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Entanglement is fundamental to quantum information science and technology, yet controlling and manip-
ulating entanglement — so-called entanglement engineering — for arbitrary quantum systems remains a
formidable challenge. There are two difficulties: the fragility of quantum entanglement and its experimen-
tal characterization. We develop a model-free deep reinforcement-learning (RL) approach to entanglement
engineering, in which feedback control together with weak continuous measurement and partial state obser-
vation is exploited to generate and maintain desired entanglement. We employ quantum optomechanical
systems with linear or nonlinear photon-phonon interactions to demonstrate the workings of our machine-
learning-based entanglement engineering protocol. In particular, the RL agent sequentially interacts with one
or multiple parallel quantum optomechanical environments, collects trajectories, and updates the policy to
maximize the accumulated reward to create and stabilize quantum entanglement over an arbitrary amount of
time. The machine-learning-based model-free control principle is applicable to the entanglement engineering
of experimental quantum systems in general.

I. INTRODUCTION

Entanglement1–5 is fundamental to all fields in quan-
tum information science such as quantum sensing6, quan-
tum computation7, and quantum networks8–13. How-
ever, the inherent fragility of quantum entanglement and
coherence14 poses significant challenges for experimental
applications. For example, in quantum computing, the
application of quantum gates to quantum states needs to
last for a finite amount of time15–20, making it critical to
maintain the entanglement after its creation. Moreover,
the transition from noisy intermediate-scale systems21

to large-scale, fault-tolerant systems16 requires sophis-
ticated entanglement engineering strategies to establish
and maintain entanglement through optimal control pro-
tocols in the presence of noise and decoherence.

At the present, a major limitation/challenge in entan-
glement engineering is the experimental observation de-
sign. Existing machine-learning based works use the full
fidelity, i.e., the overlap between the current and tar-
get quantum states, as the observation metric. Applica-
tions range from the generation of two22 and multi-qubit
entangled states23,24 to specific many-body states25–27

and single-particle quantum state engineering via deep
reinforcement learning (RL)28,29. However, full fidelity
observation is not universally applicable in experiments.
Moreover, obtaining the relationship between the entan-
glement and experimental observables is difficult. So far
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there have been no systematical methods to extract quan-
titative entanglement from experimental observation for
arbitrary quantum systems30–32, in spite of some initial
exploration for specific systems. For example, an entan-
glement criterion for non-Gaussian states in coupled har-
monic oscillators was developed30. Under the strong laser
approximation, a Bell inequality was tested with photon
counting31, and stationary entanglement for Gaussian
states was inferred from the continuous measurement of
light only32.

In this paper, using quantum optomechanical systems
with linear or nonlinear photon-phonon interactions as a
paradigm, we develop a deep RL approach to entangle-
ment engineering. For quantum control of optomechan-
ical systems, most existing theoretical studies focused
on Gaussian states or the linear interaction regime33–45,
with the primary goal of generating entanglement as
quickly as possible (entanglement enhancement)38,43–45.
Previous control methods are mostly model-based: prior
information about the system model is needed, such as
the pulse method33–37, time-continuous laser-driven ap-
proaches38,39, periodic modulations40–42, optimal pulse
protocols43, linear quadratic-Gaussian (LQG) meth-
ods38, and coherent feedback methods using auxiliary
optical components44,45. We note that there were two
previous works46,47 on model-free RL for controlling and
stabilizing a quantum system with an inverted harmonic
potential and a double-well nonlinear potential, respec-
tively, to a target state using weak-current measurements
(WCMs) and partial state observation. However, these
two works did not address entanglement control, while
our work is developing a model-free deep-RL method
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to realize non-Gaussian entanglement engineering us-
ing only photon number counting from WCMs. (Back-
grounds about WCM, deep RL, and quantum control are
presented in Appendix A.) To our knowledge, prior to
our work, model-free deep RL feedback control to create
and stabilize the entanglement with WCM observations
had not been available.

The particular aspects of our work that go beyond the
existing works are briefly described, as follows. In our
work, in the linear (nonlinear) interaction regime, the
observation is the WCM photocurrent (the expectation
value of the photon number). We note a previous work29

that employed a proximal policy optimization (PPO)48

RL agent, to generate different Fock states and the su-
perposition of a single cavity mode based on observing
the density matrix and a fidelity-based reward function.
In contrast, the observable in our work is the photocur-
rent that is more experimentally accessible49. For quan-
tum measurement, we use WCM in real-time feedback
control, taking into consideration the resulting quantum
stochastic process47,50,51, and identify a numerical rela-
tionship between the entanglement and photocurrent. In
both the linear and nonlinear regimes, we focus on non-
Gaussian state control because, according to the non-
linear quantum master equation resulting from WCM,
the time evolving quantum states are intrinsically non-
Gaussian. Our deep RL control scheme is model-free52,
where policies or value functions are directly learned from
the interactions with the quantum environment without
any explicit model of this environment. This should
be contrasted to the model-based deep RL methods53,
where a pre-built model of the environment for policy
decision-making is needed. We demonstrate that, under
the actions of the well-trained PPO or recurrent PPO RL
agent, entanglement between the quantum optical and
mechanical modes can be created and maintained about
the target entanglement.

Our main results are as follows. First, under the strong
laser approximation, the interaction resulting from the
radiation pressure between the cavity and the mechanical
oscillator modes can be linearized and described by the
beam-splitter Hamiltonian. During the training phase,
the PPO agent interacts with parallel quantum environ-
ments and collects the subsequent data by episodic learn-
ing, with the observation being the WCM photocurrent.
The deep-RL method can extract useful information from
the measurement photocurrent, which is encoded in the
Wiener process, and achieve the target entanglement en-
gineering in a model-free manner for the quantum sys-
tem that is dissipative due to coupling to the vacuum
bath and is driven by a laser. In the testing phase, with
the agent interacting and observing a single quantum
environment, we demonstrate that the entanglement-
engineering performance of our deep-RL method with
WCM observation greatly exceeds that of both state-
based Bayesian methods47,54 and random control. Sec-
ond, when the driving laser field is not strong, the quan-
tum optomechanical interaction is nonlinear55,56. In this

case, we articulate two training phases for nonlinear en-
tanglement engineering. The first phase is utilized to in-
fer the entanglement by the model-free deep RL, dubbed
as the target-generating phase, where the observation of
the PPO agent [with multilayer perceptions (MLPs)] is
the logarithmic negativity and the reward function is
constructed to limit the high-level excitation and facil-
itate entanglement learning. (Direct experimental mea-
surement of the logarithmic negativity is currently not
available.) The time series of the expected photon num-
ber in the regime from converged training episodes is
selected as the target for the next phase. The second
phase is then the target-utilization phase, where the re-
current PPO (with long short-term memory (LSTM)57

added after MLPs) observes the expected photon num-
ber and obtains the reward only based on the target ex-
pected photon number obtained from the last phase. In
this framework, the recurrent PPO controls the quantum
state in the low-energy regime with the desired entangle-
ment created and stabilized.

II. RESULTS

A. Experimental proposal for entanglement engineering

Our goal is achieving entanglement engineering be-
tween the optical cavity and mechanical oscillator modes
using deep RL. Based on the current experimental
progress, we articulate an experimental proposal to
achieve this goal, as shown in Fig. 1. Consider a Fabry-
Perot cavity that consists of a single-mode cavity and
a movable end mirror. The optical cavity has the fre-
quency ωc and the optical field exerts a radiation pres-
sure on the mirror. The cavity mode is driven externally
by a coherent laser field with frequency ωL. The mirror’s
quantized center-of-mass motion is described by a har-
monic oscillator of frequency ωm. In the rotating frame
of the laser, the Hamiltonian describing the coupling be-
tween the optical cavity and mechanical oscillator modes
is given by55,56

H̃nl = −ℏ∆â†â+ ℏωmb̂
†b̂+ ℏg0(b̂† + b̂)â†â+ ℏαL(â

† + â),

where â and b̂ are the annihilation operators of the cavity

and mechanical mode, respectively, â† and b̂† are the cor-
responding creation operators. The frequency detuning
of the cavity is ∆ ≡ ωL − ωc. The nonlinear coupling g0
arises from the radiation pressure force between the light
and the movable mirror (details given in Appendix B),
and αL is the real amplitude of the driven electromag-
netic field. We set g0 > κ so that the single-photon
optomechanical coupling rate g0 exceeds the coupling
strength κ between the cavity and the vacuum bath. This
condition guarantees observable nonlinear quantum ef-
fects61. Under the strong laser approximation: |ᾱc| ≫ 1,
where |ᾱc| is the amplitude of the light field inside the
cavity induced by the strong laser, we have â ≈ ᾱc + δâ
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FIG. 1. Experimental proposal of measurement-based feedback control of deep RL to create and stabilize entanglement in an
open quantum optomechanical system dissipatively coupled to the vacuum bath. Quantum optomechanics was experimentally
realized in a microwave electromechanical system58–60, where the multiplexing qubit was used to weakly couple to the microwave
resonator for extracting the photon number statistics through weak measurements49. The RL agent acts in one or multiple
parallel quantum optomechanical environments according to the parameterized policy and collects data in one episode consisting
of T time steps: observations Ot, reward Rt, and actions, after which the quantum optomechanical environment is reset. After
one or several episodes, the policy is updated using minibatch data to maximize the accumulated reward. The aim is to achieve
the desired entanglement EN ∼ log 2 ∼ 0.7 (in the natural logarithmic base) between the cavity-optical and mechanical modes.
Entanglement engineering of this type can be achieved in both the linear and nonlinear interaction regimes. In the linear case,
the task is similar to that of achieving an entangled Bell state of the beam-splitter Hamiltonian or “swap” Hamiltonian. In the
nonlinear regime, the entangled states from entanglement engineering can be complicated. Illustrated are the resulting photon
and phonon number distributions of the entangled states.

with δâ denoting the excitation or the shifted oscillator
on top of the large coherent state with the amplitude ᾱc.
The resulting linearized beam-splitter or “swap” Hamil-
tonian 55,62 is

H̃bs ≈ ℏωmδâ
†δâ+ ℏωmb̂

†b̂+ ℏG(δâ†b̂+ b̂†δâ),

which is obtained in the red-detuned regime ∆ = −ωm,
where the coefficient G ≡ g0ᾱc can be tuned by the am-
plitude of the incoming laser (a time-dependent modula-
tion)63. The interaction term describes the state trans-
fer between photons and phonons in the strong coupling
regime for G > κ, with κ (γ) being the decay rate of the
cavity (mechanical) mode to the vacuum bath at zero
temperature.

Our control strategy was developed based on con-

sidering the current experimental capability. Previous
works on the microwave regime of the optomechanical
systems58–60 suggested the feasibility of the experimen-
tal implementation of our RL control scheme. In par-
ticular, a one-to-one correspondence between the Fabry-
Perot cavity and the microwave electromechanical sys-
tem was demonstrated58,59,64. As shown in Fig. 1, the
microwave resonator of an LC circuit is equivalent to the
Fabry-Perot optical cavity mode with the movable capac-
ity64 Cm(x) corresponding to the flexible mirror in the
optical cavity. The resistors Rc and Rm can be related
to the decay rate κ, γ to the vacuum bath64. Based on
the experimental results, we can compare the typical pa-
rameter configurations between the optomechanical and
electromechanical systems. The decay rate of the op-
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tical cavity mode is κ = 0.01ωm in the linear regime
and κ = 0.1ωm in the nonlinear regime, with the bet-
ter quality of the mechanical oscillator mode γ = 0.01κ.
Consequently, we have γ ≈ 10−3 ωm ∼ 10−4 ωm. The
typical experimental decay rate of the microwave res-
onator is58,59,61,65–67 κ ≈ 0.01ωm ∼ 0.1ωm with γ ≈
10−3 ωm ∼ 10−9 ωm. In our work, the nonlinear coupling
is set to be g0 = 0.2ωm, whereas the typical coupling
in the strong coupling regime in a previous work58 was
about g0 = 0.1ωm. The strength of the laser in our work
is G ∈ [−5, 5]ωm for the linear system in the red-detuned
regime ∆ = −ωm and ∆, αL ∈ [−5, 5]ωm for the nonlin-
ear system. In the microwave version, this range can be
adjusted by the pump’s strength58,59,61,65–67.
In the microwave regime, it was demonstrated that the

photon-number statistics of a microwave cavity mode can
be detected using multiplexed photon number measure-
ments49,68,69. By this method, the multiplexing qubit
encodes multiple bits about the photon number distribu-
tion of a microwave resonator through dispersive interac-
tion. A frequency comb drive, distributed at fMP − kχ,
reads out all the information about the photon number
distribution at once49, where k denotes the number of
photons and χ represents the dispersive qubit-resonator
coupling, as shown in Fig. 1. The reduction in the reflec-
tion amplitude, 1− rk with k = 0, 1, ..., of the frequency
comb, is proportional to the photon-number distribution
of the microwave cavity mode over the Fock bases, as de-
tected by the weak measurement29,49. In our circuit de-
sign of experimental proposal, we add a capacitor Cq to
realize the weak coupling to the original electromechan-
ical system. The coupling capacitance is small enough
to be neglected in the total Hamiltonian, but it still al-
lows the multiplexing qubit, denoted by the green cross
in Fig. 1, to encode the photon number distribution of
the microwave resonator through dispersive interaction.

Under weak measurement29,49, the sequence of the re-
duced reflection amplitude 1−rk is collected by the PPO
agent, which is proportional to the occupied photon num-
ber probability. Consequently, the expected photon num-
ber is calculated as

⟨n̂p⟩ =
∑
n

n⟨√ηP̂n⟩/
√
η =

∑
n

n⟨P̂n⟩

and the WCM photocurrent is

√
η I(t) =

∑
n

n

[
⟨√ηP̂n⟩+

dWn(t)√
4ηdt

]
(1)

with the measurement rate η, where P̂n = |n⟩⟨n| is the
measurement projector on the Fock state |n⟩, and dW (t)
is the Wiener increment with zero mean and variance
dt = 0.01ω−1

m (the time step size in our calculations).
In the linear quantum optomechanical regime, the Fock
space for each mode is limited to n = 0, 1. The ac-
tion is the amplitude modulation of the laser, which is
in the range G ∈ [−5, 5]ωm. In the nonlinear regime, the
Fock dimension is n = 0, 1, . . . , 9. The time-dependent

control signal consists of the detuning ∆ and the am-
plitude αL of the driven laser within the fixed range
∆, αL ∈ [−5, 5]ωm.

The open dissipative quantum optomechanics under
the WCM obey the stochastic master equation (SME)
(see Sec. IV and Appendix C). The number ntraj of tra-
jectories simulated from SME can be selected according
to the following considerations. If the observable is some
expected physical quantity, using one trajectory is suffi-
cient to extract the information about the quantum state:
ntraj = 1. Experimentally, WCMs are performed, encod-
ing the Wiener process in the observation and resulting
in a large variance from the expectation value. To reduce
the variance, more quantum trajectories should be used.
To make computations feasible, we use five trajectories:
ntraj = 5.

In the online training phase, for each episode with time
steps, e.g., T = 500, the PPO agent - the combination
of the actor and critic network, collects the sequence of
the observations O(t) = ⟨n̂p⟩(t) or I(t), the reward value
R(t) = −|O(t) − ⟨n̂targetp ⟩(t)|, and the resulting actions
generated by its policy. After one or several episodes,
the policy of the PPO agent is updated using minibatch
data to maximize the accumulated reward. The RL agent
is designed to interact with a single or multiple parallel
quantum environments to make the time evolving obser-
vation O(t) align with the target one ⟨n̂targetp ⟩(t). In the
online testing phase, the policy of the well-trained agent
will not update and only interact with a single quan-
tum environment to give the optimal control protocol to
the corresponding observation. To realize entanglement
engineering, i.e., achieving the desired entanglement be-
tween the cavity-optical and mechanical modes, finding
the relation between the experimental observables and
entanglement quantities is an unavoidable challenge. In
our work, the model-free PPO agent finds the numerical
relationship between them and realizes the entanglement
engineering in both the linear and nonlinear regimes of
quantum optomechanics, as shown in Fig. 1.

A general quantity to measure the entanglement be-
tween arbitrary quantum bipartite systems for any mixed
states is the logarithmic negativity70–72, without the in-
fluence of the vacuum bath73. In contrast, the con-
ventional pure-state entanglement measures, such as the
von Neumann and Rényi entropy, capture both quantum
and classical correlations. Since the goal of our study
is harnessing the entanglement between the cavity and
oscillator modes, we focus on the logarithmic negativ-

ity: EN (ρ) ≡ log2 ||ρTi ||1, where ||X||1 = Tr
√
X†X is

the trace norm of the partial transpose ρTi with respect
to the two subsystems i = 0 (quantum-optical cavity
mode) and 1 (mechanical oscillator mode). The loga-
rithmic negativity measures the degree to which ρTi fails
to be positive, i.e., the extent of inseparability or en-
tanglement, and it is the upper bound of the distillable
entanglement70,71. The logarithmic negativity is the full
entanglement monotone71, which satisfies the following
criteria72,74: (1) EN is a non-negative functional, (2) EN
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vanishes if the state ρ is separable, and (3) EN does not
increase on average under Gaussian local operations and
classical communication75,76 or positive partial transpose
preserving operations77. Since EN quantifies the quan-
tum correlation between the bipartite systems in spite
of the coupling to the vacuum bath, the value of EN

calculated from the cavity mode is equal to that of the
oscillator mode: E0

N = E1
N = EN , which can be verified

numerically.
To characterize the quantum-entanglement control

performance, we use the following three quantities: ⟨EN ⟩,
ẼN , and R̃ in open quantum optomechanical systems
with either linear or nonlinear interaction between the
quantum cavity and oscillator modes. In particular,
⟨EN ⟩ is the logarithmic negativity averaged over ten suc-

cessive episodes with a single environment, ẼN is the cor-
responding average over one episode with T time steps

in a single quantum environment, and R̃ denotes the
ensemble-averaged value of the reward R over a small
number of multiple parallel quantum environments for
each episode. In our computations, all the control ac-
tions G, αL, or detuning ∆, the nonlinear coupling g0,
and the dissipation coefficients (κ, γ) are in units of ωm.
The time unit is ω−1

m .

B. RL in linear quantum optomechanics

A quantum optomechanical system with linear photon-
phonon interactions is governed by the beam-splitter
Hamiltonian. In an optical experimental platform, a
50:50 beam splitter with the transformation angle π/4
can create an entangled Bell state between the two in-
put optical modes78–80. Similarly, in a quantum optome-
chanical system, Bell states between photon and phonon
modes can be realized by controlling the beam-splitter
Hamiltonian. As a result, the maximally attainable value
of the logarithmic negativity is EN ∼ log 2 ∼ 0.7 (in
the natural logarithmic base), corresponding to the max-
imally entangled Bell state, as shown in Fig. 1. This
“best” entangled state can be realized by the model-free
PPO agent, regardless of whether the observation is the
expectation or WCM photocurrent. To see this, we note
that, in the beam-splitter model, the initial quantum
state is set as a pure state81,82: |ψ⟩ = |10⟩, where the
photon is in the first excited mode and the phonon is in
the vacuum mode. The partial observable of the quan-
tum state for the PPO agent is set as the expectation
of the photon number ⟨n̂p⟩(t) = ⟨P̂1⟩(t) or the WCM

photocurrent
√
η I(t) = ⟨√ηP̂1⟩(t) + dW (t)√

4η dt
.

Experimentally, directly measuring the entanglement,
e.g., in terms of logarithmic negativity, for arbitrary en-
tangled states is generally not viable. Identifying an ex-
perimentally feasible quantity to characterize the entan-
glement in arbitrary quantum systems remains challeng-
ing. We focus on the relationship between logarithmic
negativity and the expected photon number, based on

TABLE I. Results of entanglement engineering from deep RL-
based, Bayesian, and random control. The observations are
the expectation of the photon number ⟨n̂p⟩ and the WCM
photocurent I(t) at the measurement rate η = 1. The
Bayesian hyperparameter is λopt = 10 for the ⟨n̂p⟩ task and
λopt = 2 for the I(t) task. Displayed are the results of the
average logarithmic negativity ⟨EN ⟩/ log 2 with the standard
deviation. For training and testing phases, ⟨EN ⟩/ log 2 is av-
eraged over ten end-training or testing episodes, each having
T = 500 time steps. Each observation is obtained by aver-
aging over ntraj = 1 for ⟨n̂p⟩ and ntraj = 5 for I(t) through
simulating the SME, and ntraj denotes the number of inde-
pendent trajectories from SME simulations.

Controller Condition ⟨n̂p⟩ ntraj = 1 I(t) ntraj = 5

Deep RL (%) Training 83.81± 1.85 64.81± 1.47

Testing 84.95± 1.99 65.01± 1.76

Bayesian (%) λ = 1 56.89± 6.40 35.48± 5.34

λopt 93.21± 0.89 49.24± 0.44

Random (%) 38.15± 9.46 33.46± 4.27

recent experiments on multiplexed photon number mea-
surement29,49,68,69,83–85. To proceed, we note that the
beam-splitter Hamiltonian is limited to a four-level basis,
due to the following reasons: (1) only one energy level in
the cavity mode of the initial state has been excited from
the vacuum state, i.e., |ψ⟩ = |10⟩, (2) the linear interac-
tion serves only to transfer the quantum states between
the cavity and mechanical mode (i.e., no quantum excita-
tion), and (3) the system couples to the vacuum bath only
at absolute zero temperature (i.e., without any thermal
excitation), thereby blocking any interactions between
higher-level quantum states. In this case, the maximum
logarithmic negativity EN ∼ log 2 ∼ 0.7 implies that the
attained quantum state is the following Bell state

|Φφ⟩ = 1√
2

[
|10⟩+ eiφ|01⟩

]
,

with the associated expected photon number ⟨n̂targetp ⟩ =
⟨P̂1⟩ = 0.5. Consequently, the reward function can be set
as Rt ≡ −|Ot − 0.5|, regardless of whether the observa-
tion Ot is ⟨n̂p⟩(t) or I(t). Because of the relatively small

target value of the expected photon number: ⟨P̂1⟩ = 0.5,
the variance I(t) in the WCM photocurrent can be re-
duced by a Gaussian filter86 with the weak measurement
rate η ≤ 1. The Gaussian kernel parameters of the filter
such as the filter interval and the variance can be numeri-
cally chosen to reduce the standard deviation of the mea-
surement photocurrent into a certain range, e.g., about
ten times larger than the mean value (details in Sub-
sec. IVB). The PPO agent applies an updated stochas-
tic policy to the quantum optomechanical environment
to maximize the accumulated reward, where the action
G(t) is proportional to the amplitude of the cavity mode:
G(t) = g0ᾱc(t). The action can be controlled by an in-
cident laser63 and is continuous in a certain range, e.g.,
G ∈ [−5, 5]ωm. The decay rate of cavity and mechani-
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cal modes κ = 0.01ωm, γ = 0.01κ, respectively, because
the quality of the mechanical oscillator mode is gener-
ally better than that of the optical cavity or microwave
resonator mode58,59,61,65–67.

Bayesian

Deep RL
Deep RL

Bayesian

Random ntraj=1

Random ntraj=5

FIG. 2. Performance in terms of ⟨EN ⟩/ log 2 over a long
time interval, compared for deep RL-based, Bayesian, and
random control methods with respect to two observable op-
tions: the expected value ⟨n̂p⟩ and the WCM photocurrent
I(t). The deep RL controller is trained with T = 500 time
steps. For all three control methods, displayed are results
from the testing phase for the following set of time steps:
T = [500, 1000, 1500, 2000, 2500, 3000, 3500, 4000] at the mea-
surement rate η = 1. The conventions, which apply to this
and all subsequent figures, are as follows. If the vertical axis is
labeled as ⟨EN ⟩/E0, it represents the normalized logarithmic
negativity, with E0 = log 2 ∼ 0.7 (in the natural logarithmic
base) as the target entanglement value. Otherwise, when the

vertical axis is labeled as ⟨EN ⟩, ẼN , or EN (t), it represents
the original value of the logarithmic negativity.

Our deep RL, a model-free learning method, is im-
plemented in the measurement-based feedback control
framework for entanglement engineering in open quan-
tum optomechanics. Details about the PPO algorithm
applied in the linear quantum optomechanics are pre-
sented in Appendix D. To appreciate its performance,
we employ two benchmark methods for comparison:
Bayesian47,54 and random control. Bayesian control47,54

is a state-based feedback control of the stochastic pro-
cess as governed by the SME. In our case, the control
law is given by G(t) = −λ|⟨n̂p⟩(t)− 0.5|ωm with ⟨n̂p⟩(t)
being the observation, where the hyperparameter λ can
be numerically optimized based on the performance. If
the observation is I(t), the control flow will be in the
form G(t) = −λ|I(t)− 0.5|ωm, in which the Wiener pro-
cess blocks the performance to some degree. In Bayesian
control, the smaller the variance in the measured pho-
tocurrent, the better the performance. For the random
control method, the flow is generated by a uniform dis-
tribution in the action range G ∈ [−5, 5]ωm. Note that
the actions G of random control and deep RL are in the
same range while the one of Bayesian control is deter-
mined by the hyperparameter λ and the state-based ob-
servation value or the WCM photocurrent. To make a
fair comparison, λopt is optimized within the action range
G ∈ [−5, 5]ωm. Specifically, the optimized hyperparame-
ter λopt corresponds to the best performance of Bayesian

control in the set λ ∈ {1, 2, . . . , λmax}, where λmax is
the maximum integer of λ to guarantee the action range
G ∈ [−5, 5]ωm.
Table I displays the values of the averaged logarithmic

negativity ⟨EN ⟩/ log 2 from the deep RL, Bayesian, and
random control methods. From the SME simulations,
when the observation is the expectation of the photon
number, the Bayesian control with the optimized hyper-
parameter outperforms the deep RL method. However,
when the observation is the WCM photocurrent, the deep
RL control outperforms the Bayesian method. This is
promising as the WCM photocurrent is directly exper-
imentally accessible while the expected photon number
is not. Regardless of the observation, random control is
generally ineffective. The results by deep RL control from
the observation of WCM photocurrent tend to reduce
the performance by about 20% compared to that based
on the expected photon number. For Bayesian control,
the reduction is about 40%. Moreover, Fig. 2 compares
the long-time entanglement engineering for three control
methods. Especially, for deep RL control, the PPO agent
is trained with T = 500 time steps but tested with a
longer time horizon, e.g., T = 4000 steps, including the
unexplored regime by the PPO agent. It is worth noting
from Fig. 2 that the performance of deep RL with the
observation of WCM photocurrent exhibits a more sta-
ble and smaller variance compared to the case where the
observation is the expected photon number, especially
after T = 2000. Overall, with the experimentally feasi-
ble observation of WCM, the deep RL controller stands
out as the choice of entanglement control for quantum
optomechanical systems.

We characterize the performance of our deep-RL-based
control method in terms of the dissipation rate, mea-
surement rate, and the randomness effect for the initial
state. For the measurement rate η = 1, the PPO agent
is sequence-wise trained with the WCM photocurrent.
Figures 3(a) and 3(c) show the average logarithmic neg-

ativity ẼN and the mean reward R̃, respectively, ver-

sus the episode during the training phase, in which ẼN

and R̃ are averaged over one and five parallel quantum
environments, respectively. Both quantities ultimately
converge due to the properly designed reward function

R(t) = −|I(t) − 0.5|. Note that the variance of ẼN

is suppressed with the episodes, implying the mixture-
robust nature of entanglement in the quantum optome-
chanical system. The testing phase is longer (T = 4000
time steps) than the training phase (T = 500 time steps)
and the corresponding performance measures are shown
in Figs. 3(b) and 3(d). In addition to the variance in
the learning of the deep RL agent with the stochastic
policy, the Gaussian Wiener process in the WCM pho-
tocurrent and the stochastic collapse process stipulated
by the SME also contribute to the variances of the per-
formance measures. However, the deep RL control still
manages to maintain the solid traces of the testing I(t)
around the target value ⟨n̂targetp ⟩ = 0.5 in Fig. 3(d) and
the resulting entanglement quantity EN (t) is displayed
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FIG. 3. Performance of deep-RL agent in the online training and testing phase. The characterizing quantities are the logarithmic
negativity EN and the reward function R with the measurement rate η = 1. (a,c) Performance measures in the online training

phase, where the mean ẼN is over one episode with T = 500 time steps on the fifth quantum environment (only one environment)

and the mean reward R̃ is obtained from N = 5 parallel quantum environments. (b,d) Performance measures during the testing
phase, where the logarithmic negativity EN (t) and WCM photocurrent I(t) are obtained with T = 4000 time steps. The solid
traces represent the moving-window average over 100 episodes for (a,c) and 100 time steps for (b,d).

in Fig. 3(b).

Since the quantum optomechanical system is coupled
to the vacuum bath, the coupling strength or distur-
bance between the classical and quantum environments
will affect the control performance, as exemplified in
Fig. 4(a). Previous experiments58,59,61,64 demonstrated
that the quality of the mechanical oscillator is generally
better than that of the optical cavity or microwave res-
onator, i.e., γ < κ, so we set the decay rate of the os-
cillator at two orders of magnitude smaller than that of
the cavity56: γ = 0.01κ. Figure 4(a) shows, for both the
expectation and the measurement flow observations, the
performances of the training and testing processes, which
are consistent with each other in the sense that their
mean values decrease and the variances increase with the
decay rate. The origin of the performance fluctuations is
the classical dissipation to the vacuum bath, rendering
the system less controllable by laser.

The uncertainty in the classical information extracted
from the quantum system depends on the discrete-time
step size dt and the measurement rate η, which directly
determines the degree of the quantum-state stochastic
collapse and quantum decoherence from the WCM term
in the SME. If the expectation of the photon number
is the observation, the stronger the measurement rate
(proportional to the measurement strength), the poorer
the performance of deep-RL control as characterized by

a decrease in the mean values and an increase in the un-
certainties of EN , as shown in Fig. 4(b), which originate
from the intrinsic random process in the SME induced
by the measurement process. However, if the observa-
tion is the WCM photocurrent, the weaker measurement
rate will introduce larger variances in the observation
signal and reduce the stochasticity of the process due
to the incomplete/partial extracted information as de-
scribed by the SME. In our case, the target mean value,
⟨n̂targetp ⟩ = 0.5, is on the order of 10−1, rendering nec-
essary introducing a Gaussian filter to reduce the uncer-
tainty. The resulting performance of deep-RL control is
approximately the same for η ∈ [0.05, 1], as shown in
Fig. 4(b).

Experimentally, mixed quantum states are more re-
alizable than pure states due to the quantum decoher-
ence with the classical environment, e.g., the vacuum
bath. To address this issue, and referring to the pre-
vious work87, we assume that the initial state is a mixed
state in the form of ρ = (1 − p)|10⟩⟨10| + p|01⟩⟨01|,
where the parameter p is fixed or a random variable
p ∈ [0, 1] because of the coupling to the classical environ-
ment. The beam-splitter Hamiltonian stipulates that the
photon and phonon modes are symmetric to each other,
allowing p to be rescaled to the interval p ∈ [0, 0.5]. Fig-
ure 5(a) shows the performance with respect to the ini-
tial mixed quantum state with the same parameter p for
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(𝑎)

(𝑏)

FIG. 4. Effects of decay and measurement rates on the control
performance. Shown are the values of the average logarithmic
negativity for (a) decay rates κ = [0, 0.01, 0.03, 0.05]ωm with
η = 0.5 and γ = 0.01κ, and (b) measurement rates η =
[0.05, 0.1, 0.3, 0.5, 0.7, 1] with κ = 0.01ωm and γ = 0.01κ.
The error bars represent the standard deviation of the data
points. The average operation is over ten end-training or
testing episodes. The training and testing time steps are the
same: T = 500.

each training and testing episode (solid traces), where
the complete mixed case with p = 0.5 leads to the worst
performance but still possesses entanglement to a signif-
icant extent. The reason lies in the inherent property
of the beam-splitter Hamiltonian, which can create the
maximum entangled states: [|10⟩+ eiφ|01⟩]/

√
2, with re-

spect to the part of the initial quantum state, such as
|10⟩ or |01⟩ through the linear interactions, regardless of
whether it acts on a pure or a mixed state. In Fig. 5
(a), the dashed traces display the performance during
the training phase with a random initial mixed quan-
tum state, which is generated by the random variable p
with the uniform distribution in the range of p ∈ [0, 0.5].
The error bar characterizes the uncertainty over ten end-
training episodes.

Figure 5(b) shows the testing performance of two
kinds of trained models, one trained by the initial state
|ψ⟩ = |10⟩ and another by the random initial mixed-state
ρ = (1−p)|10⟩⟨10|+p|01⟩⟨01| (distinguished by dark and
light colors, respectively). Note that the beam-splitter
Hamiltonian transforms the initial state |10⟩ or |01⟩ to a
Bell state with the corresponding expected photon num-
ber: ⟨n̂targetp ⟩ = 0.5, where the dissipative degree to the
vacuum bath is much weaker than the beam-splitter in-
teraction. However, if the initial state is the mixed state,
the |10⟩⟨10| and |01⟩⟨01| components will become inde-

(𝑎)

(𝑏)

FIG. 5. Robustness of deep-RL method trained with pure
or mixed states. (a) In the training and testing phase,
performance of ⟨EN ⟩/E0 for different initial mixed states
(solid traces): ρ = (1 − p)|10⟩⟨10| + p|01⟩⟨01| with p =
[0, 0.1, 0.2, 0.3, 0.4, 0.5]. The dashed traces indicate the per-
formances trained with random initial mixed states with the
random variable p ∈ [0, 0.5]. (b) Testing performance of two
kinds of trained agents with p ∈ [0, 1]: one trained with the
pure initial state |ψ⟩ = |10⟩ and another with random initial
mixed states, which are distinguished by the color depth of
the curve and the error bars. The blue and red curves denote
the performances with the observation ⟨n̂p⟩ and I(t), respec-
tively, with error bars. The measurement rate is η = 0.5, and
the training and testing time steps are T = 500.

pendently entangled, resulting in the total quantum state
being a mixture of two entangled Bell states. As a result,
a nontrivial entanglement value is expected for the ini-
tial mixed state governed by the beam-splitter Hamilto-
nian. With the mixed probability p = 0.5, it results in an
equal mixture of the Bell states, as shown in Fig. 5. In
the testing phase, the two trained models use the same
initial state for a fixed value of p. The two models have
a comparable performance, suggesting that the deep RL
method is robust to the initial randomness in a mixed
state. More specifically, during the testing phase, the ob-
servation is the expected photon number or WCM pho-
tocurrent. The worse performance occurs for p = 0.5
and for other values of p, the performance is symmetric
about p = 0.5 due to symmetric role of the photon and
photon modes in the beam splitter Hamiltonian. Note
that the model trained with the observation being the
measurement photocurrent displays a small difference in
the performance measure [⟨EN ⟩/E0 over the whole prob-
ability interval p ∈ [0, 1]] between the best and worst
cases, with less uncertainties than the case where the
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FIG. 6. Generating target for deep-RL based creation and stabilization of entanglement in a nonlinear open quantum optome-

chanical system. (a,b) Trained quantities R̃ and ẼN converge to a certain value as the episode number increases, as illustrated
by the light-color curves, where the dark blue and orange traces represent the data averaged over 100 previously consecutive
episodes. (c,d) Time-dependent series of EN (t) and the driven laser signals ∆, αL at a certain episode selected from the training
converged regime in (a,b). (e,f) The corresponding photon and phonon statistics on the Fock basis at the end of the time point
of the selected training episode in (c,d). (g) The time evolution of the corresponding expected quantities, including the expected
numbers ⟨n̂p⟩ and ⟨n̂m⟩ in the Fock basis, where the time series of ⟨n̂p⟩(t) serves as the target to construct the reward function
in the next phase, i.e., the experimental version shown in Fig. 7.

observation is the expected photon number. Taken to-
gether, our deep-RL model trained by the weak mea-
surement photocurrent holds a lower mean performance
but possesses robustness against mixed quantum states
compared with the scenario based on observing the ex-
pected value of the photon number, due to the strong
capability of RL in learning randomness and executing
accurate high-dimensional data-fitting.

C. RL in nonlinear quantum optomechanics

In an open quantum optomechanical system under the
strong laser-driven approximation, the radiation pres-
sure on the movable mechanical mirror generates a linear
interaction between the optical and mechanical modes.
When this approximation does not hold, the interaction
between the two modes becomes nonlinear. Entangle-
ment can still be created despite the nonlinear interac-
tion, but control becomes more challenging. In particu-
lar, in the standard quantum optomechanical system, the

nonlinear coupling term ℏg0â†â(b̂†+b̂) can be used to cre-
ate entanglement, but high-level quantum states can also
be excited during the process, making it difficult to sta-
bilize the entanglement within a finite Fock basis. Realis-

tically, the quantum dynamics are governed by the SME
due to the WCM, which induces the nonlinear stochastic
evolution. The problem then becomes that of creating
and stabilizing the entanglement of non-Gaussian states
decaying to the vacuum bath. Despite the difficulties,
model-free deep-RL can still provide a general approach
through some optimal combination of the neural network
structure, observable, reward function, and action.
We consider the nonlinear optomechanical system and

exploit deep RL to set the control goal of achieving the
entanglement near EN ∼ log 2. This nonlinear entangled
state shares a similar entanglement value with the max-
imum entangled Bell state in the corresponding linear
system. For entanglement engineering of a nonlinear op-
tomechanical system, a key issue is selecting an effective
and experimentally feasible observation quantity. Utiliz-
ing a general actor and critic neural network, the deep RL
agent can learn the relationship between entanglement
and the experimental observables of the optomechanical
system in a model-free manner. To achieve control, we
articulate a training process consisting of two phases: the
target-generating phase and the target-utilization phase,
facilitated by deep RL.
The first training step is the target-generating phase,

in which numerical SME simulations are used to gener-
ate the observation and reward data and the PPO agent
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FIG. 7. Entanglement engineering by the recurrent PPO agent. The target generated as described in Fig. 6 is exploited to
create entanglement by EN ∼ log 2 from the only partial observation of the expected photon number ⟨n̂p⟩(t). The reward
function is R(t) = −|⟨n̂p⟩(t) − ⟨n̂target

p ⟩(t)|, where the target time series ⟨n̂target
p ⟩(t) is from the target-generating process in

Fig. 6(g). In this training configuration, while only partial information is extracted from the system, the performance measures
in (a-g) display a similar behavior compared with those in Fig. 6. Other aspects of the setting and parameters are the same as
in Fig. 6.

interacts with the quantum environment, observes the
logarithmic negativity EN (t) and constructs the reward
function combining the expectation number of the pho-
tons and phonons: R(t) = −|EN (t) − log 2| − |⟨n̂p⟩(t) +
⟨n̂m⟩(t) − a|/b with numerically optimized hyperparam-
eters a = 1 and b = 30. (Note that direct experimental
measurement of the logarithmic negativity is currently
not available.) Figure 6 shows the control results, where
the excitation of quantum states is limited by the total
number ⟨n̂p⟩ + ⟨n̂m⟩. The target time series of the ex-
pected photon number is obtained as ⟨n̂targetp ⟩(t). The
second step is the target-utilization phase, during which
the reward function is R(t) = −|⟨n̂p⟩(t)− ⟨n̂targetp ⟩(t)|.

Since it is time-dependent, the recurrent neural net-
work added after the MLPs in the PPO agent displays
a strong and stable learning ability, which outperforms
the case with only MLPs. The expected photon num-
ber ⟨n̂p⟩(t) is observed by the recurrent PPO agent as

⟨n̂p⟩ =
∑

n n⟨P̂n⟩, which is experimentally more feasi-
ble than the quantity EN . While the recurrent neural
network has some considerable advantages, such as long-
term momery57, it still encounters the challenge of engi-
neering optimization88 in order to achieve a correct and
efficient implementation. In our case, the main challenge
is the time cost to optimize the parameters to search for
a global minimum or maximum due to the ten stochastic
collapse operators, P̂n = |n⟩⟨n| with the respective Fock

numbers n = 0, 1, . . . , 9, in the SME with the measure-
ment rate η = 0.1, requiring a long simulation time. Our
solution is to consider only the N = 1 quantum optome-
chanical environment, in which the agent collects data
and updates the policy every Z = 15 and Z = 5 episodes
in two phases (target-generating and target-utilization),
respectively, with the time horizon T = 500. Note that,
using ten stochastic projectors P̂n can result in a large
variance in the WCM photocurrent:

√
η I(t) =

∑
n

n

[
⟨√ηP̂n⟩+

dWn(t)√
4ηdt

]
,

where ten independent Wiener processes dWn(t) are
used. In this case, observation of the measured random
photocurrent is infeasible. Even if the deep RL agent
is trained in two phases with the expected photon num-
ber, it can fail during the training process due to the
numerical cutoff in the Hilbert space dimension and the
strong randomness introduced by the SME. In the non-
linear quantum optomechanical system, the interaction
strength is g0 = 0.2ωm. The PPO agent creates entan-
glement characterized by EN ∼ log 2 versus time, calcu-
lated through the SME with dissipation to the vacuum
bath for κ = 0.1ωm, and γ = 0.01κ. The system is
initialized in the vacuum state |ψ⟩ = |00⟩, i.e., the pure
state, with 10× 10 Fock bases. The time-dependent con-
trol signal is the detuning ∆ and the amplitude αL of the
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driven laser within the fixed range ∆, αL ∈ [−5, 5]ωm.

Representative results are as follows. In the target-
generating phase, despite the disturbance of the stochas-
tic process from WCM, the training curves for both the

reward R̃ and the logarithmic negativity ẼN converge
with the episode number, as shown in Figs. 6(a,b), indi-
cating that entanglement has been created and stabilized
by the well-trained PPO agent, as shown by Fig. 6(c)
with the laser control signal displayed in Fig. 6(d). At
the end of the time period, the photon and phonon
statistics with respect to the Fock basis are shown in
Figs. 6(e,f), where the reduced photon state exhibits
an oscillating tail that resembles the displaced squeezed
state and the reduced phonon state displays the thermal-
like state. Figure 6(g) shows the corresponding target
pattern ⟨n̂targetp ⟩(t). In the target-utilization phase, the
recurrent PPO agent is able to steadily learn to create
and stabilize the entanglement, as shown in Fig. 7, where
only partial information is extracted from the quantum
optomechanical environment. Especially, various entan-
gled states have been created, such as a reduced pho-
ton state with the head oscillating on the Fock basis in
photon statistics entangled with the thermal-like reduced
phonon state, as exemplified in Figs. 7(e,f). Due to the
nonlinear and stochastic process in the SME, the entan-
gled states created and controlled are not steady states,
rendering infeasible Bayesian control. We thus employ
random control as a benchmark, where a uniformly ran-
dom distribution of actions is taken in a certain range
∆, αL ∈ [−5, 5]ωm and the tested values of the mea-
surement rate are η = [0.05, 0.1, 0.3, 0.5, 0.7, 1]. Figure 8
shows that, as the measurement rate increases, the ran-
dom control is unable to harness the entanglement while
our well-trained recurrent PPO agent can maintain the
entanglement percentage at 50% or higher.

0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

E N
/E

0

recurrent PPO training
recurrent PPO testing
random control

FIG. 8. Target-utilization phase of entanglement engineering
of a nonlinear optomechanical systems. Shown are the results
of online training and testing of the entanglement measure
⟨EN ⟩/E0 for measurement rates η = [0.05, 0.1, 0.3, 0.5, 0.7, 1],
in comparison with the benchmark performance of random
control. The error bars are the corresponding standard devi-
ation. The results from random control flow are also included
for comparison. Other parameters are the same as those in
Fig. 6.

D. Physical understanding of entanglement engineering
through model-free deep RL

In an experiment, it is usually difficult to directly ob-
tain information about the entanglement. For entangle-
ment engineering of a quantum optomechanical system,
one scenario is that the RL agent observes the photon
number to steer the laser to create and stabilize entangle-
ment, as illustrated in Fig. 9. Here we provide a physical
interpretation of RL control for entanglement engineering
in both the linear and the nonlinear interaction regimes.
The key physical relationships involved are that between
the entanglement and photon number, and that between
the photon number and laser driving. We also describe
the capability of the RL agent to train the laser driving
to modulate the two-mode interaction to reduce quan-
tum decoherence resulting from WCM and the quantum
dissipation to the vacuum bath.

1. Linear interaction regime

For the linear quantum optomechanical system, the
maximum entanglement corresponds to a Bell state, of
which the expected photon number is ⟨n̂p⟩ = 0.5. Intrin-
sically, the beam splitter Hamiltonian is capable of gen-
erating Bell states78–80, a reasonable assumption is that,
when the expected photon number reaches the value of
0.5, the maximum entanglement is achieved in a linearly
interacting quantum optomechanical system. This as-
sumption provides the base for constructing the reward
function R(t) = −|⟨n̂p⟩(t) − 0.5|, where the deviation in
the expected photon number from 0.5 results in a de-
creasing reward and therefore implies reduced entangle-
ment. As illustrated in Fig. 9, the RL agent is designed to
maximize the accumulated reward value, which is equiva-
lent to stabilizing the expected photon number about the
value of 0.5 for as long as possible. The testing results
shown in Fig. 3 indicate that the maximum entanglement
can indeed be created and stabilized by the RL control.

RL agent

Laser

Observe

Entanglement

Photon number

FIG. 9. RL-based entanglement engineering of a quantum
optomechanical system.

A central step in RL control is to modulate the laser
input based on the measured photon number, which re-
quires the relationship between the laser driving and the
photon number. When the frequency of the laser is in
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the red-detuned regime: ∆ = ωL −ωc = −ωm, the quan-
tum state switches between the two modes - the cavity
optical and the mechanical oscillator modes, leading to
a “swap” Hamiltonian. The coefficient G is proportional
to the amplitude of the cavity parameter ᾱc that is de-
termined by the laser. In the linear interaction regime,
RL control is achieved via two adjustments of the laser
based on the measured photon number: (1) the laser fre-
quency is changed into the red-detuned regime and (2)
the laser amplitude is perturbed to modulate the driving
strength G to control the two modes of switching, which
affects the expected photon number. Note that, during
this process, there is no energy gain: there is energy loss
due to the dissipation of the cavity and oscillator modes
into the vacuum bath with the dissipation rate given by
γ = 0.01κ. This relation means that the energy loss due
to the oscillator mode occurs more slowly than that with
the cavity mode. In essence, the working of the laser is
to transfer the energy from the oscillator mode to the
cavity mode to stabilize the photon number to a desired
value. The underlying dissipation process is not ben-
eficial to the entanglement, as it cannot be modulated
by the “swap” term in the Hamiltonian, eliminating any
possibility of entanglement enhancement in an optome-
chanical system in the linear interaction regime. It is
worth noting that, in the nonlinear interaction regime,
entanglement enhancement and dissipation reduction are
possible, as will be described below.

2. Nonlinear interaction regime

When the interactions between the optical and me-
chanical modes are nonlinear, the relationship between
entanglement and photon number can be sophisticated
and is currently unknown. However, model-free deep RL
can be used to find the relation numerically. To achieve
this, we first assume that there is a solution of the one-
to-one correspondence between EN and ⟨n̂p⟩ in the time
domain. The reward function is constructed according to
the target entanglement EN = log 2 to train the RL agent
to maximize the accumulated reward. In the testing
phase, the time-dependent series of the expected photon
number controlled by the well-trained PPO in Fig. 6(g)
is regarded as the target time series of the expected pho-
ton number for the next target-utilization phase. Note
that the “best” photon number is no longer simply 0.5:
it is now time-dependent. In the next training phase, the
reset RL agent will learn to control the system with the
observation ⟨n̂p⟩(t) based on the target’s expected pho-
ton number ⟨n̂targetp ⟩(t). The performance of the new RL
agent in the testing phase, as shown in Fig. 7, validates
our initial assumption about the existence of the one-to-
one correspondence between EN and ⟨n̂p⟩, even though
it is time-dependent.

In the nonlinear interaction regime, the physical pic-
ture of how the laser leverages the radiation-pressure in-
teraction to create and stabilize the photon number and

FIG. 10. Physical insights in the nonlinear regime of cavity-
mechanical interaction under the strong laser limit: |ᾱc| ≫ 1.
When the strong laser is in the red-detuned regime with ∆ =
−ωm, the laser controls the two-mode transferring process
but, in the blue-detuned regime with ∆ = +ωm, the laser
controls the exponential growth of the two modes in energies
and creates the quantum correlation between two modes61.

even the entanglement is not straightforward. However,
physical insights can be gained by examining the strong
laser limit. When the amplitude of the laser is strong:
ᾱc ≫ 1, in the blue-detuned regime with ∆ = +ωm,
the laser can modulate its frequency to create exponen-
tial growth of the energies of both the cavity and oscil-
lator modes, accompanied by the generation of strong
quantum correlation between the two modes. In the red-
detuned regime with ∆ = −ωm, a switching process be-
tween the two modes occurs, which is the same as that
in the linear interaction regime.

The blue- and red-detuned regimes have a competi-
tive relationship with each other in terms of both the
photon number and entanglement. In particular, in the
blue-detuned regime, photons are excited and the rate of
excitation can be larger than that associated with quan-
tum dissipation to the vacuum bath. Furthermore, quan-
tum entanglement is enhanced, overcoming quantum de-
coherence from the classical environment and even from
the SME. However, in the red-detuned regime, no pho-
tons are excited and there is only a two-mode energy-
transferring process that does not completely suppress
the process of quantum dissipation to the vacuum bath,
resulting in photon loss and eventually reducing entan-
glement. Stabilizing the photon number and entangle-
ment requires a balance between the operations in the
blue- and red-detuned regimes. In general, the blue-
detuned regime is prone to too high photon levels with
strong entanglement, which should be balanced by the
red-detuned regime operation to reduce the photon num-
ber to realize our target entanglement engineering, as
shown schematically in Fig. 10. Overall, in the nonlin-
ear interaction regime, laser driving of finite amplitude
and frequency modulation can control the photon num-
ber and entanglement to a certain extent. An exam-
ple is shown in Fig. 7(d), where the RL agent finds the
optimal action flow with a finite laser amplitude. Note
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that, the detuning ∆ is modulated mainly in the range
∆ ∈ [−2ωm, 2ωm], signifying a balance between the blue-
and red-detuned operations.

3. Weak continuous measurement

In an open quantum system, under WCM and quan-
tum dissipation into the vacuum bath as well, a Wiener
process occurs in the observable. More specifically, the
Wiener process arises from the Gaussian-weighted pro-
jection over the eigenstates, which weakly extracts the
partial information from the quantum system and in-
duces stochastic disturbances in both the dynamical
equation and observation. Such disturbances can avoid a
complete quantum state collapse and provide the capa-
bility to extract the quantum information continuously in
the time domain. However, the nonlinear stochastic pro-
cess occurs in both quantum dynamical trajectories and
the measurement photocurrent, making it challenging to
control the quantum system through WCM continuously.

For stochastic noise in the WCM photocurrent, the
present cutting-edge technology enables the RL agent to
extract quantum information through a process resem-
bling noise filtering. Specifically, the observation in the
reward function is the WCM photocurrent. We can em-
ploy ntraj quantum ensembles to reduce the variance and
use a Gaussian filter for data pre-processing. The RL
agent is trained to maximize the accumulated reward,
which serves to average the stochastic term in the mea-
surement photocurrent over time. These noise-filtering
processes help extract information about the expected
photon number and thus the target quantum entangle-
ment. For the nonlinear quantum stochastic process with
quantum dissipation, the RL agent successfully trains the
laser to leverage interactions between the optical and me-
chanical modes, linear or nonlinear, to mitigate quantum
decoherence and dissipation to some extent, as exempli-
fied in Figs. 3 and 7.

III. DISCUSSION

Exploiting machine learning for controlling quantum
information systems is becoming a promising research
realm and is attracting increasing attention. We have
developed a model-free deep-RL method for entangle-
ment engineering. We demonstrated its superiority over
benchmark quantum control methods in quantum op-
tomechanical systems under WCM. The model-free deep-
RL agent sequentially interacts with one or multiple par-
allel quantum optomechanical environments, collects tra-
jectories, and updates its policy to maximize the ac-
cumulated reward to create and stabilize the entangle-
ment. Both linear and nonlinear interacting regimes be-
tween the photons in the optical cavity and the phonons
associated with the mechanical oscillator in the cavity
have been studied. In particular, for linear interactions,

the PPO agent directly observes the WCM photocur-
rent and delivers better performance compared with the
benchmark Bayesian and random control methods in the
framework of measurement-based feedback control. The
performance of deep RL control is tolerant to random-
ness when initially the system is in some mixed state.
For nonlinear interactions, both the model-free PPO and
recurrent PPO agents have been tested, where the first
was utilized to generate the time series of the target of
the expected photon number, and the second one was
employed to control entanglement according to an objec-
tive. Because of the high degree of randomness in the
SME originating from ten stochastic collapse operators,
only the observation of the expected photon number is
feasible in the nonlinear interaction regime.

More specifically, linear interactions can naturally
limit the excitation in the energy levels, providing a
mechanism to directly create the entangled Bell states
under the premise of strong laser approximation in the
red-detuned regime. A disadvantage is that its perfor-
mance is sensitive to the coupling of the vacuum or
thermal bath, even when the decay rate is small (e.g.,
κ = 0.01ωm with G ∈ [−5, 5]ωm). This phenomenon is
in fact quite common in quantum systems. For instance,
in systems with magnon-photon coupling87, steady Bell
states can ideally be generated in the PT-broken phase
without dissipation while the entanglement is reduced
when the decay rate is not negligible. Another issue
with linear interactions is that the time scale associated
with generating entangled Bell states89 tends to be much
shorter than the inverse of the coupling strength about
the higher-order exceptional points in a system of coupled
non-Hermitian qubits with energy loss while the maxi-
mum entanglement can only last for a short instant.

In contrast, nonlinear interactions can create and sta-
bilize entanglement and are more robust to the distur-
bance from the vacuum bath even with a relatively large
decay rate, e.g., κ = 0.1ωm with the strong coupling
g0 = 0.2ωm, so g0/κ = 2 > 1 to stipulate the non-
linear effect61. Potentially, systems with nonlinear cou-
pling thus can outperform those with linear interactions.
A caveat is that, in nonlinear optomechanical systems,
there is limited experimentally accessible observation. In
fact, the relationship between experimental observables
and entanglement in nonlinear quantum optomechanical
systems has not been well understood, rendering chal-
lenging to choose a feasible observable to control en-
tanglement. We have partially relied on the numerical
method to create and stabilize entanglement, based on
the numerical relation between entanglement and the ex-
pected photon number discovered by the deep RL. An-
other difficulty is that the nonlinear interaction can read-
ily excite the system to high quantum states, which we
have overcome by designing a proper reward function.

A previous work90 studied the acceleration of entan-
glement generation through feedback weak measurement
for two qubits in a four-dimensional Hilbert space, where
coupling to a vacuum or thermal bath was not taken
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into account, nor the interactions between the two qubits,
and the control protocol required prior knowledge about
the system such as the decoherence-free subspace. In
addition, complete observation was needed to design
the local Hamiltonian feedback to speed up entangle-
ment. This is in fact a model-based approach. In an-
other study91, steady-state entanglement between two
qubits was achieved using a continuous feedback con-
trol method, where the feedback protocol design was in-
formed by a detailed model of the system’s dynamics.
In contrast, our work creates and stabilizes a two-mode
entangled state about a predetermined level of entan-
glement for both linear and nonlinear interactions via
model-free reinforcement learning, with the respective
dimensions of the Hilbert space being four and one hun-
dred.

Our work suggests the possibility of exploiting multi-
agent RL through parallel computation to stabilize en-
tanglement. The agents leverage the decentralized struc-
ture of the task and share information via communica-
tion. Saliently, if several agents fail in a multiagent sys-
tem, the remaining agents can take over some of their
tasks. In principle, our control framework can be ex-
tended to multi-agent RL for multi-mode entanglement
engineering of a quantum black box.

IV. METHODS

A. Stochastic Master Equation

An experimental optomechanical system is effectively
an open quantum system interacting with the vacuum
bath under WCM with the operators29,49 Ĉn ≡ √

ηP̂n,

where P̂n = |n⟩⟨n| with n = 0, 1 (linear) or n = 0, 1, . . . , 9
(nonlinear) is the measurement operator on the Fock
state and η denotes the measurement rate. The quantum
dynamics of this system are described by the stochastic
master equation (SME)29,51,92–94:

dρ =
1

iℏ
[H̃, ρ]dt+ Lenv ρdt

+
∑
n

D(Ĉn)ρdt+
∑
n

H(Ĉn)ρdWn, (2)

where the Hamiltonian is H̃ = H̃bs or H̃nl and ρ is a
density operator in the Hilbert space. Under the Born-
Markov approximation95,96, which requires the system-
bath coupling to be weak and the correlation time of the
bath to be much shorter than a characteristic timescale
of system-bath interactions, the Markovian master equa-
tion, i.e., the first two terms in the right-hand side of
Eq. (2), has the Lindblad form95. At absolute zero tem-
perature, the following environmental operator Lenv ρ
can be introduced to describe the coupling between the

system and vacuum bath: Lenv ρ = κD(â)ρ + γD(b̂)ρ,
where the cavity and oscillator modes are coupled to

the vacuum bath with the strength κ and γ, respec-
tively56. The deep RL results in the Lindblad master
equation with the nonlinear interaction are presented in
Appendix E.
The WCM process described by the last two terms in

the right-hand side of Eq. (2) is nonlinear and Marko-
vian in the unconditional master equation51 in ρ. Under
WCM, a Wiener process dW with a Gaussian distribu-
tion51 arises from the Gaussian-weighted projection over
the eigenstates that allows the quantum information to
be extracted continuously in the time domain, subject
to stochastic disturbances in the last term of Eq. (2) and
quantum decoherence in the penultimate term of Eq. (2).
(Appendix C provides a detailed derivation of the SME.)
The Lindblad operator D and the measurement superop-
erator H in Eq. (2) are given by

D(Â)ρ ≡ ÂρÂ† − 1

2
(Â†Âρ+ ρÂ†Â),

H(Â)ρ ≡ Âρ+ ρÂ† − ⟨Â+ Â†⟩ρ,

with ⟨Â⟩ ≡ Tr[Âρ]. The two operators serve to weakly
drive the quantum state into the corresponding eigen-
states to some degree.

B. Implementation details of deep RL

For simulating the linear or nonlinear quantum op-
tomechanical system described by Eq. (2), we use the
“taylor1.5” solver from the SME solver in the QuTip’s
package97 with the tolerance tol = 10−6 and time step
size dt = 0.01ω−1

m . The measurement current is sim-
ulated with the “homodyne” method, and the custom
environment is constructed by the open-source platform
OpenAI-Gym98. For RL simulations, we construct the
PPO agent48 by “stable-baselines3”99 in the A2C100 set-
tings, where stochastic policy (actor) and the value func-
tion (critic) are modeled by two independent neural net-
work function approximators, i.e., a set of fully connected
feed-forward networks of dimensions 256× 128× 64 and
the hyperbolic tangent nonlinear activation function for
each hidden layer. For the nonlinear quantum optome-
chanical configuration, in the target-utilization phase,
the recurrent PPO agent outperforms the PPO agent,
where both independent critic and actor networks are
MLPs followed by one independent layer of LSTM with
256× 128× 64 fully connected networks and 256 hidden
states. More details, especially in the table of Gaussian
kernel, are described in Appendix F.
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Appendix A: Background related to our work

Quantum control. Quantum control94 is essential
to quantum engineering and technology103–105, where
open-loop control106 has been successfully demonstrated
with methods such as gradient-ascent pulse engineer-
ing (GRAPE)107 in spin systems108, coupled qubits109,
Jaynes-Cummings systems110, and qubit-cavity lat-
tices111. Recently, the open-loop GRAPE algorithm has
been extended to feedback GRAPE112 based on gradient
ascent of quantum dynamics for state engineering un-
der strongly stochastic measurement. Open-loop control,
however, requires a differentiable model of the quantum
dynamics that may not always be available. In realistic
situations where such a model is not available, closed-
loop feedback control strategies conditioned on exper-
imental measurement outcomes can be applied. Com-
bined with data-driven machine learning, feedback con-
trol has been implemented in experiments in a model-free
fashion113–115.

Deep reinforcement learning. In general, RL is a
machine-learning paradigm based on a trial-and-error
learning process, incorporating traditional optimal con-
trol to maximize the accumulated reward. The use
of deep neural networks in the learning process leads

to deep RL, which explores and exploits the available
measurement data to search for a globally optimal pol-
icy. In deep RL, many algorithms are available such
as deep-Q network (DQN)113, deep deterministic pol-
icy gradient (DDPG)116, and trust region proximal op-
timization (TRPO)117. A state-of-the-art deep RL al-
gorithm for continuous control is proximal policy opti-
mization (PPO)48, whose performance can exceed that
of TRPO. Incorporating recurrent neural networks57 into
the PPO algorithm leads to improved performance88. In
recent years, measurement-based feedback control with
deep RL has been applied to quantum systems for tasks
such as quantum error correction for discrete gates118,
state preparation and stabilization for a single parti-
cle28,29,46,47 with an unstable potential46 or a double-well
potential47, discrimination between entangled states119

for quantum meteorology, and long-distance entangle-
ment distribution on quantum networks120. Experimen-
tally, time scales of the RL action sequences shorter than
the coherence time of the underlying quantum system
have been realized, rendering feasible real-time deep-RL
feedback control121.

Quantum measurement. In quantum systems, projec-
tive measurement can be used to extract the full in-
formation about the quantum state but, as a back ac-
tion, the quantum state will collapse after the measure-
ment122. To avoid a complete collapse, one can exploit
weak measurements50,123, in which the probe is weakly
coupled to the system to yield partial information about
the quantum state. Examples of weak measurements
include continuous monitoring124 of driven dissipative
quantum-optical systems - a basic component of quan-
tum meteorology125,126. A form of weak measurement,
the so-called weak continuous measurement (WCM), is
fundamental to a broad range of applications. For exam-
ple, WCM has been used to detect the quadrature opera-
tors84, Wigner84 and Husimi Q functions127 with a homo-
dyne apparatus85, rendering observing both pure128 and
mixed123 quantum states experimentally feasible. WCM
has been experimentally implemented by a weak-field ho-
modyne detector83–85 to measure the photon-number sta-
tistical distribution over the Fock basis. In another ex-
ample, WCM has been realized in an atomic spin ensem-
ble50 via Faraday rotation of an off-resonance probe beam
to create and probe nonclassical spin state and dynam-
ics. The concept of WCM has also been used to develop
fundamental theories, such as Heisenberg’s measurement-
disturbance relationship129 and error-disturbance uncer-
tainty relation130. Because of the typical time scales of
the quantum dynamics, WCM cannot be regarded as
occurring instantaneously51. Theoretically, the impact
of WCM on the underlying quantum system can be de-
scribed by the stochastic master equation51.
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Appendix B: Quantum optomechanical system

The standard Hamiltonian of a quantum optomechan-
ical system in the rotating frame of the laser is given
by55,56

H̃ = −ℏ∆â†â+ ℏωmb̂
†b̂+ ℏg0(b̂† + b̂)â†â

+ ℏ(αLâ
† + α∗

Lâ), (B1)

where â, b̂ (â†, b̂†) are the annihilation and creation oper-
ators of the optical cavity and mechanical mode, respec-
tively. The frequency detuning is ∆ ≡ ωL−ωc, where ωL

is the frequency of the driven laser and ωc is the intrinsic
frequency of the cavity. The nonlinear coupling g0 be-
tween the single cavity and mechanical mode arises from
the frequency dispersion relationship with respect to the
displacement q̂ of the mechanical mode. The complex
amplitude of the driven electromagnetic field is denoted
as αL. A detailed description of how the Hamiltonian is
derived is as follows.

Consider a single optical cavity and a mechanical mode
(with a movable mirror). The resonant frequency of the
cavity mode is controlled by the displacement of the mov-
able end-mirror ωc(q̂) or the length of the cavity, which
can be expanded to the first order about the intrinsic fre-
quency ωc(q̂ = 0) of the cavity, leading to the following
nonlinear coupling term:

Ĥ0 = ℏωc(q̂)â
†â+ ℏωmb̂

†b̂

= ℏ(ωc + (∂ωc(q)/∂q)q̂)â
†â+ ℏωmb̂

†b̂

= ℏωcâ
†â+ ℏωmb̂

†b̂+ ℏg0â†â(b̂† + b̂), (B2)

where g0 ≡ (∂ωc(q)/∂q)qzpf is the single-photon op-
tomechanical coupling strength and the position oper-

ator of the mechanical mode is q̂ ≡ (b̂ + b̂†)qzpf with

qzpf =
√
ℏ/(2mωm) being the mechanical zero-point fluc-

tuations. The radiation pressure force is acted on the me-
chanical resonator by the photon number operator mul-
tiplying the displacement operator q̂.
The Hamiltonian Ĥ = Ĥ0 + Ĥdriven in the rotating

frame is defined as93:

H̃ = Û†ĤÛ − Â (B3)

with Û ≡ exp (−iωLâ
†â t) and Â ≡ ℏωLâ

†â. Using the
following identities:

exp (iωLâ
†â t)â exp (−iωLâ

†â t) = â exp (−iωLt),

exp (iωLâ
†â t)â† exp (−iωLâ

†â t) = â† exp (iωLt), (B4)

we have

Û†â†âÛ = â†â.

In the rotating frame, with the detuning ∆ ≡ ωL − ωc,
we then have

H̃0 = −ℏ∆â†â+ ℏωmb̂
†b̂+ ℏg0â†â(b̂† + b̂). (B5)

The quantized electromagnetic field can be written as

Ĥdriven = ℏ
[
αL exp(−iωLt)â

† + α∗
L exp(iωLt)â

]
. (B6)

Through the unitary transformation, we obtain

Û†ĤdrivenÛ = ℏαLâ
† + ℏα∗

Lâ. (B7)

Finally, the total Hamiltonian driven by the electromag-
netic field in the rotating frame is given by

H̃ = Û†(Ĥ0 + Ĥdriven)Û − Â

= H̃0 + Û†ĤdrivenÛ

= −ℏ∆â†â+ ℏωmb̂
†b̂+ ℏg0â†â(b̂† + b̂)

+ ℏ(αLâ
† + α∗

Lâ). (B8)

Appendix C: Quantum stochastic master equation

The starting point is von Neumann equation, which
governs the unitary evolution of the density matrix and
is given by

ρ̇ =
1

iℏ
[Ĥ, ρ] ≡ Lρ, (C1)

where L is the Liouvillian superoperator. Equation (C1)
can be derived from the Schrödinger equation and its
conjugate:

iℏ
∂

∂t
|ψ⟩ = Ĥ|ψ⟩,

−iℏ ∂
∂t

⟨ψ| = ⟨ψ|Ĥ, (C2)

with Hermitian Hamiltonian Ĥ† = Ĥ. Since the density
matrix is defined as a mixture of quantum states, ρ =∑

i Pi|ψi⟩⟨ψi| with
∑

i Pi = 1, we have

iℏρ̇ =
∑
i

Pi(iℏ|ψ̇i⟩)⟨ψi| −
∑
i

Pi|ψi⟩(−iℏ⟨ψ̇i|)

=
∑
i

PiĤ|ψi⟩⟨ψi| −
∑
i

Pi|ψi⟩⟨ψi|Ĥ

= Ĥρ− ρĤ = [Ĥ, ρ], (C3)

where ∂ρ/∂t ≡ ρ̇ and ∂|ψ⟩/∂t ≡ ˙|ψ⟩.
The dynamics of a quantum system interacting with

the vacuum bath under the continuous measurement of
the observable ĉ are described by the general stochastic
master equation(SME)51,93,94:

dρ =
1

iℏ
[Ĥ, ρ]dt+ Lenv ρdt+D(ĉ)ρdt+H(ĉ)ρdW,

(C4)

where Lenv ρ is the interaction between the system and
vacuum bath, which is given by

Lenv ρ = κD(â)ρ+ γD(b̂)ρ, (C5)
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and dW corresponds to a Wiener process with a Gaussian
distribution. Concretely, both the cavity and the oscil-
lator modes are coupled to the vacuum bath with the
coupling strengths κ and γ, respectively, where the bath
is at the absolute zero temperature. In Eq. (C5), the
symbols D and H denote the Lindblad and measurement
superoperators, respectively, which are given by

D(ĉ)ρ ≡ ĉρĉ† − 1

2
(ĉ†ĉρ+ ρĉ†ĉ), (C6)

H(ĉ)ρ ≡ ĉρ+ ρĉ† − ⟨ĉ+ ĉ†⟩ρ. (C7)

The actions described by the two superoperators can
drive the quantum state into an eigenstate of the ob-
servable ĉ to some degree. Pertinent to this process is
WCM51. To understand WCM, we begin with the von
Neumann measurement.

The set of eigenstates of an observable forms an or-
thonormal basis in the Hilbert space: {|n⟩ : n =
1, ..., nmax}. Any pure quantum state can be completely
expanded as |ψ⟩ =

∑
n cn|n⟩ with the probability dis-

tribution |cn|2 over the basis {|n⟩}. The von Neuman
measurement, after which the quantum state will be
completely projected onto one of the eigenstates of the
observable, gives complete information about the col-
lapsed quantum state. More specifically, the measure-
ment can be described by a set of projection operators
{Pn = |n⟩⟨n|} based on the orthonormal basis of the ob-
servable. If the initial state is ρ = |ψ⟩⟨ψ|, the probability
of obtaining the nth eigenvalue will be Tr[PnρPn] with
the final state given by

ρf =
PnρPn

Tr[PnρPn]
= |n⟩⟨n|. (C8)

While von Neumann measurement provides complete in-
formation for the collapsed quantum state after being
measured since the state has collapsed to an eigenstate
of the observable after the projective measurement, it is
not the only kind of measurement. Other methods can
reduce the uncertainty of the observable but often fail
to remove all of it. Such measurements can extract only
partial information about the quantum system.

In principle, we can choose a set ofmmax operators Ωm

with the restriction

mmax∑
m=1

Ω†
mΩm = I,

where the number mmax of elements can be larger than
the dimension of the Hilbert space which they act in. A
measurement with N possible outcomes can be designed
for

ρf =
ΩmρΩ

†
m

Tr[ΩmρΩ
†
m]
, (C9)

with the probability Tr[ΩmρΩ
†
m]. For example, the prob-

ability of the observation in the range [a, b] is given by

P (m ∈ [a, b]) =

b∑
m=a

Tr[ΩmρΩ
†
m] = Tr[

b∑
m=a

ΩmρΩ
†
m].

(C10)

The measurement, associated with a positive operator

M =
∑b

m=a Ω
†
mΩm with every subset in the range m ∈

[1,mmax], is called a positive operator-valued measure
(POVM).
POVMs can describe weak measurements, where only

partial information is extracted from the measurement
by the Gaussian weighted sum over all eigenstates of the
observable:

Ωm =
1

N
∑
n

e−k(n−m)2/4|n⟩⟨n|, (C11)

with the normalization constant N that satisfies the con-
straint

∑∞
m=−∞ Ω†

mΩm = I. Suppose no information is
obtained before the measurement and the initial state is
completely mixed as ρ ∝ I, then the observation is a
random variable with Gaussian distribution. After the
measurement, the state becomes

ρf =
ΩmρΩ

†
m

Tr[ΩmρΩ
†
m]

=
1

N
∑
n

e−k(n−m)2/2|n⟩⟨n|. (C12)

This indicates that, when the initial state ρ is an equal
probability distribution over all eigenstates, the state
after the weak measurement has a Gaussian distribu-
tion over all the eigenstates, where the mean value
of the Gaussian weights corresponds to an eigenstate
and the distribution spreads with a finite uncertainty.
Consequently, only partial information can be extracted
from this kind of measurement, because it only partially
projects onto an eigenstate of the observable with un-
certainty. The standard deviation of the final state is
1/
√
k. The larger the measurement strength k, the more

complete information can be extracted with reduced un-
certainty about the quantum state, leading to strong
measurement. On the contrary, a small measurement
strength generates weak measurement.
We can now describe WCM. In general, continuous

measurement means that information is continually ex-
tracted from a system over time. To realize WCM, time
is divided into a series of intervals of size ∆t, and a weak
measurement is carried out in each interval. The Hermi-
tian observable is denoted as Ô, and the measurement
operator with the index α is given by

Â(α) =

(
4k∆t

π

)1/4 ∫ ∞

−∞
e−2k∆t(O−α)2 |O⟩⟨O|dO,

(C13)

where the measurement strength is determined by k and
∆t. If we set ∆t = dt, then it is a WCM. The mean of
the continuous index α is

⟨α⟩ =
∫ ∞

−∞
αTr[Â†(α)Â(α)|ψ⟩⟨ψ|]dα = ⟨Ô⟩. (C14)
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The probability distribution of α is

P (α) = Tr[Â†(α)Â(α)|ψ⟩⟨ψ|]

=

√
4k∆t

π

∫ ∞

−∞
|ψ(O)|2e−4k∆t(O−α)2dO. (C15)

The value of ∆t is infinitesimal due to the inherent prop-
erty of the WCM. As a result, the exponential term in
Eq. (C15) is a slow oscillation compared with the wave
function under the variable O. Based on this, the wave
function can be approximated as |ψ(O)|2 ≈ δ(O − ⟨O⟩)
and we have

P (α) ≈
√

4k∆t

π
e−4k∆t(α−⟨O⟩)2 . (C16)

Effectively, α is a stochastic quantity:

αs = ⟨Ô⟩+ ∆W√
8k∆t

, (C17)

where ∆W is a zero-mean, Gaussian random variable
with variance ∆t. The time evolution of the quantum
state under WCM is given by

|ψ(t+∆t)⟩ ∝ Â(α)|ψ(t)⟩ ∝ e−2k∆t(α−Ô)2 |ψ(t)⟩. (C18)

Substituting Eq. (C17) into this equation, applying Tay-
lor’s expansion into the exponential term to first order
in ∆t and defining |ψ(t+ dt)⟩ ≡ |ψ(t)⟩+ d|ψ⟩, we obtain
the following stochastic differential equation:

d|ψ⟩ = {−k(Ô − ⟨Ô⟩)2dt+
√
2k(Ô − ⟨Ô⟩)dW}|ψ(t)⟩.

(C19)

Defining ρ(t+ dt) ≡ ρ(t) + dρ, we have

dρ = (d|ψ⟩)⟨ψ|+ |ψ⟩(d⟨ψ|) + (d|ψ⟩)(d⟨ψ|)

= −k[Ô, [Ô, ρ]]dt+
√
2k(Ôρ+ ρÔ − 2⟨Ô⟩ρ)dW.

(C20)

If we redefine the observable as

ĉ ≡ √
ηÔ ≡

√
2kÔ,

the first term can be rewritten as

[ĉρĉ− 1

2
(ĉ2ρ+ ρĉ2)]dt (C21)

and the second term is

(ĉρ+ ρĉ− 2⟨ĉ⟩ρ)dW, (C22)

which are consistent with the Lindblad operator D and
the measurement superoperator H in the SME from the
Method part in the main text, respectively. Here, the
measurement rate η is proportional to the measurement
strength k.

Appendix D: Reinforcement learning (RL) in linear
quantum optomechanics

Based on the demonstration in the main text about
RL in linear quantum optomechanics. This section gives
the corresponding details about reinforcement learning
for the linear system. During online training, given a
fixed training episode length, e.g., Episode = 3000, the
RL agent bootstraps itself by executing the procedure
described in Appendix F 1. In the initial preparation
process, N identical and independent quantum optome-
chanical environments (N parallel environments) are pre-
pared, where N = 5. In addition, the agent, which has
two independent neural networks: actor and critic, is also
initialized. The initial quantum state is |ψ⟩ = |10⟩ or
ρ = (1 − p)|10⟩⟨10| + p|01⟩⟨01| with p ∈ [0, 1] and the
quantum environments are governed by the SME.
In episodic learning, the quantum environments are re-

set after each episode. For each set of Z episodes (e.g.,
Z = 5), the agent obtains the observation Ot about the
photon number and the reward value Rt = −|Ot − 0.5|
from N quantum environments, and independently acts
on them by the current stochastic policy π(Gt|Ot;θθθ). Es-
sentially, the policy is the conditional probability distri-
bution on the action space Gt ∈ [−5, 5]ωm given the ob-
servation Ot and is parameterized through θθθ. The N×Z
independent trajectories, denoted as τ j with the trajec-
tory index j = 1, 2, . . . ,N × Z, are collected with length
T = 500 (the number of time steps for each episode)
and the step size dt = 0.01ω−1

m . Each trajectory τ j is a
sequence of states (observations), actions, rewards, and
next states (next observations):

τ j = (Oj
0, G

j
0, R

j
0, O

j
1, . . . , O

j
T−1, G

j
T−1, R

j
T−1), (D1)

which can be organized as a sub-trajectory tuple

τ jt = (Oj
t , G

j
t , R

j
t , O

j
t+1) (D2)

with the time stage index t = 0, 1, . . . , T − 2. At the
terminal stage t = T − 1, we have

τ jT−1 = (Oj
T−1, G

j
T−1, R

j
T−1). (D3)

For each sub-trajectory tuple τ jt , the generalized advan-

tage estimation (GAE)131 Âj
t uses a value function esti-

mator:

Âj
t = δjt + (γλ)δjt+1 + . . .+ (γλ)T−t−1δjT−1 (D4)

with

δjt = Rj
t + γV (Oj

t+1;ϕϕϕ)− V (Oj
t ;ϕϕϕ), (D5)

where the value function V (Oj
t ;ϕϕϕ) is utilized to score

the quality of Oj
t based on the accumulated reward and

parameterized by ϕϕϕ and δjt is the relative advantage
of the current action selected by the stochastic policy
π(Gj

t |O
j
t ;θθθ) with the discounted factor γ ∈ (0, 1) and hy-

perparameter λ with typical value λ = 0.95. Intuitively,
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Âj
t is utilized to numerically quantify the relative cumula-

tive advantage of a certain action selected by the current
stochastic policy from time t to the terminal stage T −1,
in which the future impact is included but regarded as
less important than the corresponding previous one by
the discount factor γ ∈ (0, 1). The finite-horizon dis-

counted return Ĝj
t is defined as

Ĝj
t =

T−1∑
k=t

γk−tRj
k, (D6)

which can be also obtained from the generalized advan-
tage by

Ĝj
t = Âj

t + V (Oj
t ;ϕϕϕ), (D7)

where Ĝj
t denotes the accumulated reward from time t to

the terminal stage in the discounted version.
The neural networks constituting the actor and critic

are updated from minibatches with size M from N×Z×
T data points, consisting of the sub-trajectory τ jt , the

generalized advantage Âj
t and the return Ĝj

t over k =
10 epochs with the Adam algorithm. The typical batch
size is M = int(N × Z × T/10). For each epoch, the
critic parameters ϕϕϕ in the loss Lcritic(ϕϕϕ) and the actor
parameters θθθ in the loss Lactor(θθθ) need to be updated
to minimize the loss function over a random minibatch
data. The mean square loss Lcritic(ϕϕϕ) about the target

Ĝi for the value function V (Oi;ϕϕϕ) is

Lcritic(ϕϕϕ) = Êi[(V (Oi;ϕϕϕ)− Ĝi)
2] (D8)

and the clipped loss Lactor(θθθ) is given by

Lactor(θθθ) = Êi

[
−min(ri(θθθ)Âi, clip(ri(θθθ), [1− ϵ, 1 + ϵ])Âi)

]
,

(D9)

where Êi[ ] =
∑M

i=1[ ]i/M is the empirical average
over a minibatch of the data and [ ]i denotes the i th
element of the minibatch with i = 0, 1, . . . ,M−1, and the
clip function clip(x, [min,max]) returns x clipped to set
limits: min ≤ x ≤ max. The probability ratio ri(θθθ) > 0
between the current and old policies is

ri(θθθ) =
πθθθ(Gi|Oi)

πθθθold
(Gi|Oi)

. (D10)

If the current policy is the same as the old policy, we
have ri(θθθold) = 1. In general, the ratio ri(θθθ) needs to be
away from the value one for the policy to be optimized.
However, ri(θθθ)’s deviating too much from the value one
will result in many fast policy updates, possibly leading
to instabilities and even a collapse of the learning process.
To avoid this, the clip function in the actor loss Lactor(θθθ)
can be utilized to remove the incentive for ri(θθθ) outside
of the interval [1 − ϵ, 1 + ϵ] with typical clip range ϵ =
0.2, which decreases the updating speed of policy and
improves the learning stability.

Intuitively, the goal of RL is to maximize the cumu-
lative reward. In the linear optomechanical system, the
objective is to achieve the entangled Bell state as fast
as possible or, as stipulated by the reward function, to
achieve the optimal photon number Ot → 0.5 and to
maintain this for as long as possible. When the RL agent
converges to the optimal policy, the Bellman equation is
satisfied115, so the optimal value function satisfies

V ∗(Oj
t ;ϕϕϕ) = Rj

t + γV ∗(Oj
t+1;ϕϕϕ), (D11)

i.e., the optimal value function about Oj
t is equal to the

current reward plus the future discounted cumulative re-
ward, in which Oj

t+1 is determined by the action selected

by the optimal policy π∗(Gj
t |O

j
t ;θθθ). It guarantees that

the agent makes the best possible decisions to maximize
the rewards115. Moreover, under the optimal policy, it
means the zero generalized advantage Âj

t , so the zero ac-
tor loss L∗

actor is obtained. It is worth noting that the
optimal value function is equal to the discounted accu-
mulated reward from Eq. (D6):

V ∗(Oi;ϕϕϕ) = Ĝi, (D12)

which also gives zero critic loss Lcritic(ϕϕϕ). In the online
training process, the RL agent trained as described is
called the PPO agent, whose policy is randomly initial-
ized and will gradually converge to the optimal one under
the described training scenarios to achieve the maximum
accumulated reward. Physically, this enables the entan-
gled Bell state to be created and stabilized. For online
testing, the optimized policy is no longer updated and
only one quantum environment is involved.

Appendix E: RL in nonlinear interactions by the Lindblad
master equation

Figs. 11 and 12 display the case where the stochastic
process in SME is removed so that the quantum dynam-
ics are reduced to those governed by the Lindblad master
equation, in which the decoherence part includes only the
dissipation to the vacuum bath. In this setting, the non-

linear coupling represented by ℏg0â†â(b̂† + b̂) can still be
exploited to create the entanglement. A caveat is that
the process can simultaneously generate undesired high-
level quantum states. A solution is to apply deep RL to
create and stabilize the entanglement EN ∼ log 2, where
the problem is how to control the excitation within a lim-
ited Fock basis. For this problem, a key is choosing the
effective and experimentally feasible observation data.

Here, we describe in detail our two-step training pro-
cess leading to a solution through the Lindblad master
equation. The first step is the target-generating phase,
in which numerical simulation is used to generate the
observation and reward data, where the PPO agent ob-
serves the logarithmic negativity EN (t) directly and con-
structs the reward function combining the expected num-
bers of photons and phonons R(t) = −|EN (t) − log 2| −
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FIG. 11. A detailed account of the target-generating phase in RL control of open optomechanical systems with nonlinear
photon-phonon interaction in the framework of Lindblad master equation. Nonlinear interaction of strength g0 = 0.2ωm

creates the target entanglement EN ∼ log 2 optimized by the PPO agent from vacuum states with |ψ⟩ = |00⟩ with 10 × 10
Fock bases. The dissipation rates to the vacuum bath are κ = 0.1ωm and γ = 0.01κ. The time-dependent control signal is the
detuning ∆ and the amplitude of the driven laser αL within the range ∆, αL ∈ [−5, 5]ωm. In the training phase, observation is

set as EN (t). (a,b) Trained R̃ and ẼN converge to some constant values. (c,d) Time-dependent series EN (t), where the driven
laser signals are shown at the end of the training phase. (e,f) The corresponding coherent- and thermal-shape states expanded
in the Fock basis at the end of the time of the selected training episode in (c,d). (g) The time evolution of the corresponding
expected measurement current, including the expected number ⟨np⟩ of photons as well as the expected phonon number ⟨nm⟩
in the Fock basis, where the time series ⟨np⟩(t) serves as the target to construct reward function in the target-utilization phase
shown in Fig. 12.

|⟨np⟩(t)+ ⟨nm⟩(t)−a|/b. Figure 11 illustrates the target-
generating phase, where the range of excited quantum
states in the Fock basis is limited by the total number
⟨np⟩ + ⟨nm⟩ with the optimized hyperparameters a = 1
and b = 40. The target time series of the expected pho-
ton number is ⟨ntargetp ⟩(t). The second step is the target-
utilization phase, where the reward function is given by
R(t) = −|⟨np⟩(t)− ⟨ntargetp ⟩(t)|. The recurrent PPO will
only observe the expected photon number ⟨np⟩(t), which
is experimentally feasible. During the two-step training,
the agent collects data from five parallel quantum op-
tomechanical environments and updates the policy every
five episodes.

More specifically, Figs. 11(a) and 11(b) show that both

the reward R̃ and the logarithmic negativity ẼN converge
in time during the target-generating phase. The trained
agent can create and stabilize the entanglement as shown
in Fig. 11(c) controlled by the laser control signal shown
in Fig. 11(d). At the end of the time series, entanglement
is produced from the coherent-(photon) and thermal-

shape (phonon) Fock states as displayed in Figs. 11(e)
and 11(f). The corresponding target pattern ⟨ntargetp ⟩(t)
is demonstrated in Fig. 11(g). In the target-utilization
phase, the target pattern ⟨ntargetp ⟩(t) is time-dependent,
which is difficult to learn if only MLPs are used. Here a
single long short-term memory (LSTM) network is added
after the MLPs in both the actor and critic network, so
the whole neural-network architecture is able to handle
the time-dependent data. Figure 12 illustrates that, with
only partial information extracted from the quantum op-
tomechanical environment, the agent can steadily learn
to create and stabilize entanglement.

Appendix F: Deep RL

There are three main RL approaches114 based, respec-
tively, on (1) value functions, (2) policy search, and (3) a
hybrid actor-critic method that employs both the value
functions and policy search. Specifically, the actor-critic
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(𝑎) (𝑏)
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FIG. 12. A detailed account of the target-utilization phase in RL control of open optomechanical systems with nonlinear
photon-phonon interaction in the framework of Lindblad master equation. The goal is to create the entanglement about
EN ∼ log 2, for which the reward function is R(t) = −|⟨np⟩(t) − ⟨ntarget

p ⟩(t)|, determined by the target time series ⟨ntarget
p ⟩(t)

from Fig. 11(g). In this training configuration, the observation of the recurrent PPO agent is the expected photon number
⟨np⟩(t). In spite of the observation being partial and incomplete, all results in (a-g) display similar behavior compared with
the ones in Fig. 11, where the entanglement quantity EN (t) is directly observed. However, such observation is currently not
experimentally feasible. The setting and other parameters are the same as those in Fig. 11.

method uses the value function as a baseline for policy
gradients, based on a trade-off between variance reduc-
tion of policy gradients and bias associated with value
functions. Incorporating deep neural networks as a pow-
erful function approximator into RL to obtain the op-
timal value functions and the optimal policy leads to
deep RL with the advantage of mitigating the issues as-
sociated with high dimensionality (overcoming the curse
of dimensionality). A difficulty with deep RL is the lo-
cal minima in the neural-network dynamics with a large
number of parameters when directly searching for the
optimal policy114. A common solution is to use a trust
region that prevents an updated policy from deviating
too far from the previous policies, thereby guaranteeing
monotonic enhancement in policy search. To implement
this, the trust region proximal optimization (TRPO)
method117 can be exploited, which makes the advantage
estimate in the surrogate objective function constrained
by Kullback–Leibler (KL) divergence. The combination
of TRPO and generalized advantage estimation (GAE) is
one of the state-of-the-art RL techniques for continuous
control.

1. PPO agent

Proximal policy optimization (PPO)48 agent attains
the data efficiency and reliable performance of TRPO
with only first-order optimization through a novel objec-
tive with clipped probability ratios, which can be readily
implemented with reduced complexity. A typical online
training process of PPO agent consists of the following
steps:

Step 1 - Initialization: initialize the actor π(a|s;θθθ) and
the critic V (s;ϕϕϕ) with random parameters θθθ and ϕϕϕ, re-
spectively. Both the actor and critic are components of
the PPO agent. The stochastic policy π(a|s;θθθ) is the con-
ditional probability distribution on action space a given
state s. The value function V (s;ϕϕϕ) is utilized to score
the quality of state s based on the accumulated reward.

Step 2 - Trajectory collection: The quantum state or
quantum environment is initialized for the first episode or
reset for the following episodes. The agent interacts inde-
pendently with N parallel quantum optomechanical envi-
ronments (identical and independent) using the current
stochastic policy πθθθ(at|st) at time t. After Z episodes,
N × Z independent trajectories of length T (the total
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time steps T for each episode) are collected as sequences

of states sjt , actions a
j
t , rewards R

j
t , and next states sjt+1,

in which the sub-trajectory tuple τ jt is defined as

τ jt = (sjt , a
j
t , R

j
t , s

j
t+1) (F1)

with the trajectory index j = 1, 2, . . . ,N×Z and the time
index t = 0, 1, . . . , T −2. At the terminal stage t = T −1,
the following holds:

τ jT−1 = (sjT−1, a
j
T−1, R

j
T−1). (F2)

The sub-trajectory tuple τ jt can be utilized to calculate
and evaluate the performance of the agent at each time
stage t. The trajectory τ j of length T is the union of the
sub-trajectory tuple τ jt in the form of

τ j = τ j0 ∪ τ j1 ∪ ...... ∪ τ jT−1, (F3)

so the trajectory τ j is given by

τ j = (sj0, a
j
0, R

j
0, s

j
1, ..., s

j
T−1, a

j
T−1, R

j
T−1). (F4)

Step 3 - Generalized advantage estimator and return:
Estimate the advantages for each sub-trajectory tuple τ jt
in the collected trajectories. In particular, the general-
ized advantage estimation (GAE)131 uses a value function
estimator:

Âj
t = δjt + (γλ)δjt+1 + . . .+ (γλ)T−t−1δjT−1, (F5)

with

δjt = Rj
t + γV (sjt+1;ϕϕϕ)− V (sjt ;ϕϕϕ), (F6)

where δt is the relative advantage of the current action se-
lected by the policy π(ajt |s

j
t ;θθθ) with the discounted factor

γ ∈ (0, 1) and hyperparameter λ (typical value λ = 0.95).

The generalized advantage Âj
t at time t is the discounted

cumulative advantage from time t to the terminal stage
T − 1.
In episodic learning (policy update after each Z num-

ber of episodes), the return Ĝ(τ j) is defined as the cu-

mulative reward over the trajectory τ j , i.e., Ĝ(τ j) =∑T−1
t=0 Rj

t with the time horizon T . For mathematical
convenience, we use the discounted version, i.e., finite-
horizon discounted return

Ĝ(τ j) =
T−1∑
t=0

γtRj
t .

It implies that future performance is also included but
less important than the previous one. The return Ĝj

t at
each time step is the sum of the discounted reward from
the current time t,

Ĝj
t =

T−1∑
k=t

γk−tRj
k,

which can be also obtained from the generalized advan-
tage:

Ĝj
t = Âj

t + V (sjt ;ϕϕϕ). (F7)

Step 4 - Update of the actor and critic from mini-
batches of training data over k epochs with Adam or
stochastic gradient descent. For each epoch, we first
sample a random minibatch data set with size M from
N × Z × T data points, including the sub-trajectory tu-
ple τ jt , the corresponding advantage Âj

t and return value

Ĝj
t . We then update the critic parameters ϕϕϕ by minimiz-

ing the loss Lcritic(ϕϕϕ) across all sampled minibatch data,
which is given by

Lcritic(ϕϕϕ) = Êi[(V (si;ϕϕϕ)− Ĝi)
2], (F8)

where Êi[ ] =
∑M

i=1[ ]i/M is the empirical average over a
minibatch of data and [ ]i denotes the ith element of the
minibatch with i = 0, 1, ...,M− 1. After this, we update
the actor parameters θθθ by minimizing the loss Lactor(θθθ)
given by

Lactor(θθθ) = Êi

[
−min(ri(θθθ)Âi, clip(ri(θθθ), [1− ϵ, 1 + ϵ])Âi)

]
.

(F9)

where the clip function clip(x, [min,max]) returns x
clipped to set limits, i.e., min ≤ x ≤ max. The prob-
ability ratio ri(θθθ) between the current and old policies is
defined as

ri(θθθ) =
πθθθ(ai|si)
πθθθold

(ai|si)
. (F10)

If the current policy is the same as the old policy, we
have ri(θθθold) = 1. Otherwise, the ratio ri(θθθ) will be away
from the value one to get the new optimized policy. The
clip function in actor loss Lactor(θθθ) is utilized to remove
the incentive for ri(θθθ) outside of the interval [1− ϵ, 1+ ϵ],
which decreases the update speed of policy and improves
the learning stability.
Step 5 - Repeating Steps (2-4) for a specified number

of iterations or until convergence is achieved.

2. Recurrent PPO agent

In general, the dynamical process of RL is Markovian:
the future depends only on the present state. While this
suitably describes many processes, there are applications
where a non-Markovian type of RL is required, e.g., par-
tially observable Markov Decision Processes (POMDPs)
or when the physical system to be controlled is in a
non-Markovian environment. Leveraging recurrent neu-
ral networks (RNNs) for memory-based agent learning
provides a solution. In particular, a RNN can store past
information as memory by introducing loops in the neu-
ral network, in contrast to, e.g., feed-forward neural net-
works where signals flow only from input to output in a
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one-way manner. However, conventional RNNs may not
be able to efficiently connect the long past information
to the present task, a problem known as gap sensitivity
or vanishing gradient.

Long short-term memory (LSTM)57 is capable of learn-
ing long-term dependencies, thereby overcoming the van-
ishing gradient problem. The key component of LSTM
is the cell state, which mimics a conveyor belt132. In-
formation can be added or removed by the forget input,
and output gates. Since the actor and critic networks
underlying PPO are multilayer perceptrons (MLPs), e.g.
a special class of the feed-forward neural networks with
fully connected layers, applying LSTM after MLPs leads
to a recurrent PPO agent, where MLPs are responsible
for feature learning and LSTM contributes long-term his-
tory memorization. For a recurrent PPO, the state st is
replaced by observation ot and the hidden states ht with
POMDPs88.

3. Details in deep RL

Some details about the hyperparameter in the PPO
agent are as follows: The discounted factor is γ = 0.99,
the parameter for the generalized advantage estima-
tion(GAE) is λ = 0.95, the clip range is set ϵ = 0.2,
the maximum gradient is set to be 0.5 and the learning
rate is 0.5×10−3. Especially, GAE is normalized by sub-
tracting its mean value and dividing by its standard de-
viation, the stochastic policy is based on the action noise
exploration instead of the state-dependent exploration,
and the value function is no clipping. Since the observa-
tion is the measurement current with large variance, it
is necessary to apply a one-dimensional Gaussian filter
from the Scipy package, of which the filter interval and
standard deviation of the Gaussian kernel are listed in
as bellow. In the process of variance reduction for WCM
photocurrent, the measurement photocurrent is averaged
over five trajectories (an independent ensemble) at each
time step, and then averaged over the previously suc-
cessive five time steps. Finally, the obtained data is fil-
tered by the Gaussian kernel. In the updating phase, the
network parameters from actor and critic are updated
by Adam with the minibatch size, one-tenth of training
data, and epochs k = 10.

TABLE II. Gaussian filter with filter interval and standard
deviation of the Gaussian kernel.

measurement rate filter interval size standard deviation

1.0 10 3.0

0.7 10 4.5

0.5 10 6.0

0.3 20 6.0

0.1 100 24.0

0.05 150 48.0
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44J. Guo and S. Gröblacher, “Coherent feedback in optomechan-
ical systems in the sideband-unresolved regime,” Quantum 6,
848 (2022).

45A. Harwood, M. Brunelli, and A. Serafini, “Cavity optomechan-
ics assisted by optical coherent feedback,” Phys. Rev. A 103,
023509 (2021).

46Z. T. Wang, Y. Ashida, and M. Ueda, “Deep reinforcement
learning control of quantum cartpoles,” Phys. Rev. Lett. 125,
100401 (2020).

47S. Borah, B. Sarma, M. Kewming, G. J. Milburn, and
J. Twamley, “Measurement-based feedback quantum control
with deep reinforcement learning for a double-well nonlinear po-
tential,” Phys. Rev. Lett. 127, 190403 (2021).

48J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,” arXiv
preprint arXiv:1707.06347 (2017).

49A. Essig, Q. Ficheux, T. Peronnin, N. Cottet, R. Lescanne,
A. Sarlette, P. Rouchon, Z. Leghtas, and B. Huard, “Multi-
plexed photon number measurement,” Phys. Rev. X 11, 031045
(2021).

50G. A. Smith, S. Chaudhury, A. Silberfarb, I. H. Deutsch, and
P. S. Jessen, “Continuous weak measurement and nonlinear dy-
namics in a cold spin ensemble,” Phys. Rev. Lett. 93, 163602
(2004).

51K. Jacobs and D. A. Steck, “A straightforward introduction to
continuous quantum measurement,” Contemp. Phys. 47, 279–
303 (2006).

52J. Ramı́rez, W. Yu, and A. Perrusqúıa, “Model-free reinforce-
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J. Suh, and J. Cha, “On-chip microwave frequency combs in
a superconducting nanoelectromechanical device,” Nano Lett.
22, 5459–5465 (2022).



25

66Y. Seis, T. Capelle, E. Langman, S. Saarinen, E. Planz, and
A. Schliesser, “Ground state cooling of an ultracoherent elec-
tromechanical system,” Nat. Commun. 13, 1507 (2022).

67Y. Liu, H. Sun, Q. Liu, H. Wu, M. A. Sillanpää, and
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