. In particular, for a given rate of parameter
change, a large number of initial conditions sampled from
a relevant region of the phase space can be examined so
that the probability of R-tipping can be defined as the
fraction of initial conditions that lead to tipping at a
specific rate. For mutualistic networks, there are two
potential scenarios for this dependence at the opposite
extremes, as illustrated schematically in Fig. 1. One is
that the probability increases slowly from zero as the
rate increases. Such a “benign” dependence might be
our hope, e.g., for an ecosystem, as this means there is a
certain tolerance of the system against even fast param-
eter changes, leaving room for opportunities for control
and mitigation. The opposite scenario is that the prob-
ability of R-tipping grows drastically and immediately
as the rate of parameter change increases from zero. In
this case, the system has no tolerance against any rate
value, even if it is small. The implication is dire: in order
to avoid R-tipping, the rate of parameter change must
be reduced to practically near zero values. Which sce-
nario of R-tipping do real-world dynamical systems tend
to follow? The answer, unfortunately, is likely to be the
second scenario for mutualistic networks31. Quantita-

tively, this scenario can be characterized by a general
scaling law between the probability of R-tipping and the
rate of parameter change. In the following section, a
mathematical theory will be introduced to understand
the scaling law, with numerical support from real-world
plant-pollinator networks. The overall message is that,
to prevent R-tipping from occurring in ecosystems and
climate systems, the time rate of parameter change, such
as the rate of emissions of harmful chemicals into the en-
vironment, must be significantly suppressed and kept at
near zero.

Rate of 
Parameter 
Change

Probability of 
R-Tipping

Reality

OUR HOPE!

“Safe Region”

FIG. 1. Probability of R-tipping versus the time rate of pa-
rameter change: two possible scenarios. The first one, as
indicated by the black dashed curve, is that the R-tipping
probability increases from zero slowly with the rate, where
there is a “safe region” or “safe interval” of the rate in which
the probability remains at some near zero value, thereby pro-
viding opportunities of control or intervention to reduce the
rate of parameter change. The second scenario, as illustrated
by the solid blue curve, is that the R-tipping probability
grows dramatically and immediately as the rate of param-
eter change increases from zero. In this case, there is no
safe region: in order to keep the probability near zero, the
rate of parameter change must practically be reduced to zero.
Mathematical reasoning and numerical evidence from empir-
ical complex ecological networks tend to support the second
scenario for nonautonomous dynamical systems in the real
world.

III. NECESSITY OF A GLOBAL PHASE-SPACE
APPROACH TO R-TIPPING

A. R-tipping as a global dynamical phenomenon

In real-world dynamical systems, parameters are not
stationary but constantly change with time. For exam-
ple, in climate systems, factors such as temperature and
CO2 emissions are not static but increase over time, in-
fluencing the system’s stability with potentially severe
consequences that can lead to the possible collapse of
the system. To gain a qualitative understanding of the
phenomenon of R-tipping in nonautonomous dynami-
cal systems from a global perspective, we compare it
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with bifurcation-induced tipping in autonomous dynam-
ical systems.

         

            

   

FIG. 2. Schematic comparison of bifurcation-induced tipping
and R-tipping in a simple potential model. (a) Bifurcation-
induced tipping: static changes in the control parameter lead
to the disappearance of one steady state of the system. (b)
R-tipping: the state of the system is determined by both
the initial condition and the speed at which the parameter
changes.

For bifurcation-induced tipping, we consider the sce-
nario where, in the parameter regime of interest, two sta-
ble steady states (or attractors) coexist: a “left” state
corresponding to “normal” functioning, as highlighted
by yellow in Fig. 2(a), and a “right” or “abnormal” state.
Each state has its own basin of attraction. If external
factors cause an increase in a bifurcation parameter of
the system, a tipping point can occur through a back-
ward saddle-node bifurcation, which is reached when the
“normal” fixed point disappears, leaving the “abnormal”
state as the sole attractor. As a result, the basin of at-
traction for the original “normal” state is absorbed into
that of the “abnormal” state. This means that, once
the system crosses this tipping point, it inevitably tran-
sitions to the “abnormal” state, with no possibility of
returning to the “normal” state through small pertur-
bations. This type of bifurcation highlights the criti-
cal threshold beyond which a system undergoes an irre-
versible transition to a drastically different state.

The R-tipping scenario is illustrated in Fig. 2(b).
Rapid variations of a parameter can trigger a critical
transition even if the parameter values remain within
some safe bounds. Consider the setting where, in the
range of parameter variations, the system exhibits bista-
bility with two coexisting stable steady-state attractors,
represented by yellow and blue, respectively, in Fig. 2(b).
Each state has its own basin of attraction, as indicated
by green and purple arrows, respectively. During the
transition, the basin of attraction of the left state (yel-

low) expands, while the basin of attraction of the right
state (blue) shrinks. In this case, the final state of the
system is determined by both the initial condition and
the speed at which the parameter changes. In particu-
lar, rapid parameter changes can push the system past
some critical threshold, causing it to settle into a differ-
ent stable state than it would under slower, more gradual
parameter changes.

Most previous studies of R-tipping focused on low-
dimensional dynamical systems from a near equilibrium
point of view, emphasizing the behavior of specific initial
conditions in the vicinity of a stable equilibrium point
and their trajectories to address issues such as the criti-
cal rate for tipping. Commonly, R-tipping was conceived
as an abrupt change in the system behavior occurring
at a specific rate of change of a bifurcation parameter18.
However, real-world systems are inherently dynamic and
often operate under nonideal conditions38,122: they are
constantly influenced by external disturbances, fluctu-
ating environmental conditions, and inherent variabil-
ity where disturbances and stochastic variations are the
norm rather than the exception35,89. For example, eco-
logical systems are affected by changes in species inter-
actions and environmental factors all the time, which in
turn influence population dynamics and stability36–38.
In these contexts, species may face varying levels of pre-
dating, competition, and resource availability, leading to
complex and unpredictable behaviors. The dynamic na-
ture of these systems means that they often drift away
from the equilibrium point, making them susceptible
to tipping events triggered by rapid changes in exter-
nal conditions. This variability necessitates the study
of R-tipping from a global perspective, taking into ac-
count the entire relevant phase space rather than focus-
ing solely on the near-equilibrium dynamics surrounding
the equilibrium point.

More generally, initial conditions away from an equi-
librium point can influence the system’s response to
rapid parameter changes, making it essential to consider
a broader range of initial conditions in R-tipping studies.
For example, in ecological systems, the natural variabil-
ity in species populations and environmental conditions
invalidate the assumption of initial conditions being near
some equilibrium. Similarly, in engineering systems, op-
erational parameters can drift due to external shocks or
internal variability, necessitating a comprehensive analy-
sis that accounts for a wide range of the initial states. In
fact, the integration of diverse initial conditions into R-
tipping research is not merely an academic exercise, but
a practical necessity for accurately assessing and manag-
ing the risks associated with critical transitions in natu-
ral and engineering systems.
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FIG. 3. Phase-space structure for different values of the rate parameter and dependence of the critical rate on initial condition.
The nonautonomous bistable system has a time-varying parameter p(t) that increases at the linear rate r from an initial value
p1 at time t = 0 to a final value p2 > p1 during the time interval [0, T ], where p1 (p2) corresponds to a health (deteriorated)
environment. There are two attractors throughout the parameter variation: a survival and an extinction attractor. (a) The
extreme case r = 0 [p(t) = p1], where the basin boundary Σ1 is located closer to the extinction attractor. (b) The opposite
extreme case r → ∞, where basin boundary Σ2 is located closer to the survival attractor. (c) The location of the basin
boundary Σ∗ for any finite rate value r∗, which is in between Σ1 and Σ2. (d) The basin boundaries for rate values r∗ ± δr with
infinitesimal δr, revealing that all initial conditions on Σ∗ share r∗ as the critical rate value for R-tipping.

B. Dependence of critical rate for R-tipping on initial
conditions

A consequence of a global analysis is that the critical
rate for R-tipping depends on the initial condition. This
dependence can be conveniently analyzed in the general
setting of bistability in a two-dimensional phase space
in which two steady-state attractors coexist: survival
and extinction, as illustrated by the filled green and red
circles, respectively, in Fig. 3. To gain insights, we begin
by considering two extreme cases: r = 0 and r → ∞. For
r = 0, there is no change in the parameter p with time:
it stays at the initial value p1. For this relatively small
parameter value, the system is mostly “healthy” so the
basin of attraction of the survival attractor is “larger.”
In this case, the majority of the initial conditions in the
phase space will land the system in the survival attractor,
so the the basin boundary Σ1 between the two basins

is located closer to the extinction attractor, as shown
in Fig. 3(a). In the opposite extreme r → ∞, for any
t > 0 the system is already at the larger parameter value
p2 so the system is in a decayed environment that is
hostile to system’s normal functioning. In this case, the
majority of the initial conditions in the phase space will
lead to extinction and the basin boundary Σ2 is closer
to the survival attractor, as shown in Fig. 3(b). The
phase-space structures for these two extreme cases, as
illustrated in Figs. 3(a) and 3(b) for r = 0 and r → ∞
respectively, implies that for any finite value of r, say r∗,
the basin boundary Σ∗ must lie in between Σ1 and Σ2,
as shown in Fig. 3(c).

We now provide a mathematical reasoning for the de-
pendence of the critical rate for R-tipping on the initial
condition, which provides a geometric principle to deter-
mine the critical rate for any given initial condition. In
particular, in Fig. 3(c), all initial conditions on the basin
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boundary Σ∗ have the critical rate r∗. To see this, con-
sider two parameter values in the vicinity of r∗: r∗ ± δr,
where δr is infinitesimal. For r = r∗ − δr < r∗, the
basin boundary is located slightly closer to the extinc-
tion attractor than Σ∗, as shown in Fig. 3(d). In this
case, all initial conditions on Σ∗ belong to the basin of
the survival attractor. For r = r∗ + δr > r∗, the basin
boundary is located slightly closer to the survival attrac-
tor than Σ∗, so all initial conditions on Σ∗ now belong
to the basin of the extinction attractor. As a result, an
infinitesimal increment in the rate from r∗ will cause all
initial conditions on Σ∗ to switch their fate: from sur-
vival to extinction, indicating that r∗ is the critical rate
of R-tipping for all the initial conditions on the basin
boundary Σ∗. For a different value of the rate, say r†,
the location of the basin boundary in the phase space is
different, so the initial conditions on this boundary will
have the critical rate r†, which is different from r∗. It
is therefore apparent that, from the point of view of the
whole phase space, the concept of critical rate may not
be meaningful as there is an uncountably infinite num-
ber of critical rate values for R-tipping, depending on
the initial condition.

IV. SCALING LAW OF R-TIPPING PROBABILITY

In our recent work31, a scaling law governing the de-
pendence of the probability of R-tipping on the rate of
parameter change in mutualistic networks was uncov-
ered. To explain the scaling law, we assume that a pa-
rameter of the system, denoted as p(t), increases at the
linear rate r from an initial value p1 at time t = 0 to a
final value p2 > p1 during the time interval [0, T ] with
T = (p2−p1)/r. We assume a qualitative correspondence
between the environmental condition and p(t): a smaller
value of p indicates a relatively more healthy state of the
system. In ecosystems, such a parameter could be, e.g.,
the decay rate of some species, which tends to increase
as the environment deteriorates with time. Let Φ(r) be
the probability of R-tipping. The scaling law is

Φ(r) ∼ exp

[
−C

(p2 − p1)

r

]
, (1)

where C > 0 is a constant. This scaling law has the fol-
lowing features: (1) the probability Φ(r) is an increasing
function of r, (2) the derivative Φ′(r) is a decreasing
function of r, and (3) the maximum rate of increase in
Φ(r) occurs for r ≳ 0. The second feature indicates
that the rate at which Φ(r) increases slows down as r
increases, eventually approaching zero as r → ∞. The
third feature emphasizes the fact that, insofar as the pa-
rameter varies with time, even with a very small rate
of change, the chance of R-tipping can be nonzero and
large. This has alarming real-world implications: a slow
change in the parameter could still precipitate a system
collapse with catastrophic consequences, so simply slow-
ing down the rate of parameter change might not be

  

   

            

              

   

  

             

              

                  

               

   

               

   

                  

FIG. 4. A geometrical argument leading to the scaling law
(1). See text for details. This figure is based on Fig. 5 in
Ref. [31].

sufficient to prevent tipping. Instead, the rate of change
must be reduced to a nearly zero value to prevent R-
tipping.

To derive the scaling law (1), we consider two different
rates of parameter change: r1 and r2 > r1. In an au-
tonomous system, the boundary is the stable manifold
of an unstable fixed point, denoted as f , as indicated
by the filled green circle in Fig. 4. When the system
becomes nonautonomous with a time-varying parameter
p(t), the unstable fixed point and the basin boundary
become time dependent, so we write f(t) or f(p). We fo-
cus on an infinitesimal neighborhood of f(t), where the
basin boundary is approximately straight, as shown in
Figs. 4(a) and 4(b) for r = r1 and r = r2, respectively.
For the two cases, the parameter variation occurs within
the interval [p1, p2] in the time interval [0, T1] and [0, T2],
respectively. Since r2 > r1, we have T2 < T1. In each
case, the arrowed dashed line through f(t) indicates the
direction along which it moves in the phase space as the
parameter changes over time. The solid green (at t = 0)
and blue (for t = T1 or T2) line segments through f(t)
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represent the boundaries separating the extinction from
the survival basin. Before the parameter variation starts
(p = p1), initial conditions below the solid green lines be-
long to the basin of the extinction attractor, while those
above belong to the survival attractor. After the param-
eter variation ends (p = p2) the initial conditions below
the solid blue lines belong to the extinction basin, and
those above belong to the survival basin.

During the parameter variation, f(t) shifts from the
green circle’s position to the blue circle’s position, caus-
ing its stable manifold (the basin boundary) to move
accordingly. Initial conditions in the light-green shaded
area, which initially belong to the survival attractor’s
basin for p = p1, will be exponentially stretched along
f(t)’s unstable direction and compressed in the stable
direction, forming a long blue rectangle. Since T1 > T2,
the blue rectangle for r = r1 is longer and thinner com-
pared to that for r = r2. Due to f(t)’s movement and the
changing basin boundary as the parameter varies, a por-
tion of the long rectangle (dark shaded blue) now falls
within the basin of the extinction attractor. The initial
conditions in the original green rectangle that evolve into
this dark shaded blue region are those that switch from
the survival to the extinction attractor due to the time-
dependent parameter change, experiencing R-tipping, as
indicated by the red rectangle within the green area in
Fig. 4(b). The fraction of such initial conditions for any
given rate r determines the R-tipping probability. De-
noting the fraction of R-tipping initial conditions by d(0)
and the distance between the basin boundaries along
f(t)’s unstable direction by ∆, we have

d(T ) = ∆ = d(0) exp (λT ), (2)

where λ is the unstable eigenvalue of f(t), which is as-
sumed to remain approximately constant in the course
of time variation of the parameter. Substituting T =
(p2 − p1)/r into Eq. (2) leads to the scaling law (1).

In the derivation of the scaling law (1), the assump-
tion that the initial conditions are uniformly distributed
in the phase-space region was employed31. This assump-
tion is speculative and at the best approximate as there
is no empirical data on how the initial conditions are
distributed in typical real-world ecological systems. A
heuristic justification is that an ecosystem is under con-
stant bombardment of stochastic perturbations of differ-
ent scales, such as small-scale demographic stochasticity
and large-scale climatic events. Under such perturba-
tions, an ecosystem is pushed away from a stable equi-
librium into different regions of the phase space along a
variety of directions at all times. In this sense, a uniform
distribution is a crude but not unreasonable assumption.
How different initial-condition distributions may modify
the scaling law is a question that warrants further efforts.

      

FIG. 5. Illustration of mutualistic networks. (a) Mutualistic
interaction between a plant and a pollinator species. (b)
Network structure of an empirical mutualistic network from
the Web of Life database,

V. SCALING LAW OF R-TIPPING IN COMPLEX
ECOLOGICAL NETWORKS

The derivation of the scaling law (1) is based on a
two-dimensional phase-space structure. Real-world sys-
tems are high-dimensional. Can the scaling law (1) be
expected to hold in high-dimensional nonautonomous
dynamical systems? One class of such systems that
was used31 to test the scaling law (1) is complex plant-
pollinator mutualistic networks16,20,23,92,123–130, where
a species in the plant group benefits from interacting
with some species in the pollinator group, and vice
versa, as illustrated in Fig. 5(a). The structures of
over 100 empirical mutualistic pollinator–plant networks
from many geographical regions in the world have been
well documented (Web of Life database: www.Web-of-
Life.es). One example of such a network is shown in
Fig. 5(b). At the present, a detailed computational
model for these empirical mutualistic networks is avail-
able123. In spite of their high dimensionality, due to
the nature of steady-state dynamics associated with tip-
ping, a mutualistic network can be reduced effective
to a two-dimensional system20 through some conven-
tional dimension-reduction methods, providing a feasible
paradigm for numerically testing the scaling law (1).

The dynamics of a plant-pollinator mutualistic net-
work, comprising NA pollinator and NP plant species,
are described by a system of N = NA + NP nonlinear
differential equations of the Holling type in terms of the
species abundances123:

Ṗi =Pi

(
αP
i −

Np∑
l=1

βP
ilPl +

∑NA

j=1 γ
P
ijAj

1 + h
∑NA

j=1 γ
P
ijAj

)
, (3)

Ȧj =Aj

(
αA
j − κj −

NA∑
l=1

βA
jlAl +

∑NP

i=1 γ
A
jiPi

1 + h
∑NP

i=1 γ
A
jiPi

)
,

(4)

where Pi and Aj are the abundances of the ith and jth

plant and pollinator species, respectively, i = 1, . . . , NP

and j = 1, . . . , NA. The equations account for intrin-
sic growth rates, intraspecific and interspecific competi-
tions, and mutualistic interactions, with specific param-

https://www.web-of-life.es/
https://www.web-of-life.es/
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eters characterizing the dynamics, such as the pollinator
decay rate κ, intrinsic growth rate αP (A), and the half-
saturation constant h. The mutualistic interactions are
further quantified through parameters γ

P (A)
ij = ξijγ0/K

τ
i

that depend on whether a mutualistic interaction exists
(ξij), the general interaction parameter γ0, and the de-
gree of the plant species Ki.

   

   

   

                                   

                                

                              

                              

                                

                       

                           

                             

                           

                               

                       

                                                                 

        

FIG. 6. Scaling law of R-tipping for ten empirical mutual-
istic networks. The time-varying parameter is the pollinator
decay rate κ. (a) The network structures. (b) Structural
parameters and origins of the ten empirical networks. (c)
R-tipping probability Φ(r) versus the rate r of parameter
change. The dots are the results from direct numerical sim-
ulations of the high-dimensional networks with an ensemble
of random initial conditions from a substantial volume of the
high-dimensional phase space. The solid curves are the the-
oretical fits of the scaling law (1). Other parameter values in
the computational model are fixed: α = 0.3, β = 1, h = 0.4,
γP = 1.93, and γA = 1.77. This figure is based on Fig. 5 in
Ref. [31].

To introduce the rate change of a parameter, three
different scenarios were considered31 where negative en-
vironmental impacts can lead to: (1) a linear increase
in the species decay rate, (2) a linear decrease in the
mutualistic interaction strength, and (3) simultaneous

linear changes in both parameters over time. Simula-
tions were conducted using ten empirical mutualistic pol-
linator–plant networks, where the intervals of parameter
variations were selected to ensure the occurrence of bista-
bility. The structures of the ten networks are illustrated
in Fig. 6(a), and their structural parameters and origin
are listed in Fig. 6(b).

For the high-dimensional mutualistic network given
by Eqs. (3) and (4), the probability Φ(r) of R-tipping
can be calculated, as follows. One first sets r = 0 and
solves Eqs. (3) and (4) numerically for a large number
of random initial conditions chosen uniformly from the
whole high-dimensional phase space. Next, a large num-
ber (e.g., 105) initial conditions resulting in trajectories
that approach the high stable steady state in which no
species becomes extinct are determined. The rate r is
then increased from zero. For each fixed value of r and
for each of the selected 105 initial conditions, whether or
not the final state is the high stable state is checked. If
yes, there is no R-tipping for the particular initial condi-
tion. However, if the final state becomes the extinction
state, R-tipping has occurred for this value of r. The
probability Φ(r) can be approximated by the fraction of
the number of initial conditions leading to R-tipping out
of the 105 initial conditions.

Figure 6(c) presents examples of the scaling law of the
probability of R-tipping Φ(r) with the rate r where, for
each network, the species decay rate κ varies with time
linearly across the interval specified in Fig. 6(b). It can
be seen that the R-tipping probabilities for all ten net-
works exhibit qualitatively similar behavior: as the rate
of parameter change increases from zero, the probability
initially rises rapidly and then plateaus at an approx-
imately constant value, as predicted by the scaling law
(1). The final value of the R-tipping probability depends
on the specific structural characteristics of the network.

VI. DISCUSSION

Investigating R-tipping is important for understand-
ing how complex systems respond to the constant
changes in their parameters due to environmental ef-
fects. There are two approaches to R-tipping in nonau-
tonomous dynamical systems: near-equilibrium and
global. The near-equilibrium approach focuses on the
behavior near some equilibrium point, taking advantage
of the corresponding autonomous system to determine
the conditions under which the system transitions from
one state to another. This approach has provided in-
sights into the R-tipping mechanism.

This brief Review aims to introduce the global ap-
proach to the nonlinear-dynamics community, which of-
fers a comprehensive and holistic picture, particularly
for real-world systems that are typically open, dynamic,
and under the influences of stochastic disturbances. Due
to these effects, in the phase space, the dynamical tra-
jectory of the system can hardly be confined near some
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equilibrium point but rather, it can wander in an ex-
tended region of the phase space. Under such circum-
stances, a more effective approach to studying R-tipping
is to move beyond near-equilibrium initial conditions and
explore a broader range of initial conditions within the
relevant phase-space region. Consequently, the concept
of a single critical rate for R-tipping becomes less appli-
cable, as it varies with the initial condition, leading to
an uncountably infinite number of possible critical val-
ues. The scaling law (1), derived through a geometric
argument and validated in a number of complex empiri-
cal plant-pollinator mutualistic networks, suggests a dire
consequence of the rate of parameter changes for these
ecological networks: insofar as it is not zero, the proba-
bility of R-tipping can be substantial.

A topic of current interest is data-driven prediction
of tipping in nonlinear and complex dynamical systems.
Traditional methods often rely on detailed knowledge of
the system’s dynamics, which may not always be avail-
able. A promising approach is machine learning, es-
pecially recurrent neural-network architectures capable
of identifying dynamical patterns and predicting critical
transitions by learning from data131–139. To develop ef-
fective machine-learning models for predicting tipping,
two considerations are essential. First, the availability
of training data is crucial. While traditional classifica-
tion problems require data from both sides of the critical
transition, this is impractical since post-transition data
are not available. Training must be based on data from
the pre-critical regime, necessitating the development of
models that can extrapolate from this information. Sec-
ond, the machine-learning architecture must be capable
of Self-organizing evolution, mimicking the inherent dy-
namics of the target system. The recently developed
adaptable reservoir-computing132–136 provides a possi-
bility.

A significant problem to which R-tipping is relevant is
the possible collapse of the AMOC40,140,141 that plays a
crucial role in maintaining moderate temperature condi-
tions in Western Europe by transporting warmer, upper
waters northward and returning colder, deeper waters
southward141,142. While studies have indicated a ten-
dency for AMOCs to weaken in the last 30 years143,144,
at the present the AMOC is still in a stable state that
ensures the continuation of these critical ocean flows.
However, due to the increasing human influence on the
climate change, a potential halt of this circulation signi-
fying a collapse of the AMOC represents a shift to an-
other stable steady state within the underlying dynami-
cal system, which is characteristic of R-tipping. Recent
research based on simplified stochastic dynamical system
models suggests that the AMOC may be on the course
towards collapse, with a tipping point potentially oc-
curring as early as 2025105. Estimating the probability
of the collapse due to R-tipping based on measurement
data is an urgent but open problem.
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143A. Biastoch, C. W. Böning, J. Getzlaff, J.-M. Molines, and
G. Madec, “Causes of interannual–decadal variability in the
meridional overturning circulation of the midlatitude north at-
lantic ocean,” J. Clim. 21, 6599–6615 (2008).

144S. Yeager and G. Danabasoglu, “The origins of late-twentieth-
century variations in the large-scale north atlantic circulation,”
J. Clim. 27, 3222–3247 (2014).

https://doi.org/10.1007/s12080-021-00522-w
https://doi.org/10.1073/pnas.2003301117
https://doi.org/10.1073/pnas.2003301117
https://doi.org/10.1063/5.0002456
https://doi.org/10.1137/20m1339003
https://doi.org/10.1088/1361-6544/ac62dc
https://doi.org/10.1088/1361-6544/ac62dc
https://doi.org/10.1103/PhysRevE.95.052209
https://doi.org/10.1063/5.0129341
https://doi.org/10.1063/1.5000418
https://doi.org/10.1007/s10884-019-09730-9
https://doi.org/10.1007/s10884-019-09730-9
https://doi.org/10.1088/1361-6544/accb37
https://doi.org/10.1088/1361-6544/accb37
https://doi.org/10.1137/19m1276297
https://doi.org/10.1140/epjs/s11734-021-00139-4
https://doi.org/10.1063/1.4963012
https://doi.org/10.1002/ece3.2531
https://doi.org/10.1002/ece3.2531
https://doi.org/10.1002/ecy.4240
https://doi.org/10.1002/cpa.21401
https://doi.org/10.1002/cpa.21401
https://doi.org/10.1103/PhysRevResearch.3.013090
https://iopscience.iop.org/article/10.1088/2632-072X/ac0b00
https://doi.org/10.1103/PhysRevResearch.3.023237
https://doi.org/10.1103/PhysRevResearch.3.023237
https://doi.org/10.1103/PhysRevE.104.014205
https://doi.org/10.1103/PhysRevE.104.014205
https://doi.org/10.1103/PhysRevResearch.3.023156
https://doi.org/10.1103/PhysRevResearch.3.023156
https://doi.org/10.1175/jcli-d-18-0872.1
https://doi.org/10.1175/2008jcli2404.1
https://doi.org/10.1175/jcli-d-13-00125.1

	Global phase-space approach to rate-induced tipping: A brief Review
	Abstract
	Introduction
	Types of tipping in nonlinear dynamical systems
	Bifurcation-induced tipping (B-tipping)
	Noise-induced tipping (N-tipping)
	Rate-Induced Tipping (R-Tipping)

	Necessity of a global phase-space approach to R-tipping
	R-tipping as a global dynamical phenomenon
	Dependence of critical rate for R-tipping on initial conditions

	Scaling law of R-tipping probability
	Scaling law of R-tipping in complex ecological networks
	Discussion
	Data Availability
	Code Availability
	Acknowledgement


