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A tipping point in nonlinear dynamical systems was previously understood as an abrupt transition from a high
to a low stable steady state as a bifurcation parameter crosses a critical value. We uncover an unconventional
tipping phenomenon in a class of non-autonomous nonsmooth biophysical systems, where the transition occurs
through an intermediate, oscillatory state. Such a “stepping-stone” state also occurs in the reverse process of
recovery, resulting in a “wrinkled” hysteresis loop. The dwelling time in the oscillatory state, e.g., the transient
tipping time before the system settles in the low steady state, depends on the rate of the parameter change. The
scaling laws of the transient tipping and recovery times are derived analytically. The intermediate state presents
an opportunity for control intervention to prevent a healthy system from collapsing into a diseased state.

The broad phenomenon of tipping in dynamical systems
has been understood as a sudden transition from one stable
steady state to another as a bifurcation parameter changes
through a critical point. Such systems are bistable and, as
the parameter reverses its change, a transition to the original
steady state can occur but at a parameter value differing from
the tipping point, leading to a hysteresis loop that is quite com-
mon in bistable physical and biological systems [1–12]. A
field in which tipping is of particular interest is ecosystems
where the two stable states correspond to survival and ex-
tinction, respectively [13–38]. Global climate change makes
tipping significantly more likely in critical natural systems
such as the the Atlantic Meridional Overturning Circulation
(AMOC) [39–41] that supports livable temperature conditions
in Western Europe [42], where model-based statistical [43]
and data-driven machine-learning [44] methods were recently
developed to predict its potential tipping or collapse. Nonau-
tonomous dynamical systems with some time-dependent bi-
furcation parameter are particularly vulnerable to tipping as
it can be triggered by the time-rate change of the parameter,
the phenomenon of rate-induced tipping [22, 45–50]. In most
existing studies on tipping, the transition is typically abrupt
through a saddle-node type of bifurcation.

In this Letter, we report a phenomenon in nonsmooth dy-
namical systems where tipping occurs in an unconventional
manner that is characteristically different from any known
scenario. In particular, the system still possesses two sta-
ble steady states. As a bifurcation parameter changes with
time (thereby making the system nonautonomous), a transi-
tion from one stable steady state to another eventually occur,
but through a “stepping-stone” type of intermediate attractor
that is not a steady state but oscillatory. As illustrated in Fig. 1,
at the first critical point, denoted as q1, a transition from the
high stable state to the intermediate attractor occurs, followed
by a transition from this attractor to the low steady state at q2.
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Likewise, in the reverse process of recovery, the system moves
out of the low steady state to a different intermediate attractor
at q3, and the subsequent transition from this attractor to the
high steady state at q4 completes the hysteresis loop. While
the two stable steady states do not depend on how fast the
parameter changes, the intermediate attractor does depend on
the time rate change of the parameter. To our knowledge, hys-
teresis loops in physical and biological systems reported in the
literature are typically associated with abrupt but nonetheless
smooth transitions between the two stable steady states [1–
12], but in our case the loop becomes irregular and “winkled”
due to the system’s wandering on an oscillatory attractor be-
fore finally approaching a stable steady state. The dwelling or
the transient time in the oscillatory state depends on the rate of
parameter change and exhibits an algebraic scaling behavior,
which can be understood analytically.

The prototypical model leading to the discovery of uncon-
ventional tipping and winkled hysteresis loop is the biophys-
ical system underlying a quite common skin disease known
as atopic dermatitis (AD) found in all age groups. AD is a
prevalent dermatological condition with a complex etiology
that spans genetic, immunological, and environmental fac-
tors [51–53]. This condition is known for its heterogeneous
presentation across different age groups, ethnicities and gen-
ders, posing significant challenges to develop effective treat-
ment [54–60]. The rarity of robust animal models further
complicates the translation of theoretical research into clini-
cal practice. Recently, the focus has shifted towards in vivo,
in vitro, and in silico methods to dissect the pathophysiolog-
ical underpinnings of AD and to identify critical therapeutic
targets and biomarkers [61, 62], where nonlinear dynamical
systems modeling and analysis become instrumental [63–67].

The biophysical mechanism of AD pathogenesis progres-
sion is captured by the model [64] in Fig. 1(a), as governed
by the interactions between external pathogens and the skin
barrier. Under normal conditions, small amounts of pathogens
entering through compromised skin barriers are naturally con-
tained and pose no significant threat. However, when the
pathogen load exceeds a threshold, a critical point is reached,
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FIG. 1. AD system, unconventional tipping and wrinkled hysteresis loop. (a) The biophysical processes underlying AD leading to a nonsmooth
dynamical system. (b) A bifurcation diagram with the nominal skin permeability κp, revealing multiple coexisting attractors. There are a low
stable steady state B = 0 (red, denoted as C), a high stable steady state B = 1 (blue, H), and two oscillatory attractors in between (Os - purple
and Om - green). The rate of pathogen eradication is fixed at αI = 0.1. There are six distinct bifurcation points bi (i = 1, · · · , 6). At each
point, either a new attractor emerges or an existing attractor disappears. (c) For the corresponding nonautonomous system with κp(t) = κs

p+ϵt
(ϵ = 10−5), unconventional tipping occurs, where the system transits from H to Om at κp = q1, followed by another transition to C at q2.
The reverse process is also through two transitions: one at q3 and another at q4. The gray background marks the oscillatory attractors in (b).
As a result of the four transitions, the hysteresis loop becomes wrinkled. (d) Similar transitions and wrinkled hysteresis loop for ϵ = 10−3.

at which physiological switches are activated, such as toll-like
receptors (TLRs) and protease-activated receptor 2 (PAR2).
As a result, an AD flare is triggered. The immune response in-
cludes the release of antimicrobial peptides that combat the in-
vading pathogens and signal various immune mechanisms that
mobilize dendritic cells to the lymph nodes. If the pathogen
level decreases below a deactivation threshold, these switches
are turned off, stopping the AD flare. Conversely, if the den-
dritic cell count in the lymph nodes surpasses a second crit-
ical threshold, a further, irreversible change in the immune
state occurs, exacerbating the skin condition. Because of the
activation and deactivation of the switches, the underlying dy-
namical system is nonsmooth:

dP

dt
=

Penvκp

1 + γBB(t)
− αIR(t)P (t)− δpP (t),

dB

dt
=

κB [1−B(t)]

[1 + γRR(t)][1 + γGG(t)]
− δBK(t)B(t), (1)

dD

dt
= κDR(t)− δDD(t),

where P (t) ≥ 0, 0 ≤ B(t) ≤ 1 and D(t) ≥ 0 denote the infil-
trated pathogen load (in milligrams per milliliter), the strength
of barrier integrity (relative to the maximum strength), and the
concentration of dendritic cells (DCs) in the lymph node (cells
per milliliter), respectively. The typical parameter values are
listed in Tab. S1 in Supplementary Information (SI) [68].

The structure of the skin barrier is dependent on the pro-
teins keratin and filaggrin (FLG), and the extracellular matrix
containing lipids, structural proteins, and the serine protease
subgroup kallikreins. Dysfunction of these components can
result in barrier defects, as typically found in loss-of-function
mutations of the FLG gene [69]. The AD model (1) uti-
lizes switches to describe the activation of the immune sys-
tem, as shown in Fig. 1(a). In particular, the switches R(t),
G(t) and K(t) depict the levels of activated immune recep-
tors, Gata3 transcription relative to the maximum transcrip-
tion level, and active kallikreins, respectively, which are given
by R(t) = Roff for P (t) < P− or P− ≤ P (t) ≤ P+ and
R(t−) = Roff; R(t) = Ron for P (t) > P+ or P− ≤ P (t) ≤
P+ and R(t−) = Ron}; K(t) = Koff for P (t) < P− or
P− ≤ P (t) ≤ P+ and R(t−) = Roff; K(t) = monP (t) − β
for P (t) > P+ or P− ≤ P (t) ≤ P+ and R(t−) = Ron;
G(t) = Goff for D(t) < D+ and G(t−) = Goff; G(t) = Gon
for D(t) ≥ D+ or G(t−) = Gon, where Ron, Roff, Gon, Goff
and Koff are parameters characterizing the activating or inac-
tivating constant-level of the switches, but Kon depends on
P (t): Kon = monP (t) − β, and the two switches R and K
work together simultaneously.

The AD system (1) exhibits complicated dynamical phe-
nomena including multistability, transients and nonsmooth bi-
furcations [66, 67]. Previous works [64, 66] revealed four dis-
tinct attractors corresponding to the four stages of AD: healthy
recovery (H), chronic damage (C), mild oscillations (Om),
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and severe oscillations (Os). Two key parameters are the nom-
inal skin permeability κp and the rate αI of pathogen eradica-
tion. Figure 1(b) shows a typical bifurcation diagram with κp

for αI = 0.1, where there are six distinct bifurcation points
bi (i = 1, . . . , 6) with four attractors in different parameter
intervals. In particular, for κp < b4, the high steady state is
the only attractor. As κp increases through b4, the attractor Os

emerges. For b4 ≤ κp ≤ b3, the system has two coexisting
attractors. At κp = b3, a low steady state attractor is born. For
b3 ≤ κp ≤ b6, the system has three coexisting attractors. At
b6, Os is destroyed and the system has two coexisting steady-
state attractors for b6 ≤ κp ≤ b5. At b5, the mild oscillatory
attractor Om is created and the system has three coexisting at-
tractors again for b5 ≤ κp ≤ b1. At b1 and b2, respectively,
the high steady state and mild oscillatory attractors disappear,
and the system has two coexisting attractors for b1 ≤ κp ≤ b2.
For κp > b2, the low steady state is the only attractor.

Clinically, the bifurcation diagram in Fig. 1(b) vividly cap-
tures the process of disease progression in AD patients. Note
that κp characterizes the skin condition, where large values of
κp correspond to a more deteriorated condition. For κp < b4,
patient’s skin condition is healthy, where the high steady state
is the only attractor in the system. As κp increases through
b4, clinic symptoms of varying degrees as characterized by
the occurrence of the oscillatory attractors and the low steady
state. For κp > b2, AD has evolved into the most severe stage.

The AD system (1) is nonautonomous as the skin condition
changes with time for a variety of reasons including aging.
To model this feature, we set the nominal skin permeability
as a function of time [70, 71]: κp(t) = κs

p ± ϵt, where κs
p

is the initial value and ϵ is the linear ramping rate. The for-
ward (+) and backward (−) conditions indicate that the skin
condition will deteriorate and improve with time, respectively.
Figure 1(c) shows, for ϵ = 10−5 and κs

p = 0.76 (0.8), forward
(backward) trajectories. As the skin conditions deteriorate, a
tipping transition occurs in the relative strength B(t) of the
barrier integrity at q1 from the high steady state to the oscilla-
tory state Om (the blue trajectory, corresponding to mild skin
disease). The system remains in Om until κp reaches the sec-
ond critical point q2 > q1, at which B(t) drops to near zero,
signifying reaching the most severe stage of AD. For refer-
ence, the bifurcation diagram in Fig. 1(b) for the autonomous
system is included in Fig. 1(c) as the gray background. In
the nonautonomous system, both transitions at q1 and q2 are
abrupt, which is characteristic of tipping. Overall, the tip-
ping from the high healthy state to the intermediate oscilla-
tory state, the system’s maintaining in this state for a finite
parameter interval (equivalently, a finite amount of time) and
the second tipping to the low steady state, constitute an uncon-
ventional, two-stage tipping transition. This makes the tipping
branch of the hysteresis loop rippled, in contrast to the tipping
behavior directly from the high to the low stable steady state
in smooth dynamical systems [1–12].

A similar phenomenon occurs in the backward direction of
the parameter variation: κp(t) = κs

p − ϵt, where the skin con-
dition is improved. At the transition point q3 < q1, a sudden
transition from the low steady state to another intermediate os-
cillatory state, Os, occurs. The system stays in Os for a finite

parameter interval (time) before an abrupt transition back to
the high stable steady state at q4 < q3. Owing to the dwelling
in the oscillatory state Os, the recovery process from the low
to the high steady state is also unconventional, contributing to
an irregular branch of the hysteresis loop. Compared with a
typical hysteresis loop in smooth dynamical systems [1–12],
the overall hysteresis loop in Fig. 1(c) is “wrinkled.”

Two remarks are in order. First, in the nonautonomous
AD system, the tipping points qi are different from the cor-
responding bifurcating points bi in the autonomous system, as
indicated in Fig. 1(c). This difference can be understood ana-
lytically (SI [68]). Second, the phenomena of unconventional
tipping and wrinkled hysteresis loop can occur for different
time rate change of the bifurcation parameter, as exemplified
in Fig. 1(d) for ϵ = 10−3, a rate that is two orders of magni-
tude higher than that in Fig. 1(c). At this rate, the first tipping
occurs at approximately the same point q1 but the oscillatory
state of mild AD lasts in a larger parameter interval as a higher
critical value q2 is required for the system to switch to the low
steady state associated with severe AD. Likewise, while the
first recovery point q3 in Figs. 1(c) and 1(d) are approximately
the same, the oscillatory state lasts through a larger parameter
interval and the skin condition as characterized by the value of
κp needs to be significantly more improved for a full recovery
at ϵ = 10−3 than at ϵ = 10−5. In fact, the quantities qi − bi
(i = 1, 2, 3, 4), the differences between the transition points
in the nonautonomous system and their corresponding bifur-
cation points in the autonomous system, depend on the rate ϵ
and obey scaling laws. In spite of the differences in the de-
tailed transitions, the tipping and recovery transitions contain
multiple stages through some oscillatory state as the “spring-
board” and the overall hysteresis loop remains wrinkled.

FIG. 2. Transient tipping and recovery process. (a,b) A relatively
long and short transient process for the tipping from the high to low
stable state to finish for ϵ = 10−5 and 10−3. respectively. (c,d) Sim-
ilar transient recovery process for ϵ = 10−5 and 10−3, respectively.
For the two values of the ramping rate, the difference in the transient
time is more than the time difference as determined by the rate.

The unconventional, two-stage tipping process in the AD
system, as demonstrated in Figs. 1(c) and 1(d), is drastically
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different from conventional tipping in smooth dynamical sys-
tems. To better appreciate the difference, we note that, in a
nonautonomous smooth system, the tipping occurs almost in-
stantaneously: due to the little parameter change required at
the critical point for tipping, practically it takes an infinites-
imal amount time for the transition from the high to the low
stable steady state to occur. However, in the nonsmooth AD
system, the time for tipping, or the transient tipping time be-
tween the two consecutive tipping points denoted as τtp, to
occur can be quite long. Figures 2(a) and 2(b) show, for
ϵ = 10−5 and 10−3, respectively, the length of the transient
tipping time, where the difference in the transient time in the
two cases is about three orders of magnitude (approximately
10 times larger than the difference in the parameter ramping
rate). Similarly, the recovery process also involves a long tran-
sient process, as illustrated in Figs. 2(c) and 2(d).

FIG. 3. Scaling of tipping and recovery parameter intervals, and of
the transient tipping and recovery times with the parameter ramping
rate. (a,b) Scaling of (∆q)tp(ϵ) and (∆q)rc(ϵ), respectively. The
two horizontal asymptotic dotted lines correspond to the difference
between the two consecutive bifurcation points, i.e., b2−b1 and b3−
b4, respectively. (c,d) Scaling of τtp(ϵ) and τrc(ϵ), respectively.

To characterize unconventional tipping and the wrinkled
hysteresis loop, we examine four quantities: (1) the tip-
ping parameter interval (∆q)tp ≡ q2 − q1 [cf., Figs. 1(c,d)]
(2) the recovery parameter interval (∆q)rc ≡ q3 − q4
[cf., Figs. 1(c,d)], (3) the transient tipping time τtp [cf.,
Figs. 2(a,b)] and (4) the transient recovery time τrc [cf.,
Figs. 2(c,d)]. As these quantities depend on the parameter
ramping rate ϵ, we ask what scaling relations between them
and ϵ are. Figures 3(a) and 3(b) show the numerically obtained
representative scaling behavior of (∆q)tp(ϵ) and (∆q)rc(ϵ),
respectively. For a slow rate ϵ ≪ ϵc, (∆q)tp(ϵ) and (∆q)rc(ϵ)
approach the parameter difference between the two static bi-
furcation points, b2 − b1 and b3 − b4, respectively. However,
for ϵ ≫ ϵc, (∆q)tp(ϵ) and (∆q)rc(ϵ) increase algebraically
with ϵ, with the respective scaling exponent βtp ≈ 0.63 and

βrc ≈ 1. We have

(∆q)tp(ϵ) ∼
{

ϵβtp ϵ > ϵc,
b2 − b1 ϵ < ϵc, (2)

(∆q)rc(ϵ) ∼
{

ϵβrc ϵ > ϵc,
b3 − b4 ϵ < ϵc. (3)

These scaling results indicate that, for a more rapid change of
the parameter, both the tipping and recovery processes require
a larger parameter change to complete. The scaling relations
(2) and (3) can be derived analytically (SI [68]).

The relations τtp(ϵ) = (∆q)tp(ϵ)/ϵ and τrc(ϵ) =
(∆q)rc(ϵ)/ϵ lead to the following algebraic scaling of the tran-
sient tipping and recovery times:

τtp(ϵ) ∼
{

ϵβtp−1, ϵ > ϵc,
ϵ−1, ϵ < ϵc, (4)

τrc(ϵ) ∼
{

constant, ϵ > ϵc,
ϵ−1, ϵ < ϵc, (5)

as exemplified in Figs. 3(c) and 3(d), respectively. Note that,
for ϵ ≫ ϵc, the transient recovery time τrc(ϵ) approaches a
constant.

To summarize, we have uncovered a type of tipping behav-
ior in a class nonautonomous nonsmooth biophysical systems
that is quite distinct from the conventional tipping so far re-
ported in the literature. Such a system describes the evolution
of common skin diseases with different clinically distinguish-
able stages. The main feature of the unconventional tipping is
that the transition from a high to a low stable steady state oc-
curs through an intermediate oscillatory state in an extended
duration of parameter changes or time. A similar scenario
arises during the recovery process from the low to the high
steady state. As a result, tipping and recovery are no longer
“instantaneous” but transient, and the hysteresis loop exhibits
a wrinkled structure. The clinical significance of these phe-
nomena are the following. Given that transition from the high
steady state to the intermediate oscillatory state corresponds
to a sudden deterioration of the skin barrier with alternating
symptoms and a further transition to the low state marks the
onset of severe skin disease, the emergence of the interme-
diate state presents an opportunity for control intervention to
prevent a healthy system from collapsing completely into the
diseased state. Nonsmooth dynamics arise in biological and
physical systems. Our findings indicate that tipping and hys-
teresis loop can manifest themselves in ways that have not
been previously recognized.
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