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The paradox of enrichment stipulates that increasing the resources available to the prey pop-
ulation can lead to instability and a higher likelihood of population fluctuations. We study the
converse situation where the prey’s environment is degrading and ask if the dynamical inter-
play between this degradation and stochasticity can be beneficial to stabilization of the prey
population. The underlying systems are nonautonomous and subject to noise. We uncover a
phenomenon pertinent to the paradox of enrichment: rare rarity. In particular, in a slow-fast
ecosystem with a sole stable equilibrium, noise can induce dynamical excursions of a trajec-
tory into a region with low species abundance, resulting in rarity. Surprisingly, it is the same
noise that can facilitate a rapid recovery of the abundance of the rare species, making short
the duration of the rarity. As the environment continues to degrade, the occurrence of such
rarity events can be nonuniform in time and even more rare. The intermittent occurrence
of rare rarity is caused by the dynamical interplay between the phase-space distance from
the stable equilibrium to the boundary separating two distinct regions of transient dynam-
ics. The rare-rarity phenomenon can also arise in other natural systems such as the climate
carbon-cycle system.
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Introduction

Consumer-resource interactions often exhibit cycles of prey over exploitation, crash, and recov-
ery |. When the prey population’s growth capacity is sufficiently low due, for example, to limited
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resources or poor habitat quality, these cycles are expected to dampen out over time and the system
will approach a stable equilibrium point. However, when the prey’s environment is enriched, the
equilibrium becomes destabilized with large fluctuations via a supercritical Hopf bifurcation - a
local bifurcation where a limit cycle emerges from the equilibrium as the bifurcation parameter
changes 2. The more favorable conditions allow for a larger and faster prey recovery after over
exploitation, resulting in large, sustained oscillations. This phenomenon is known in ecology as
the paradox of enrichment: the counterintuitive phenomenon where increasing the availability of
resources, such as nutrients in an ecosystem, can lead to instability and a higher likelihood of
population fluctuations in consumer-resource systems >~. In this paper, we consider the converse
situation where the prey’s environment is degrading and ask if the interplay between the direct
negative impacts of this degradation and stochasticity might actually lead to the stabilization of
the prey population. In particular, we shall demonstrate that the nonlinear dynamical effect of the
degradation can lead to species rarity but noise can play the beneficial role of quick recovery, a
phenomenon that we call “rare rarity.”

Species rarity, referred to as the low abundance of certain species, can arise from multiple
mechanisms, each with distinct ecological and dynamical underpinnings. One such mechanism is
global climate change, which drives gradual environmental deterioration, progressively reducing
population sizes and ultimately leading to rarity !4, Another well-documented pathway to rar-
ity involves tipping-point transitions (e.g., a saddle-node bifurcation), where small environmental
changes push the system past a critical threshold, triggering a sudden decline in species abun-
1528 Additionally, in the neighborhood beyond a supercritical Hopf bifurcation leading
to stable oscillations of the population density, at least one population size becomes small for a
certain time interval corresponding to transient rarity during the limit cycle. Beyond these well-
known mechanisms, species rarity can also emerge from dynamical excursions in slow-fast and
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excitable systems 2°3. In such cases, rather than exhibiting a gradual decline or an abrupt tipping
event, the species abundances temporarily drop as trajectories enter the phase-space regions corre-
sponding to low-density states before recovering. This form of rarity is not necessarily associated
with a loss of stability but instead reflects the interplay between intrinsic nonlinear dynamics and
external perturbations. Ecological systems are rarely deterministic: they are constantly influenced
by stochastic disturbances arising from environmental fluctuations, demographic variability, and
external noise 2330, Given its pervasive influence, noise must be considered when investigating
species rarity, as it can modulate the frequency, duration, and severity of the rare events. This
motivates our study, in which we examine species rarity in a noisy ecological system, focusing on
how stochastic effects interact with the underlying deterministic mechanisms to shape rare-rarity
events. (Some background topics pertinent to this work are presented in SI Appendix (Sec. ),
which include recovery from rarity, tipping, dynamical excursion, noise in ecological systems.)



Previous research in stochastic population dynamics 3!, tipping point >? and regime shifts 3233

has largely focused on random fluctuations about the stable state or transitions between alternative
stable states of the ecosystem. Differing from the existing works, here we investigate transient
dynamics in ecosystems with a single globally stable state corresponding to stationary coexistence
of predator and prey. More specifically, we present a rarity phenomenon in a noisy slow-fast
predator-prey system. The system is subject to continuous parameter change with time caused by,
e.g., environmental changes and stochastic disturbances modeled by ecologically realistic demo-
graphic noise. In the absence of noise, i.e., in the deterministic case, the parameter changes can
cause the system to evolve towards a single dynamical excursion that leads the system into a state,
after which the species abundances become near zero, making them rare. The species rarity caused
by a dynamical excursion does not represent a permanent shift to an alternative state but rather a
temporary departure from the existing one, followed by a quick recovery.

A finding is that, demographic noise that arises commonly in ecological systems can make
rare rarity more frequent, resulting in the emergence of an intermittent behavior: the system un-
dergoes an excursion, generating rarity, followed by a fast recovery, and so on. However, due to
noise, the time duration in which the system exhibits species rarity is relatively short compared
to the time interval between two adjacent rare-rarity events. The excursion-induced rarity is thus
rare, effectively preventing extinction. This may be regarded as a kind of resilience of the species.
Specifically, in ecology, resilience is understood as the system’s ability to return to its original
state after a perturbation. Rare rarity introduces a nuanced perspective: while it involves transient
excursions to a low-abundance state, such an excursion is followed by a rapid recovery, preventing
the population from collapsing in the long rum. On average, the species are able to maintain a
high abundance level, in spite of occasionally or intermittently becoming rare. The phenomenon
of rare rarity is also found in a stochastic carbon-cycle system, suggesting the generality of this
phenomenon in nonlinear slow-fast ecological and physical systems.

Results

Slow-fast predator-prey model We consider a variant of the slow-fast Rosenzweig-MacArthur
predator-prey system 2, subject to demographic noise and parameter variations with time (e.g.,
as the result of environmental change). For simplicity, we assume that the resources available to
the prey species in its habitat decline continuously and linearly with time. The nonautonomous
dynamical system subject to multiplicative noise is described by the following set of stochastic



differential equations:

dx xy

R =x(1 — ¢x) — T+ e + &V/zdB(t) (la)
dy _ wy
U T Y EVAB) (1b)
@ _ r, Qbmin < ¢ < ¢max (10)
dt 0, otherwise,

where x and y are the populations of the fast (prey) and slow (predator) species, respectively,
0 < k < 1 quantifies the timescale separation between the prey’s and predator’s life span, 7 is the
predator’s interaction time with the prey, and the term &, /ydB(t) describes the demographic noise
with £ as the noise amplitude and dB(t) being an independent Gaussian random process of zero
mean and unit variance “>>*. Let ¢ be the time-dependent bifurcation parameter that is inversely
proportional to the carrying capacity of the prey habitat. It varies linearly with time at the rate r
from ¢,,;, initially to ¢« after certain time. As ¢(t) increases with time, the carrying capacity of
the prey habitat deteriorates continuously, so ¢(¢)’s increase with time could, roughly, be the result
of the ever increasing human influences on the ecosystem. The three quantities, 7, ¢, and Gpax
define a proper or calibrating timescale of the nonautonomous dynamical system (1):

Ts = ¢max - gbmin7 (2)
T
with which the duration of various dynamical events of the system can be compared. The quantity
Ty is the time interval over which an environmental change is assumed to happen. We integrate
the nonautonomous system (1) using a standard second-order method for stochastic differential
equations 3.

Rare rarity in the prey population Figure 1(A) shows the time-varying parameter ¢(t) for £ =
0.1, r = 0.0002, ¢min = 0.09, and . = 0.199. All other parameters follow the setting in
Ref. [29] with n = 0.8, and k = 0.01. This setting ensures that the system remains in a single
globally stable state with stationary coexistence of predator and prey. The corresponding time
series of the prey population x(¢) is shown in Fig. 1(B). During the time interval in which the
control parameter ¢ varies, there are four occurrences of rarity in which the prey population reaches
a dangerously low, near-zero level. The remarkable feature is that each occurrence of rarity lasts
only for a relatively short time, as exemplified in Fig. 1(C), a magnification of one of the rarity
events. The rarity event lasts for a short time in the sense that, in terms of the calibrating time
Ty, the duration of the rarity event is less than 1%. Figure 1(C) also shows that, after temporally
approaching some near zero value, the prey population quickly recovers to the normal level. Such a
rarity event can thus be regarded as a “quick” transient event of temporary population collapse. In
the entire observational time interval, the total duration of all rarity events is thus short, rendering
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Figure 1: Demonstration of the phenomenon of the rare rarity of the prey population in the nonautonomous
predator-prey system (1). (a) Time-varying parameter ¢(t), which is inversely proportional to the carrying
capacity and increases linearly from ¢pin, ~ 0.09 at t = 0 to Ppax ~ 0.2 at the rate » = 0.0002. (b) A
representative time series (a random realization) of the prey population for = 0.8 (predator’s interaction
time with the prey) and k = 0.01 (timescale separation parameter). The amplitude of the demographic noise
is & = 0.1. For this realization, during the time interval in which the capacity parameter ¢ changes, there
are four occurrences of the rarity of the prey population. (c) A magnification of a typical rarity event, which
lasts for a quite short time relative to the system timescale 7, signifying “rare rarity.” (d) The corresponding
Time series y(t) of the predator population.

rare the rarity events. In fact, the length of the rarity interval is related to the intrinsic timescales of
the predator-prey system determined by the parameter ~ that characterizes the timescale separation
between the lifetimes of the two species: predator and prey. In general, the life spans on different
trophic levels follow an allometric slowing down °, i.e., species on a higher trophic level (here the
predator) grow slower than the species on lower trophic levels (the prey). Note that, in spite of
the rare rarity occurrences of the prey population, the predator population maintains at a level well
away from zero, as shown in Fig. 1(D).

The time series exemplified in Fig. 1(B) is one random realization of the underlying stochas-
tic dynamical system. To statistically characterize the phenomenon of rare rarity, we define two
quantities: (1) AT, the time interval between two adjacent rare-rarity events, and (2) V., the num-
ber of occurrences of such events in the time interval [0, 75]. The statistics of the two quantities
can be obtained from a large number of dynamical realizations. Figures 2(A) and 2(B) show a his-
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Figure 2: Statistical characterization of rare rarity. (A, B) Distribution of AT, the time interval between
two adjacent rare-rarity events, on a linear and logarithmic scale, respectively, for » = 0.0002. (C) Distribu-
tion of V., the number of rare-rarity events during the time interval of parameter variation for » = 0.0002.
(D) The mean value (N,) versus the rate of parameter change. Other parameters are the same as in Fig. 1.
For clarity, (N.) is plotted on a logarithmic scale, while the shaded area represents the standard deviation
on a linear scale.

togram of AT, on a linear and logarithmic scale, respectively, from 800 independent realizations.
It can be seen that the distribution of AT, is algebraic or power-law, which is characteristic of typi-
cal intermittent behavior in nonlinear dynamical systems 7. The corresponding histogram of NN, is
shown in Fig. 2(C), which is approximately Gaussian with the mean value (N.) ~ 8 and variance
oy, ~ 3. As the rate r of parameter change increases, on average the number of occurrences of
rare rarity decreases, due to the reduction in the time duration 7 of the parameter variation, as
shown in Fig. 2(D).

Dynamical mechanism of rare rarity: a deterministic autonomous approach To uncover the
dynamical mechanism for the phenomenon of rare rarity as exemplified in Figs. 1 and 2, it is
necessary to examine the global phase-space structure 2° and study the corresponding autonomous
deterministic system of (1) with the bifurcation parameter ¢:

dx xy

— =(1 - — 3
i LA S (32)

dy Ty

it 1+nz 7 (3b)



which is a slow-fast system. We choose the value of ¢ from an interval in which both the average
prey and predator populations are nonzero. For a perfect timescale separation of predator and prey,
r = 0, the system (3) can be transformed to slow time ¢ into fast time 7 = ¢/, leading to

dx xy

E—ﬂl—gbx)— Tr o (4a)
dy Ty

—= = — 4b
it " (1 +nx y) ’ (4b)

where the dot now indicates the derivative with respect to 7. The independent variables ¢ and
7 correspond to the fast and slow times, with Egs. (3) and (4) being the fast and slow systems,
respectively, which are equivalent for x # 0. This equation allows us to determine the stability
of the critical manifold, which consists of points where the fast dynamics are in an equilibrium,
meaning that the fast variables remain constant.

In the limit x = 0, the predator population y is constant, and only the fast dynamics of the
prey z need to be considered, which can be approximated by a one-dimensional critical manifold
(or the z-nullcline of the system) >3-0:

M, = {(z,y) € Rz = 0,y = (1 — ¢x)(1 +nz)}, (5)

where the first component is a line perpendicular to the fast direction and the second (fold) com-
ponent is a curve with a fold tangent to the fast direction at the point

(zf, yg) = ((n = 0) /200, (n+ ¢)*/4n9).

To elaborate, the critical manifold M, consists of the steady states of (4) with k = 0, whose
stability can be determined. The fold component has a stable and an unstable part with a saddle-
node bifurcation at the fold point. The other part of the critical manifold, the y axis as a vertical
line, is stable but it becomes unstable below the intersection point with the other part of M. This
view provides a picture of the direction of the trajectories in that limit, which is only slightly
different for 0 < K << 1.

The equilibria of the system (4) are located at the intersections of the z- and y-nullclines.
Consider the parameter setting in which the system (3) has one globally stable equilibrium in
which the predator and prey coexist. Depending on the initial condition, the slow-fast system
exhibits distinct transient behaviors. For example, Figs. 3(A) and 3(B) show two time series of the
fast variable from two different initial conditions for n = 0.8, ¢ = 0.09, x = 0.01, and £ = 0.1.
The time series in Fig. 3(A) corresponds to some “healthy” behavior of the prey population in the
sense that, in spite of the oscillations, a finite population is maintained. However, for a different
initial condition, there is a time interval in which the fast variable approaches zero, as shown in
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Figure 3: Phase-space structure of the deterministic predator-prey model (3). Two representative time series
of the prey population from two different initial conditions: (A) [10, 2] and (B) [10, 3] for n = 0.8 (redator’s
interaction time with the prey), ¢ = 0.09 (inversely proportional to the carrying capacity), « = 0.01
(timescale separation parameter), and £ = 0.1 (noise intensity). In (A), the prey population is maintained at
a healthy level in the time window of observation. In (B), rarity arises because the prey population becomes
near zero for a short transient period of time. (C) Phase-space structure for ¢ = 0.09, where the white region
corresponds to the excursive initial points that undergo temporary collapse of the prey population, leading to
rarity, and the initial conditions in the yellow region lead to trajectories that go directly into the sole global
stable equilibrium (the filled green circle) without the occurrence of rarity. Since the stable equilibrium
is on the boundary between the white and yellow regions, noise with an arbitrary amplitude can land the
system into the white region, generating rarity, after which the system settles into stable equilibrium again.
This process can repeat, generating the intermittent rarity behavior as exemplified in Fig. 1(B) in the time
period in which the control parameter ¢ varies with time but its values are relatively small. (D) Phase-space
structure for ¢ = 0.199. In this case, the stable equilibrium is near the z-axis and is far away from the
boundary between the white and yellow regions. While the white region becomes larger as compared with
that in (C), noise with an extraordinarily large amplitude is required to kick the system into the white region,
making the time to observe such an event prohibitively long, as demonstrated in Fig. 1(B).

Fig. 3(B). The corresponding behavior of rarity lasts for a relatively short period of time before
the population recovers to a healthy level. Figure 3(C) shows the phase-space structure of the



system (3) for fixed ¢ = 0.09 and n = 0.8, with one globally stable equilibrium (closed green
circle) and two unstable equilibria (the two yellow circles). The positions and stability of the
equilibria depend on the values of the parameters ¢ and 7. The chosen ¢ = 0.09 is quite close to a
supercritical Hopf bifurcation at ¢ = 0.088, which explains the oscillations for the initial condition
visible in Fig. 3(A). The dashed vertical black line represents the y-nullcline. The z-nullcline or
the critical manifold of the system is shown by a solid line and curve segments, with the stable
(unstable) parts in green (red). The intersection points of the y-nullcline and the critical manifold
(z-nullcline) give the equilibria of the system.

Depending on the initial condition, there are two distinct transient behaviors in their conver-
gence to the global stable equilibrium: direct (yellow region) and excursive (white region). For
an initial condition from the yellow region, the system approaches the stable equilibrium directly.
However, for initial conditions from the excursive region, the system experiences a large excur-
sion in the phase space that includes a close approach to zero populations, leading to a sudden
transient collapse in both the predator and prey populations before eventually reaching the stable
steady state. Two examples of the dynamical trajectories, one initiated from the white (purple
dashed line) and another from the yellow region (blue dashed line), are shown in Fig. 3(C). It can
be seen that the dynamical trajectory from the initial condition in the white region approaches the
y-axis (zero prey population) and stays near it for a transient period of time before leaving it and
approaching the stable equilibrium.

To better understand the state of rarity, we recall that the trajectory rapidly approaches the y-
axis when z is near zero. In this regime, the dynamics are effectively governed by the slow variable
y alone. A reasonable approximation for the timescale relevant to motion near the y-axis can be
obtained by analyzing the associated trajectories. Specifically, by setting x = 0 in Eq. (3), we have
1y = —v, indicating an exponentially decaying solution. This decay occurs on a timescale much
shorter than that of the environmental change. Analyzing the dynamics in fast time 7 = ¢/x reveals
that the intersection of the unstable fold and the y-axis segment of M is a critical transition point:
it marks where a downward-moving trajectory shifts from being influenced by the stable portion of
the critical manifold to being repelled by the unstable part. This repulsion triggers the end of the
rarity interval and pushes the system back to a large population density. The degree of attraction to
and repulsion from the y-axis is sensitive to the timescale separation parameter x. Specifically, a
larger ~ (indicating weaker timescale separation) shortens the duration of rarity while prolonging
the escape time. Figure 4(a) illustrates the rarity duration with respect to the timescale separation
parameter x and Fig. 4(b) presents the time evolution of the system for two different values of &,
highlighting its impact on the transient dynamics.

Formally, the basin of attraction of an attractor is the initial conditions whose trajectories
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Figure 4: Effect of timescale separation parameter ~ on rarity duration. (a) A larger value of x
(smaller timescale separation) results in a shorter period of rarity. (b) Time evolution of the system
near the y-axis for two different values of x: The blue (red) trajectory corresponds to x = 0.01
(k =0.1).

eventually reach this attractor 3%, In our work, the dynamics leading to species rarity events
demand that the initial conditions whose trajectories exhibit characteristically different behaviors
be distinguished, even when they all belong to the same basin of attraction. We thus use the
terminology “basin boundary” but only in a loose sense: it does not separate initial conditions
that lead to different attractors but rather the initial conditions that follow different trajectories
before reaching the same stable attractor. Specifically, our system exhibits a single stable attractor
within the relevant ecological parameter range, but initial conditions can evolve along two distinct
transient pathways, as illustrated in Figs. 3(C) and 3(D). The smooth boundary separating these
two transient regimes defines what is referred to as the “basin boundary.”

The boundary separating the white and yellow region, the “basin boundary” in Figs. 3(C)
and 3(D), serve to distinguish initial conditions that follow two distinct types of trajectories: those
that initially possess a rarity event and those that do not, before reaching the same stable state.
For initial conditions near the deterministic “boundary,” the effect of noise is particularly severe,
where small perturbations can push the trajectories from one transient regime to another. Noise
thus leads to a probabilistic rather than a sharply defined “basin boundary.” To analyze how this
stochastic boundary evolves, we employ Monte Carlo simulations with the following steps: (1) a
grid of initial conditions is sampled in the phase space, (2) for each initial condition, multiple noisy
realizations of the trajectory are simulated, and (3) the probability P4(z() of a trajectory starting
from z( following transient pathway A is computed. Figure 5 illustrates the impact of noise on
the basin boundary. In particular, Figure 5(A) shows the “boundary” in the deterministic system
and Fig. 5(B) presents the stochastic “basin of attraction” for a relatively large noise amplitude
(¢ = 0.1). Figure 5(C) shows the same basin structure as in Fig. 5(B) but with the white dashed
curve included, which represents the deterministic “basin boundary.” It can be seen that the primary
effect of noise is blurring the boundary rather than restructuring the basins. In particular, near the
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Figure 5: “Basin boundaries” of the predator-prey system. The dark red regions represent the
initial conditions that lead to temporary collapses in the prey population, resulting in rarity events.
Conversely, initial conditions in the dark blue regions lead to trajectories that directly approach the
globally stable equilibrium without such an excursion. (A) “Basin boundary” in the deterministic
model. (B) “Basin boundary” under noise of amplitude £ = 0.1. (C) The same basin boundary as
in (B) but with the deterministic boundary included (the white dashed curve). All other parameters
are the same as those in Fig. 1.

deterministic boundary, noise increases the likelihood of the transitions between the two transient
pathways.

The second impact of the noise concerns the time when the intersection point between the
two parts of M, is reached. Due to the closeness to the line of x = 0, noise acts mainly on y
shifting the point at which the rarity event ends. This shift could occur in either direction (either
extending or reducing the duration of prey rarity). However, because the noise has a proportionally
larger impact on small populations, noise-driven reductions in y predominate and so the trend is
toward shortening the rarity event. But how does the noise amplitude affect the “basin boundary”
and the occurrence of rare-rarity events? To address this question, we conduct further simulations
using the same parameter values as in Fig. 1 but vary the noise amplitude systematically over
five orders of magnitude: from ¢ = 107%) to ¢ = 0.1. For each value of the noise amplitude,
we calculate the following key metrics: (1) (d7): the average duration of each rare-rarity event,
(2) (max(AT,)): the average maximum time interval between two consecutive rare-rarity events,
and (3) (IV.): the average total number of rare-rarity occurrences within a given time window.
Each of these quantities is calculated by averaging over 100 realizations of the stochastic system
to ensure statistical reliability. The results are summarized in Fig. 6, indicating that varying the
noise amplitude can affect the statistical properties of the rare-rarity events but does not eliminate
their occurrences. In particular, Fig. 6(a) shows that, as the noise amplitude increases, the aver-
age duration (d7) of each rare-rarity event decreases, suggesting that stronger noise perturbs the
system more frequently, reducing the persistence of individual rare-rarity occurrences. Figure 6(b)
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Figure 6: Impact of varying noise amplitude on rare-rarity dynamics. Varying the noise amplitude
mainly affect the system’s behavior near the “basin boundary” and the robustness of the rare-rarity
phenomenon. The three key metrics characterizing the role of noise in modulating the frequency
and persistence of rare-rarity events are: (07) - the average duration of each rare-rarity event, AT,
- the time interval between two consecutive rare-rarity events, and /V, - the total number of rare-
rarity occurrences within a given time window. (a) (67): shorter event duration. As the noise
amplitude increases, the average duration (47) of each rare-rarity event decreases. (b) max(AT):
the average maximum time interval between two consecutive rare-rarity events also decreases with
increasing noise amplitude. (c) (V,): the total average number of rare-rarity occurrences within a
given time window increases with the noise amplitude.

shows that the average time interval (max(AT,)) between two consecutive rare-rarity events also
decreases with increasing noise amplitude, indicating that noise accelerates the transition between
the transient pathways, leading to more frequent rare-rarity events. Figure 6(c) shows that the total
number (N.) of occurrences increases with the noise amplitude, reinforcing the observation that
a stronger stochastic perturbation makes rare-rarity events more frequent. These results suggest
that rare rarity is a robust phenomenon, persisting across different noise levels, but its characteris-
tics (frequency, duration, and spacing) depend on the noise amplitude, suggesting the potential of
exploiting environmental or ecological fluctuations to modulate the dynamics of rare-rarity events.

Figure 1(B) reveals that for a relatively large value of the bifurcation parameter ¢, the phe-
nomenon of intermittent rare rarity no longer occurs. This can also be understood by examining
the phase-space structure of the deterministic system. Figure 3(D) shows, for ¢ = 0.199, that the
system has a stable equilibrium with a near-zero predator population and an unstable equilibrium
corresponding to the extinction of both species. In this case, the folded component of the critical
manifold shrinks as compared with the case of a smaller value of ¢, leading to a larger white area.
However, differing from the case of a smaller ¢ value in Fig. 3(C), the global stable equilibrium is
now far away from the boundary between the white and yellow regions. Once the system settles
into the stable equilibrium, a noise realization of extraordinarily large amplitude is required to kick
the system into the white region to exhibit the rarity of the prey population. While abnormally
large amplitude realizations are possible for demographic noise, it would require a long time to
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actually experience such a realization. This explains why no rarity events occur for large values
of ¢ in Fig. 1(B) in the time window of observation. It is worth noting that, for ¢ = 0.199, the
predator population is near zero all the time, as can be seen from Fig. 3(D) which is due to the fact
that this point is close to the transcritical bifurcation point (¢ = 0.2) where the predator dies out.
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Figure 7: Role of noise in rare rarity. (A-C) Phase-space trajectories and the corresponding time series of
the prey population for parameter ¢ = 0.09 (inversely proportional to the carrying capacity), respectively.
The sole stable equilibrium of the system lies close to the boundary between the phase-space regions with
distinct transient behavior, so even noise of small amplitude can induce a rare rarity event. (D-F) Same
legends as in (A-C) but for ¢ = 0.12. The stable equilibrium is away from the boundary, requiring larger
noise to induce a rare rarity event. This reduces the number of such events in the same time interval as
compared with (A-C). (G-I) Same legends as in (A-C) but for ¢ = 0.199. In this case, the stable equilibrium
is far away from the boundary, requiring significantly stronger noise to induce a rare rarity event. No such
event occurs in the same time window of observation. Other parameter values are 7 = 0.8 (predator’s
interaction time with the prey), k = 0.01 (timescale separation parameter), and £ = 0.1 (noise intensity).

The phase-space structure exemplified in Figs. 3(C) and 3(D) suggests that the distance be-
tween the global stable equilibrium and the boundary of the regions with distinct transient dynam-
ical behaviors is key to the occurrence of the rare-rarity events in terms of their frequency and
regularity. To verify this explicitly, we compare the trajectories and the corresponding time series
of the prey population of the autonomous noisy system for three fixed values of ¢: ¢ = 0.09,
0.12, and 0.199, in a long time window, as shown in Fig. 7. For ¢ = 0.09, the stable equilibrium
is approximately on the boundary. In this case, even small noise can drive the system out of the
equilibrium, leading to a transient excursion in the phase space that stays near the y axis (near
zero prey population) for some time, as shown in Figs. 7(A). As a result, the rare-rarity events
associated with the prey population occur quite frequently, as shown in Fig. 7(B), which leads to

13



oscillation in the predator population as depicted in Fig. 7(C). For ¢ = 0.12, the position of the
stable equilibrium is lower in the phase space as compared with the case of ¢ = 0.09 and is away
from the boundary, as shown in Fig. 7(D), so some larger noise is required to induce a rare-rarity
event, making these events more infrequent than the case of ¢ = 0.09, as shown in Fig. 7(E).
The predator population and the number of oscillations also decrease as shown in Fig. 7(F). For
¢ = 0.199, the stable equilibrium is far away from the boundary, so the dynamical trajectory,
once approaching the equilibrium, tends to stay there as the required noise level to kick it out is
enormous, as shown in Fig. 7(G). In the time window of observation, there is in fact no rare-rarity
event, as shown in Fig. 7(H) and the predator population remains near zero without any oscillation,

as can be seen from Fig. 7(I).
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Figure 8: Statistical behavior of rare rarity events in the autonomous system (3) subject to demographic
noise. (A) Distribution of N., the number of rare rarity events in a long observational time window, which is
approximately Gaussian. (B) Distribution of AT, the time interval between two adjacent rare-rarity events,
which is approximately Poisson. The system parameter values are ¢ = 0.09, n = 0.8, x = 0.01, and
¢ = 0.1. (C) Average value (N,) of rare rarity events versus ¢. The shaded area indicates the standard

deviation of the average.

Figure 8(A) shows the distribution of the number V. of the rare rarity events in the time
interval [0, 1000] in the autonomous noisy model for ¢ = 0.09, n = 0.8, x = 0.01, and £ = 0.1,
which can be approximated by a normal distribution [similar to that from the nonautonomous sys-
tem (1) shown in Fig. 2(C)]. Figure 8(B) shows the distribution of AT,, the time interval between
two adjacent rare-rarity events, which can be approximated by a Poisson distribution. The most
likely time interval between two adjacent rare-rarity events lies in AT, € [16 18]. Figure 8(C)
shows the mean value of the approximately Gaussian random variable N, versus the bifurcation
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Figure 9: Critical manifold M, of the nonautonomous system (4) and its stability. The shaded red (blue)
region represents the stable (unstable) parts, the moving fold point (x4, ys), and the stable equilibrium is
depicted by a solid black line and a dashed yellow line, respectively. The singular canard is represented
by a blue trajectory, and the folded saddle singularity is marked by a yellow circle. Green curves illustrate
trajectories corresponding to the initial conditions (A) above and (C) below the singular canard (the initial
condition in depicted with a red dot). Panels (B) and (D) provide magnified views of (A) and (C), respec-
tively, for clarity.

parameter ¢ where, for each fixed value of ¢, 800 noisy realizations are used to calculate (/N..). The
decreasing behavior of (/V,.) with ¢ is similar to that obtained from the nonautonomous system (1),
indicating that species living under poorer environmental conditions (large value of parameter ¢)
tend to retain their abundance and are robust.

Dynamical mechanism of rare rarity: a deterministic nonautonomous approach The final
step is to consider the full nonautonomous system with noise (1). Due to the time-dependent
change of the environmental conditions with the rate r, all stationary states are transformed into
quasistationary equilibria that move in the phase space. For equilibrium state in which predator
and prey coexist, we have

(s, ys) = (1/1 = n, (1= —o(t)/(1 —n)*).
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Besides the quasistationary state, the critical manifolds M, as well as the fold (zy, ys) change
their location in the phase space following the environmental change. For this reason, the situation
is more complicated since now not all initial conditions converging to the stable critical manifold
without a rarity event will track the quasistationary equilibrium, i.e., stay in its neighborhood dur-
ing the environmental change. As shown previously ?°, there are also tipping trajectories that cross
the fold and exhibit the collapse-like behavior (excursion), the rarity event. In the phase space,
there exists a boundary — a canard trajectory — which separates tracking and tipping trajectories.
Now we can have different situations when the noise is acting on those two types of trajectories.
A noiseless tipping trajectory can be pushed by the noise over the canard trajectory to make it a
trapping trajectory and vice versa. But a tracking trajectory can also be pushed over the fold by
the noise. The fourth case could be that the noise prevents tipping. All of those scenarios are
possible. We illustrate one of the scenarios by plotting the trajectory shown in Fig. 7 in the full
three-dimensional phase space spanned by z, y, and ¢.

Figure 9 shows two trajectories similar to that one in Fig. 1(B) in 3D including the critical
manifold and the canard. The shaded red region represents the stable part of the critical manifold,
while the blue area indicates the unstable part. The moving fold point (x, ys) is depicted by a solid
black line, and the stable equilibrium is shown with a dashed yellow line. The singular canard is
represented by a blue trajectory, and the folded saddle singularity is marked by a yellow circle. Due
to the timescale separation, the noise is acting mainly on the critical manifold, not perpendicular
to it. The initial conditions for the green trajectory shown in Fig. 9(A) [magnified in Fig. 9(B)]
are selected from the upper region of the critical manifold above the critical canard, where the
trajectory exhibits a tipping behavior in a noiseless environment. In contrast, the initial conditions
for the trajectory in Fig. 9(C) [magnified in Fig. 9(D)] are chosen from the lower region of the
critical manifold, in which in a noiseless environment resulting in a trapping behavior. As a result,
if the initial condition is chosen from the lower part, noise will first kick the system over the fold,
and then the system returns after the rarity event back to the critical manifold but further down as
¢ has changed. It will get pushed by the noise to more rarity events until it ends up too far from
the fold where the noise cannot push the system over the fold, as shown in Fig. 1(B).

Carbon-cycle system: positive feedback loop in climate dynamics .

In climate dynamics, a positive feedback loop called the climate-carbon cycle can arise: the
release of CO, or other greenhouse gases into the atmosphere can increase the global temperature,
but the latter can strengthen the climate driving forces that can amplify the CO, released into the
atmosphere through peat decomposition. The essential nonlinear dynamics governing the feedback
phenomenon, also known as the compost-bomb instability, can be modeled by a prototype of a
carbon-temperature system proposed in 2011 2 with the key prediction that the instability depends
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strongly on the rate of global warming. Subsequently, this model was found to belong to the
general class of the so-called type-B excitable systems !!, where an analytical solution indicated
that, if the excitable system has a ramping parameter with an asymptotically stable equilibrium and
a locally folded critical (slow) manifold, a critical value of the ramping rate can arise, above which
an excitable response occurs.

Differing from the ecosystems, here we employ additive noise to illustrate that the phe-
nomenon of rare events is general in fast-slow and excitable systems, regardless of the nature of
the noise (i.e., multiplicative or additive). Specifically, we demonstrate that a nonautonomous
climate-carbon cycle system subject to environmental noise with a time-varying parameter can ex-
hibit the phenomenon of rare rarity. We consider the carbon-temperature model with the parameter

f. 62

values from Ref. ®°, where global warming is modeled by an atmospheric temperature ramp, as

shown in Fig. 10(A). The nonautonomous dynamical system is described by

: A
€T = Croe®” — 7T =T+ &2 (62)
C =B — Cree®” + &, (6b)
: roaf T, . <T,<T,..
T, = (6¢c)
0 otherwise,

where C' and T are the vertically integrated soil carbon content and soil temperature, respectively,
parameter B is the rate of increasing carbon by litter fall from plants and its value can decrease
by microbial decomposition proportional to the exponential temperature (we fix B = 1.055),
ro = 0.02 is the specific soil respiration rate, A = 5.049 is the soil-to-atmosphere heat transfer
coefficient, the three scaling parameters are & = In(3.5)/10, ¢ = 0.175, A = 39, and &7 ¢ is
the noise amplitude. Due to the considerable variation in the timescales of variables, the system
described by Eq. (6) can be classified as an extremely stiff system. The pronounced imbalance
in the ratio of fast to slow timescales can lead to inherent instability in numerical solutions. This
imbalance poses a challenge for standard numerical methods in accurately capturing the dynamics
of extremely stiff systems. Consequently, it is necessary to consider specialized techniques or im-
plicit methods to enhance accuracy. In our work, we employ an implicit stochastic Runge—Kutta
method >>%6* to integrate the system (6). (The algorithmic details are presented in Sec. S3 of
Supplementary Information.)

= (Qand T,

Gmax

To be concrete, we assume that the range of temperature variation is 7,
10, as shown in Fig. 10(A). The corresponding time series of 7'(¢) and C'(¢) are shown in Figs. 10(B)
and 10(C), respectively. It can be seen that the carbon concentration C'(¢) exhibits the phenomenon
of rare rarity. Similar to the slow-fast predator-prey system, noise induces intermittent occurrences
of rare rarity. For low atmosphere temperatures, multiple rare rarity events can occur in short in-

tervals, leading to potentially catastrophic outcomes. However, as the atmospheric temperature
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increases, there is a decline in the occurrence of such events, resulting in longer intervals between
successive events. The distribution of the time interval between two consecutive events is approx-
imately power-law and the number of such events can be modeled as a Gaussian random variable,
as shown in Figs. 11(A) and 11(B), respectively. Figure 11(C) shows the mean value (V.) asso-
ciated with rare rarity events versus the rate r of linear temperature increase. As the atmospheric
temperature 7, increases, the compost decomposition becomes more robust to noise, with the
probability of experiencing multiple rare rarity events decreasing to near zero. This indicates that
global warming can have a significant impact on the dynamics of the climate-carbon cycle system,
with higher atmospheric temperatures leading to more robust and stable compost decomposition
in the cycle.

In the context of carbon-cycle dynamics, a rarity event represents an unexpected and po-
tentially catastrophic excursive transient behavior that can lead to a drastic reduction in the soil
carbon content and a corresponding increase in the emission of carbon into the atmosphere. How-
ever, when there is a global warming trend in which the atmospheric temperature 7, increases
linearly from 7;, . to 7, . ata constant rate r, the number of excursive transient collapses in soil
carbon content decrease, accompanied by an increase in the interval between two consecutive rar-
ity events, as exemplified in Figs. 10(B) and 10(C). These findings suggest that, as the atmospheric
temperature continues to increase, a reduction in soil carbon content can occur, but the proba-
bility of transient collapse reduces as well. The implication is that global warming can counter
intuitively enhance the robustness of the climate-carbon cycle against environmental noise. More
specifically, as the soil carbon content declines while the noise amplitude remains constant, fewer
excursive rare rarity events (compost-bomb instability) are likely to occur. Overall, these results
provide insights into the dynamics of the climate-carbon cycle system under different atmospheric
temperature conditions, which are relevant to making effective mitigation and adaptation strategies
for combating global warming.

Discussion

The dynamical behavior of ecosystems is inherently time-dependent, shaped by persistent envi-
ronmental and climatic changes, many of which are driven by human activities. As these changes
become more systematic and long-term, traditional autonomous models, where system parameters
remain fixed, prove insufficient in capturing the evolving nature of ecological systems. Instead,
nonautonomous dynamical systems offer a more accurate and necessary framework for model-
ing ecosystems, allowing for time-dependent variations in key parameters !'31:3%65-%9 Moreover,
ecosystems are continuously subjected to stochastic influences, including multiplicative demo-
graphic noise, which can introduce significant fluctuations in the population dynamics. The in-
terplay between rate-dependent phenomena and stochastic effects has been known to give rise to
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counterintuitive dynamical behaviors, including noise-induced and rate-induced tipping points °.
Building upon these insights, our study identifies a phenomenon: rare rarity in ecosystems.

Rare rarity occurs when a key ecological variable, such as the abundance of a species,
approaches a near-zero value due to a dynamical excursion, rather than through a conventional
bifurcation-induced tipping point. This phenomenon emerges in slow-fast and excitable systems,
where dynamical trajectories can momentarily visit the phase-space regions containing the near-
zero state of a given variable. Unlike the traditional extinction scenarios where a system undergoes
a structural change leading to a critical transition, rare rarity events arise due to the interplay
between transient dynamics and external perturbations. When noise is present, the dynamical ex-
cursions can become intermittent. There are two possible mechanisms that can “kick” the system
out of a dynamical excursion (the region close to zero): one is noise and another is the timescale
separation between the different components in the slow-fast system. Both mechanisms ensure
that rare rarity events remain transient and short-lived relative to the overall timescale of the en-
vironmental changes. Notably, the interplay among nonautonomy, noise, and timescale separation
creates a double-edged sword: it drives the system into rarity and then rapidly removes it from that
state, making rare rarity events exceptionally rare. Furthermore, as a bifurcation parameter evolves
over time, the “barrier” for the trajectory to cross to reach the rarity region can become higher,
making rarity events even more rare. This explains our counterintuitive result that even when the
parameter change is itself detrimental (e.g., degradation of the prey’s carrying capacity), it can
protect the population from excursions to rarity. This stabilizing effect is related to the paradox of
enrichment, but in reverse.

It is worth noting that similar dynamical excursions occur in other contexts. For example,
in neuroscience, neuronal models exhibit subthreshold and superthreshold responses, where small
and large excursions reflect a neuron’s reaction to varying stimulus intensities ’'. In climate science
and ecology, rate-induced phenomena have been documented, where environmental changes can
significantly influence the transient dynamics, potentially leading to an abrupt shift or collapse in
the populations 372, These examples illustrate how transient excursions, rather than long-term
shift in the equilibrium, can lead to certain critical system behavior.

When noise is present, the dynamical excursions can become intermittent. There are two
possible mechanisms that can “kick” the system out of dynamical excursion, the region close to
zero: one is the noise and another is the timescale separation between the different components in
a slow-fast system. Both mechanisms ensure that rare rarity events remain transient and typically
short-lived relative to the overall timescale of environmental changes. Notably, the interplay among
nonautonomy, noise, and timescale separation creates a double-edged sword: it drives the system
into rarity and then rapidly removes it from that state, making rare rarity events exceptionally
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rare. Furthermore, as a bifurcation parameter evolves over time, the “barrier” for the trajectory
to cross to reach the rarity region can become higher, making rarity events even more rare. This
explains our counterintuitive result that even when the parameter change is in itself detrimental
(e.g., degradation of the prey’s carrying capacity), it can protect the population from excursions to
rarity. This stabilizing effect is related to the paradox of enrichment, but in reverse.

We have demonstrated the existence of rare rarity in two nonautonomous dynamical systems
subject to noise: a slow-fast Rosenzweig-MacArthur predator-prey system and a climate-carbon
cycle system. Through phase-space analysis of stochastic trajectories, we developed an initial
theoretical understanding of this phenomenon. A crucial dynamical feature enabling rare rarity
is the presence of a single stable equilibrium. In deterministic excitable systems or slow-fast
systems with folded critical manifolds, transient dynamics can lead to two distinct behaviors. In
one scenario, trajectories move directly toward the stable equilibrium. In the other, trajectories
first undergo an excursion to a different region of phase space, such as a state of near-zero prey
abundance in the population dynamics, before eventually settling at the stable equilibrium. The
division between these behaviors can be traced back to the initial conditions in two distinct regions,
each corresponding to a different transient behavior. The boundary between these regions is the
“basin boundary.” The key factor governing the occurrence of rare-rarity excursions is the distance
between the stable equilibrium and this “basin boundary.” In the presence of noise, this distance
becomes even more critical, as stochastic fluctuations can push trajectories over the boundary,
inducing rare-rarity events that would not occur in the purely deterministic setting. As a bifurcation
parameter evolves over time, the distance between the stable equilibrium and the basin boundary
may either increase or decrease. When this distance is small, even weak noise can trigger rare-rarity
excursions, whereas a larger separation requires stronger noise to induce such events. In a non-
autonomous system, over time, the occurrence of rarity events follows a nonuniform, intermittent
pattern, with their frequency gradually decreasing as time progresses. This reflects the interplay
between the system’s intrinsic dynamical structure and the external perturbations shaping its long-
term behavior [e.g., Fig. 1(B)].

Besides noise, another key factor in dynamical excursion is timescale separation. Prior re-
search 7* investigated the duration of rarity events in a similar predator-prey system with constant
parameters and no timescale separation. Without timescale separation, the predator also becomes
rare during epochs of prey rarity. As a result, the trajectory passes much more closely in phase
space to the saddle points at joint extinction (0,0) and predator extinction (1/¢,0) [the yellow
circles in Figs. 3(C), 7(A), and 7(D)]. Because the dynamics slow near saddles, the closer the
stochastic trajectory comes to these saddles, the longer it takes for the populations to recover and
complete the cycle. Quick recovery from rarity therefore occurs in part due to the slowness of the
predator decline, which keeps trajectories from approaching near enough to the y = 0 axis to be
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trapped in a long transient by the saddle. A key question for future research is determining the
threshold of timescale separation necessary for the system to transition from delayed recovery (as
in Ref. [73]) to rapid recovery (observed in our study). Investigating this transition could provide
additional insights into how ecological systems recover from transient disturbances.

In ecological systems, the relevant source of stochastic influence is often demographic noise
and the timescales of the predator and prey variables typically differ drastically. These factors
generate the conditions necessary for rare rarity to occur, where the prey population density de-
creases quickly to a near-zero value, followed by a rapid recovery. This phenomenon arises due
to the interplay between noise and the intrinsic slow-fast dynamics of the system coupled to time-
dependent environmental changes, illustrating a fundamental mechanism by which species popu-
lations can exhibit transient collapse without experiencing true extinction. This suggests that in
slow-fast ecological systems, habitat degradation can act as a double-edged sword with both nega-
tive and beneficial effects on the prey population. While environmental degradation due to climate
change can reduce the overall ecosystem health and cause a decrease in the prey carrying capacity,
it also reduces the probability of rate rarity events in the prey population, protecting populations
from frequent transient collapses. A similar phenomenon was found in a prototypical excitable
climate-carbon cycle system with additive noise, suggesting the generality of the phenomenon.
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S1. PERTINENT BACKGROUND
A. Recovery from rarity

Understanding how rare species avoid extinction is critical for conservation. For species that are
chronically rare, persistence has been attributed to factors such as high local abundances (despite
very low regional abundance) [1], reproductive adaptations that offset low encounter rates with
potential mates [2], and dispersal and niche shifts [3]. For species that only experience rarity
during acute collapse events, such as those that we considered in this study, extinction avoidance
relies on fast recovery. In single-species populations, this can be accomplished by a high intrinsic
growth rate [4]. In multi-species communities, recovery requires not only that the rare species
can grow quickly, but that it can do so under the specific pressures being imposed by interacting
species [5]. In continually deteriorating environments, rare species must also be able to recover
under worse environmental conditions as those that may have caused the collapse to rarity in the
first place [6].

B. Tipping in ecological systems

In an ecological system with two coexisting stable equilibria (stable steady states or fixed-point
attractors), one associated with healthy survival while the other with extinction, as a parameter
changes through a critical point, an inverse saddle-node bifurcation can occur, beyond which the
survival attractor no longer exists, leaving the extinction attractor as the only final steady state of
the system. This leads to a tipping point at which the species abundances decrease to near-zero
values [7-32], which can be considered as below an empirical extinction threshold [33]. Besides
population dynamics in ecology, tipping points are relevant to phenomena in other fields such as
epidemic outbreak [34], climate change [35], and the sudden switch from normal to depressed
mood in bipolar patients [36].

When the parameters of a system vary with time, rate-induced tipping (R-tipping) can oc-
cur [16, 37-40]. In particular, for certain initial conditions leading to trajectories approaching
the survival equilibrium attractor in the absence of time-dependent parameters, a population with
these initial conditions can become extinct if some parameters change too fast with time. The
rate of parameter change thus becomes a key “hyperparameter” of the system: as it increases
through a critical value, some initial conditions will switch their destination from healthy survival
to extinction. It was recognized that the rate of environmental change is effectively a parame-
ter affecting the dynamics across different scales in ecology [41]. In a recent study focusing on
complex ecological networks [42], a global approach to R-tipping was introduced with the finding
that the probability of R-tipping defined with respect to initial conditions taken from the entire
relevant phase-space region can increase rapidly as soon as the rate of parameter changes becomes
nonzero. For simple fast-slow systems, one can identify even a boundary in the phase space — a
canard trajectory — which separates tipping from tracking (i.e., following the survival state) initial
conditions [38, 40, 43]. Besides population dynamics, the phenomenon of R-tipping is relevant to
fields such as climate science [44, 45], neuroscience [43, 46], vibration engineering [47], and even
competitive economy [48].



C. Dynamical excursion in slow-fast and excitable systems

In ecological systems, another mechanism for rarity can arise in slow-fast [38] and excitable
systems [40, 43, 49, 50]. In an early work [49] on a predator-prey model with a Holling type-III
predator response, it was found that noise can sustain a transient in the setting that the system has
only one globally stable equilibrium. There are two distinct types of trajectories: one that reaches
the equilibrium directly and another approaching the equilibrium through an excursive behavior
with a sudden but transient excursion away from the equilibrium in both the predator and prey
populations. During the excursion, the prey population can reach a near-zero level, resulting in
rarity. When noise is present, an intermittent behavior can arise between low-amplitude random
oscillations around the equilibrium and the infrequent high-amplitude oscillations away from the
equilibrium. In a more recent work [38] on the Rosenzweig-MacArthur predator-prey model, the
impact of a specific type of time-dependent parameter change (a linear reduction of the habitat
quality over time) on the transient response of the slow-fast dynamics was studied. It was found
that a sudden excursion from the stable equilibrium can cause the fast variable (the prey population
density) to temporary collapse to exceedingly low values. Note that R-tipping is not the only
mechanism in which transient dynamics can cause regime shifts. It has been shown that transients
causing regime shifts are ubiquitous in ecological systems [51-55] with significant management
implications [56, 57].

D. Noise in ecological systems

Ecological systems are continually exposed to stochastic disturbances and the effects of noise
on the dynamics of these systems have been a topic of study with a long history [28, 58-74].
In general, there are two types of noises in ecological systems: external and internal, where the
former can be modeled as additive Gaussian white noise [75, 76] and the latter are demographic
or multiplicative noise [59, 66, 71, 77-79]. Demographic noises as a manifestation of internal
stochasticity are of particular importance to ecological systems due to the intrinsic uncertainties
in reproduction, growth, death, competition, and intraspecific migration. Computationally, a de-
mographic process can be modeled as multiplicative noise with its strength proportional to the
square root of the fluctuating abundance. In the context of tipping, the beneficial role of noise in
facilitating species recovery after a tipping event was recognized [28, 29].

S2. CARBON-CYCLE SYSTEM: POSITIVE FEEDBACK LOOP IN CLIMATE DYNAMICS

In climate dynamics, a positive feedback loop called the climate-carbon cycle can arise: the
release of CO, or other greenhouse gases into the atmosphere can increase the global temperature,
but the latter can strengthen the climate driving forces that can amplify the CO, released into the
atmosphere through peat decomposition. The essential nonlinear dynamics governing the feed-
back phenomenon, also known as the compost-bomb instability, can be modeled by a prototype
of a carbon-temperature system proposed in 2011 [80] with the key prediction that the instability
depends strongly on the rate of global warming. Subsequently, this model was found to belong
to the general class of the so-called type-B excitable systems [16], where an analytical solution
indicated that, if the excitable system has a ramped parameter with an asymptotically stable equi-
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librium and a locally folded critical (slow) manifold, a critical value of the ramping rate can arise,
above which an excitable response occurs.

Differing from the ecosystems, here we employ additive noise to illustrate that the phenomenon
of rare events is general in fast-slow and excitable systems, regardless of the nature of the noise
(i.e., multiplicative or additive). Specifically, we demonstrate that a nonautonomous climate-
carbon cycle system subject to environmental noise with a time-varying parameter can exhibit
the phenomenon of rare rarity. We consider the carbon-temperature model with the parameter
values from Ref. [80], where global warming is modeled by an atmospheric temperature ramp, as
shown in Fig. S1(A). The nonautonomous dynamical system is described by

: A
€T = Croe®” — Z(T —T,) + & (S2.1a)
C =B — Croe®? 4 &2 (S2.1b)
. f T, <T,<T,
7= W T e (S2.1c)
0 otherwise,

where C' and T are the vertically integrated soil carbon content and soil temperature, respectively,
parameter B is the rate of increasing carbon by litter fall from plants and its value can decrease
by microbial decomposition proportional to the exponential temperature (we fix B = 1.055),
ro = 0.02 is the specific soil respiration rate, A = 5.049 is the soil-to-atmosphere heat transfer
coefficient, the three scaling parameters are @ = In(3.5)/10, ¢ = 0.175, A = 39, and {1 ¢ is
the noise amplitude. Due to the considerable variation in the time scales of variables, the system
described by Eq. (S2.1) can be classified as an extremely stiff system. The pronounced imbalance
in the ratio of fast to slow time scales can lead to inherent instability in numerical solutions. This
imbalance poses a challenge for standard numerical methods in accurately capturing the dynamics
of extremely stiff systems. Consequently, it is necessary to consider specialized techniques or im-
plicit methods to enhance accuracy. In our work, we employ an implicit stochastic Runge—Kutta
method [81-83] to integrate the system (S2.1). (The algorithmic details are presented in Ap-
pendix S3.)

To be concrete, we assume that the range of temperature variationis 7, , = Oand 75 = 10,
as shown in Fig. SI(A). The corresponding time series of 7'(¢) and C(¢) are shown in Figs. SI(B)
and S1(C), respectively. It can be seen that the carbon concentration C' () exhibits the phenomenon
of rare rarity. Similar to the slow-fast predator-prey system, noise induces intermittent occurrences
of rare rarity. For low atmosphere temperatures, multiple rare rarity events can occur in short in-
tervals, leading to potentially catastrophic outcomes. However, as the atmospheric temperature
increases, there is a decline in the occurrence of such events, resulting in longer intervals between
successive events. The distribution of the time interval between two consecutive events is approx-
imately power-law and the number of such events can be modeled as a Gaussian random variable,
as shown in Figs. S2(A) and S2(B), respectively. Figure S2(C) shows the mean value (N..) asso-
ciated with rare rarity events versus the rate r of linear temperature increase. As the atmospheric
temperature 7, increases, the compost decomposition becomes more robust to noise, with the
probability of experiencing multiple rare rarity events decreasing to near zero. This indicates that
global warming can have a significant impact on the dynamics of the climate-carbon cycle system,
with higher atmospheric temperatures leading to more robust and stable compost decomposition
in the cycle.
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FIG. S2. Statistical behaviors of rare rarity events in the climate-carbon cycle system. (A) Distribution of
the time interval AT, between two chronologically adjacent rare rarity events and (B) distribution of the
number N, of rare rarity events, for r = 0.012, 7, . = 0, and T}, = 10. (c) Mean value (N.) of rare
rarity events versus r, where the shaded area represents the standard deviation from the average. The larger
value of rate r, the smaller number of rare rarity events in the climate-carbon cycle system (S2.1).

In the context of carbon-cycle dynamics, a rarity event represents an unexpected and potentially
catastrophic excursive transient behavior that can lead to a drastic reduction in the soil carbon con-
tent and a corresponding increase in the emission of carbon into the atmosphere. However, when
there is a global warming trend in which the atmospheric temperature 7}, increases linearly from
T, toT, at a constant rate r, the number of excursive transient collapses in soil carbon con-

Qmin Amax
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tent decrease, accompanied by an increase in the interval between two consecutive rarity events, as
exemplified in Figs. S1(B) and S1(C). These findings suggest that, as the atmospheric temperature
continues to increase, a reduction in soil carbon content can occur, but the probability of transient
collapse reduces as well. The implication is that global warming can counter intuitively enhance
the robustness of the climate-carbon cycle against environmental noise. More specifically, as the
soil carbon content declines while the noise amplitude remains constant, fewer excursive rare rarity
events (compost-bomb instability) are likely to occur. Overall, these results provide insights into
the dynamics of the climate-carbon cycle system under different atmospheric temperature condi-
tions, which are relevant to making effective mitigation and adaptation strategies for combating
global warming.

S3. STOCHASTIC RUNGE-KUTTA METHOD

TABLE S1. Butcher tableau of improved implicit SRK methods (S3.3) - list of coefficients

c1 |ain a1z - a1s bi1r big - bis
c2  |ag1 a2 -+ ags ba1  bag - - bas
Cs ag1 Qg2 - Qgg bsl bs? T bss
1 |a11 Q12 --- Qi
Co |G21 Qg2 - G2
és dsl ds? : &ss
Br Ba - P MooY2 Vs mooM2 e Ns

TABLE S2. Coefficients of improved implicit SRK methods (S3.3) for s = 2

1 |5 1
31 —1 |00
3 1
0 [0 0
11 0
3 1
3 ot =1

A nonautonomous dynamical system subject to multiplicative noise can generally be written as

&= f(x)+£(t)g(x),

where the deterministic dynamics of the system are described by a d-dimensional nonlinear func-
tion f : R? — RY, the second term describes the demographic noise with £(¢) being a Gaussian
random process, and the function g(x) is also a d-dimensional function g : R¢ — RY. For the
climate-carbon cycle model (S2.1), we have g(z) = 1.

For nonstiff deterministic differential equations, a commonly used method for solving the cor-
responding stochastic differential equations (SDE) is some second-order algorithm [81]. However,

(S3.2)
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if the deterministic equations are stiff, a more robust computational method such as the implicit
stochastic Runge-Kutta (SRK) algorithm [82] can be used. Under the Ito—Taylor series expansion,
the implicit integration method can be characterized by its extended Butcher tableau. For the case
of multidimensional Itd SDEs, the enhanced implicit SRK method is described as

=1

+ Y ig(tn + éiot, H) I (S3.3)
i=1

S R [6t

) o

+ Z n:g(tn + ¢;0t, Hi)ﬁ,

i=1

forn =0,1,--- , N — 1 with stages:

Hi =Ty + Z Clijf(tn + Cj(st, H])(St

j=1
; e (S3.4a)
+ ; bijg(tn + ¢;0t, Hj)é_to
Hy =, + ) ayf(t + ¢;0t, Hj)ot, (53.4b)
j=1

where the increments [, , are the mixed stochastic-classical integrals in the corresponding sub
intervals [¢,¢ 4+ h], which can be calculated in the following way. Starting from independent
standard normally distributed random variables &,., ¢, ~ N(0, t), one computes:

I, = 6t'/%¢, (S3.5)
Lo = 6t%(G/V3+&)/2. (S3.6)
The Butcher tableau represents the coefficients of the improved SRK method, where the weights

¢; and ¢; are chosen such that ¢ = Ae and ¢ = Ae. The improved SRK method (S3.3) is implicit
(explicit) when the matrices A, B, and A are full (lower triangular) matrices.
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