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Exceptional points, a remarkable phenomenon in physical systems, have been exploited for sensing
applications. It has been demonstrated recently that it can also utilize as sensory threshold in which
the interplay between exceptional-point dynamics and noise can lead to enhanced performance. Most
existing works focused on second-order exceptional points. We investigate the stochastic dynamics
associated with high-order exceptional points with a particular eye towards optimizing sensing per-
formance by developing a theoretical framework based on pseudo-Hermiticity. Our analysis reveals
three distinct types of frequency responses to external perturbations. A broad type of stochastic
resonance is uncovered where, as the noise amplitude increases, the signal-to-noise ratio reaches a
global maximum rapidly but with a slow decaying process afterwards, indicating achievable high
performance in a wide range of the noise level. These results suggest that stochastic high-order
exceptional-point dynamics can be exploited for applications in signal processing and sensor tech-
nologies.

I. INTRODUCTION

Non-Hermitian systems arise commonly in physical
systems, quantum or classical. For example, when a
quantum system is placed in an environment or a “bath”
with mutual interactions with the surroundings, the en-
ergy of the system is no longer conserved and it becomes
non-Hermitian [1–6]. From a mathematical point of view,
an imaginary part of the eigenenergy emerges, making it
complex [7–14]. One approach to achieving real eigenen-
ergies in a non-Hermitian system is by introducing
pseudo-Hermiticity. Historically, the concept of pseudo-
Hermiticity was first studied by Dirac and Pauli [15] and
was further developed by Mostafazadeh [16–18], who ex-
ploited pseudo-Hermiticity to define general conditions
for the real spectrum: UHU−1 = H†, where U is a
linear Hermitian operator. For non-Hermitian quan-
tum systems with energy dissipation, the fundamental
governing equation is the master equation in the Lind-
blad formalism [19, 20]. Experimentally, the originally
infinite sharp energy levels in the closed system be-
come broadened, leading to various resonances with a
finite width [21], which are characteristic features of non-
Hermitian quantum systems. Due to the equivalence be-
tween the Schrödinger equation and the classical wave
equations [22, 23], non-Hermiticity of different physical
origins can also arise in a variety of classical systems,
such as classical electric circuits with Joule heating [24–
27] and photonics devices with gain and loss of photons
described by the Maxwell equations [28, 29].

A remarkable phenomenon in non-Hermitian physical
systems is the occurrence of exceptional points (EPs) [30–
32]. An EP is the point in the parameter space at which
n (n ≥ 2) eigenvalues of the non-Hermitian Hamiltonian
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matrix and their eigenstates coalesce and emerge as a
branch-point singularity. A low-order or second-order EP
is referred to as n = 2, while n ≥ 3 defines a high-order
EP. An EP differs from a diabolic point in conventional
spectral analysis at which some eigenvalues are degener-
ate, but not their associated eigenstates. In sensor appli-
cations based on photonic, acoustic, or electronic systems
exhibiting resonances [25, 33–35], EPs can be exploited
to amplify the sensitivity [36] of the sensor, a feat that
cannot be achieved through a diabolic point. In particu-
lar, for a diabolic point, when a perturbation or a weak
signal of the strength ε ≪ 1 is applied to the system,
the splitting of the energy or frequency measured in the
transmission or reflection spectrum is proportional to ε.
However, for an EP, the energy splitting can be ε1/(n−1).
The higher the order of an EP, the more sensitive the sen-
sor response. The enhancement of the system response
about an EP provides a physical mechanism to optimize
the sensitivity of the sensors based on detecting the fre-
quency splitting, such as microcavity sensors [36, 37], op-
tical gyroscopes [38], weak magnetic field sensors [39, 40],
and nanomechanical mass sensors [41–43].

In the study of EPs, the symmetries of the system
play an important role [44]. In non-Hermitian physical
systems, the parity-time (PT) symmetry is fundamental.
For example, in a hard-core Bose gas modeled by the
Toda lattice [45] with the Fermi’s pseudopotential [46],
the PT symmetry can produce the entire real spectrum
in the non-Hermitian matrices [47]. A spontaneous PT
symmetry breaking [48, 49] occurs when some eigenstates
of the Hamiltonian are not the eigenstates of the PT op-
erator, making some pairs of eigenvalues complex conju-
gate to each other and generating the PT-broken phase.
In this case, a second-order EP emerges between the PT-
exact and PT-broken phases. The low-order EP with
PT symmetry can be realized in a variety of physical
and engineering systems, e.,g., as gain-loss structures
in optics [50–53], electronics [54–56], microwaves [57],
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mechanics and acoustics [58, 59], superconducting cir-
cuits [60–62], as well as spin [63] and atomic systems [64].
These systems provide rich experimental settings for in-
vestigating various phenomena associated with low-order
EPs, such as unidirectional invisibility [65, 66], sensitiv-
ity measurement [67, 68], and Berry phase induced from
encircling EPs [3, 69–71].

While high-order EPs exhibit merits over low-order
EPs such as sensitivity [33, 72, 73], spontaneous emis-
sion enhancement [74], and certain topological charac-
teristics [75–77], experimental implementation of high-
order EPs with the PT symmetry is challenging [26, 78].
For example, to generate a third-order EP, in between
gain and loss resonators, a neutral resonator is re-
quired [26, 79]. To realize such a device, completely loss-
less and gainless features are needed, with equal coupling
between the adjacent resonators. Accordingly, pseudo-
Hermitian structures without the PT symmetry was pro-
posed [26, 29] to generate high-order EPs in a cavity op-
tomechanical system, which only requires gain and loss
elements. Such a design somewhat relaxes the constraint
and provides more freedom in the design of high-order
EP based sensors. With the state-of-the-art experimen-
tal technologies, high-order EPs in pseudo-Hermitian sys-
tems have begun to be realized in cavity magnonics [80],
cavity optomechanical systems [26, 29, 81], photonic Lieb
lattices [82], and the Su-Schrieffer-Heeger chain [83].

The interplay between noise and EP dynamics has at-
tracted recent attention. The phenomenon of stochastic
EP was uncovered recently in a sensor system with the
PT symmetry and a second-order EP [27]. In particu-
lar, with a weak periodic signal as the input, the sensory
threshold fluctuates with random PT-phase transitions,
suggesting that noise can serve to enhance the sensor per-
formance. This work [27] thus built up a bridge between
EP dynamics and the paradigmatic and extensively stud-
ied phenomenon of stochastic resonance [84, 85], where
noise can be used to optimize the system’s response to
weak signals in terms of measures such as the signal-
to-noise ratio (SNR). So far, this connection has been
explored for second-order EP systems with the PT sym-
metry.

In this paper, we investigate stochastic high-order EP
dynamics in pseudo-Hermitian systems. To make feasible
experimental implementation, we generalize the neces-
sary conditions for stochastic low-order EP [27] in terms
of the complex relation between the system’s eigenfre-
quencies and external disturbance by introducing a more
general physical framework for high-order EPs. We iden-
tify three distinct types of frequency responses of the
system to perturbations, suggesting that stochastic high-
order EP can be exploited for designing highly sensitive
and robust sensors. Our main finding is the emergence of
a remarkable skewed stochastic resonance: as the noise
amplitude increases, the SNR increases and reaches the
maximum rapidly, followed by a significantly slow de-
cay. The implication is that a wide range of the noise
level can be used to achieve the optimal or near optimal

SNR. While this is akin to the phenomenon of stochas-
tic resonance without tuning [86, 87], we note that the
latter typically occurs in spatially extended dynamical
systems that presents a challenge for experimental imple-
mentation as sensors. To our knowledge, our stochastic
high-order EP system represents a class of non-spatially-
extended systems in which an extensive stochastic reso-
nance can arise.
A relevant question is how the SNR depends on the

signal amplitude. To address this question, we note that
a purpose of generating an EP is for its use as a sensory
threshold in scenarios that involve weak periodic signals.
About an EP, the system can be highly sensitive to small
perturbations, and this sensitivity plays a crucial role in
the SNR. In particular, the sensor can be so designed
that the weak periodic input signal is “at” or “below”
the sensory threshold. This means that, in the absence
of noise, the signal would not be strong enough to pro-
duce an output response. However, when noise is intro-
duced into the system, it can induce random transitions,
thereby enhancing the sensor’s performance. We thus
have the characteristics of the phenomenon of a stochas-
tic resonance, where noise can “push” the signal beyond
the threshold, allowing an output event to be detected.
The noise strength is critical, as it determines how fre-
quently and by how much the signal exceeds the thresh-
old, thus impacting the SNR. While the SNR depends
on the noise strength, the relationship also hinges on the
interplay between noise and the signal amplitude, with
certain noise levels optimizing sensor performance and
maximizing the SNR. In particular, the dependency of
the SNR on the signal amplitude is closely tied to the
noise level, especially before or at an EP that acts as a
sensory threshold. For signals with such an amplitude,
the output amplitude increases with the rising noise level.
However, this does not necessarily improve the output
signal. If the noise level surpasses a certain threshold,
the output becomes dominated by noise, thereby losing
the meaningful signal information. Overall, the optimal
conditions for maximizing the SNR are contingent upon
maintaining a balanced noise level that is sufficient to
enhance the signal without overwhelming it and causing
degradation.

II. HIGH-ORDER EXCEPTIONAL POINTS

A. Basics

The types of physical systems in which EPs arise are
generally open and are described by a non-Hermitian
Hamiltonian. To be concrete, we consider a system rep-
resented by an n × n effective Hamiltonian matrix H0

and a parameter ε characterizing some perturbation Ĥ
to the system. The total Hamiltonian is H = H0+ Ĥ(ε),
whose eigenvalues determine the system’s response to the
perturbation. The resultant eigenvalue splittings repre-
sent measurable output quantities accessible through a
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spectral analysis. Figure 1 schematically illustrates the
real and imaginary parts of the eigenvalues as a function
of ε for a system with EP. In particular, because of the
non-Hermitian nature of the Hamiltonian, the eigenval-
ues ω are generally complex, where the real and imagi-
nary parts characterize the frequency and the linewidth
of the system response, respectively. For values of ε in an
open interval, the eigenvalues are typically distinct. An
EP is the value of ε at which both the real and imaginary
parts of the eigenvalues coalesce, as shown in Fig. 1.

FIG. 1. Schematic illustration of the real (top) and imaginary
(bottom) components of the eigenvalues as a function of the
perturbation ε. The critical value of the perturbation at which
the eigenvalues and corresponding eigenvectors of the system
coalesce is εEP .

Let Re{δω} and Im{δω} be the real and imaginary
parts of the eigenvalue splittings, respectively. The Q
factor of the system, defined as

Q = Re{δω}/(2Im{δω}),

is often used as an index in resonator circuits, which
indicates the sharpness of the dip within the measured
reflection-spectrum curve. In general, a larger real part
and/or a smaller imaginary part of the eigenfrequency
spitting can lead to a larger Q factor, yielding higher
spectral resolution. Experimentally, the eigenfrequency
with the smallest imaginary part corresponds to the
sharpest detectable reflection spectral dip.

B. Scenarios for emergence of high-order
exceptional points

As the magnitude of the perturbation changes, there
are three common scenarios through which an EP can

arise: branch, monotonic, and non-injective.

FIG. 2. Emergence of an EP through a branch structure. (a)
Real part of frequency splitting Re{δω} versus the magnitude
ε of the perturbation, where an EP arises at εEP . (b) Conse-
quence of the EP: for ε ≳ εEP , a pair of dips in the reflection
coefficient are created at fEP ± f1, where f1 is the absolute
value of Re{δω} at ε ≳ εEP in (a).

a. Branch scenario. This scenario arises when the
system exhibits a branch-like response to the perturba-
tion, as illustrated in Fig. 2. At the critical bifurcation
point εEP , all the eigenvalues and their corresponding
eigenvectors coalesce. For ε < εEP , the real part of the
splitting of the eigenvalue with the smallest imaginary
part, Re{δω}, is constant. For ε > εEP , Re{δω} has two
possible values with opposite signs, which are symmet-
ric to each other with respect to the ε-axis, as shown in
Fig. 2(a).
To give a physical example, consider an open cavity

that reflects and transmits an incoming wave and the
quantities of interest are the reflection and transmission
coefficients as a function of the frequency. A small pos-
itive deviation from the critical point εEP toward the
right will simultaneously lead to a positive and negative
shift in the frequency: ±Re{δω}, giving rise to two dips
in the reflection coefficient at fEP ± f1, respectively, as
shown in Fig. 2(b). Accordingly, at each of the two dips,
the transmission coefficient exhibits a peak.
Monotonic scenario. In this scenario, as the pertur-

bation is strengthened, the system’s frequency response
changes monotonically, as illustrated in Fig. 3, where
there is a critical saddle point at εEP . For ε deviating
from εEP , the real part of the eigenvalue with the small-
est imaginary part does not split but shifts by a small
amount with its sign depending on whether the pertur-
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FIG. 3. Monotonic scenario. (a) Real frequency shift Re{δω}
versus the perturbation about the critical value εEP . Depend-
ing on whether ε is below or above εEP , the amount of the
shift is negative or positive, respectively. (b) The resulting
dips in the reflection coefficient, one for ε < εEP and another
for ε > εEP . Frequency filtering can be employed to remove
a dip.

bation is smaller or larger than εEP . In particular, for
ε ≲ εEP , the frequency shift Re{δω} is negative but it is
positive for ε ≳ εEP , as shown in Fig. 3(a). In this case,
a perturbation smaller or larger than εEP result in two
distinct values of Re{δω} with opposite signs, leading to
two asymmetric dips in the spectrum of the reflection co-
efficient, one below and another above fEP , as shown in
Fig. 3(b). Because of the monotonic behavior of Re{δω}
with respect to variations of the perturbation, it is pos-
sible to extract the system response from one side of the
EP. For example, a filter can be employed to remove the
frequency response of the system to perturbations smaller
than εEP , as shown by the dash-dotted curve in Fig. 3(a),
leaving the frequency response unchanged in spite of the
perturbation (represented by the red solid line).

Non-injective Structure. Figure 4 shows the non-
injective structure of the system response to the applied
perturbation with respect to an EP or the bifurcation
point at εEP . The system lacks the injective properties,
i.e., there is no one-to-one mapping between the distinct
elements of its output domain and those of the input do-
main. In particular, Fig. 4(a) illustrates that the system’s
response is nearly symmetric around the EP. Figure 4(b)
schematically illustrates two examples of the response of
the system in terms of the reflection coefficient, which in-
dicate a rightward shift in both cases. As a result, distin-
guishing between the response corresponding to ε < εEP

(yellow) and ε > εEP (green) becomes infeasible.

In general, in a non-injective structure, the response
of the system is approximately symmetric with respect
to the EP, so both larger and smaller perturbations can

FIG. 4. A non-injective structure. (a) Real frequency split-
ting Re{δω} for different perturbations. (b) A schematic il-
lustration of the response of a system in terms of the reflec-
tion coefficient under a perturbation. Any perturbation leads
to a frequency shift to the right. An example for ε < εEP

(ε > εEP ) is shown in yellow (green).

cause a similar shift in the frequency spectrum. As a
result, it becomes difficult to distinguish whether a par-
ticular frequency shift is caused by a perturbation below
or beyond the EP, complicating the system’s use as a re-
liable threshold sensor. Essentially, the system is unable
to provide a directional response, i.e., to respond only
when the perturbation exceeds a certain threshold value,
because perturbations on either side of the EP would
produce a similar spectral shift. A concrete example (a
PT-symmetric electrical circuit based on a sixth-order
EP) is provided in Sec. III.
It is worth emphasizing that, for a system designed to

function as a threshold sensor, it is critical that the struc-
ture is injective, meaning that the response is monotonic
and distinct in one direction only, either for perturba-
tions above or below the threshold. An EP-based sensor
intended to function as a sensory threshold should have
a structure where the response is confined to one branch,
ensuring that only perturbations above (or below) the
EP elicit a detectable output. In a non-injective struc-
ture, this condition is not met, and the sensor becomes
unsuitable for threshold applications.

C. Stochastic resonance

Stochastic resonance is a fundamental phenomenon in
nonlinear and statistical physics [85, 88–90], where an op-
timal level of noise can have a beneficial role in enhancing
the system’s response to weak inputs. Recently, stochas-
tic processes in EP-based structures were investigated
in [27], opening the door to innovative sensor designs ca-
pable of exploiting the inherent noise of the system to
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achieve improved performance with implications across
diverse application domains.

In the theory of stochastic processes, the EPs in cer-
tain structures exhibit a unique capacity: they can op-
erate as dynamic sensory thresholds, generating random
frequency shifts when subject to a time-varying input.
In these systems, EPs play a role in separating two dis-
tinct phases of the system response, one which is in-
sensitive to the input (Re{δω} = 0) and another that
is sensitive Re{δω} > 0. Further, the system is able
to exploit the fluctuations induced by noise to its ad-
vantage, thereby enhancing its sensitivity to weak input
variations, a stochastic-resonance like phenomenon. To
quantify a stochastic resonance in a system with an EP,
we analyze whether the additional noise paradoxically
increases the sensor’s SNR. Our aim is to demonstrate
that a stochastic resonance around the EPs (stochastic
EPs) can be exploited for developing sensors capable of
functioning effectively under environmental fluctuations.

It is worth noting that the primary difference between
a second-order EP and a higher order EP lies in their
sensitivity to perturbations. For the latter, such as a
third-order EP, the system’s sensitivity can increase sig-
nificantly compared to a second-order EP. This sensitiv-
ity can be quantified by the relationship ϵ1/(n−1), where
n denotes the order of the EP. Consequently, a system
operating at a third-order EP is more sensitive to noise
than one at a second-order EP, meaning that even smaller
perturbations can induce a larger response. Practically,
this enhanced sensitivity can lead to a steeper initial rise
in the SNR as the noise amplitude (σ) increases, because
the system is more responsive to stochastic fluctuations.
However, due to this heightened sensitivity, a higher-
order EP system reaches the critical noise level sooner,
beyond which the SNR begins to decrease. This contrasts
with a second-order EP, where the system is less sensitive
to perturbation, causing the critical noise level to occur
at a higher amplitude. Overall, while both second-order
and higher-order EPs show an increase in the SNR with
noise up to a critical value followed by a decline, a system
with a higher-order EP may reach its peak SNR earlier
and is more sensitive to small noise perturbations.

To offer a more comprehensive understanding of the
three EP structures, we study each within the context of
electrical sensors through case studies.

III. STOCHASTIC RESONANCE IN SYSTEMS
WITH HIGH-ORDER EXCEPTIONAL POINTS

Our prototypical system consists of three inductively
coupled resonators as a wireless sensor [26], which are de-
scribed by a pseudo-Hermitian effective matrix, as shown
in Fig. 5(a). The sensor can be designed to exhibit
a high-order EP in both branch and monotonic struc-
tures, thereby capable of operating as a dynamic sen-
sory threshold. The system equations can be derived by
a standard circuit analysis. In particular, the three in-

   

   

   

FIG. 5. System of three inductively coupled resonators as
a wireless sensor. (a) A schematic illustration of the circuit
system. (b,c) Real and imaginary parts of the eigenfrequency
of the system (3) as a function of mutual coupling param-
eter κ12, respectively. Other parameter values are α = 50,
γ = 0.1, κ13 = 0, and κ23 = (1 + α)3/2κ12. The response of
the three coupled RLC resonators exhibits a branch structure:
for κ12 < κEP , the perturbed system has one real eigenfre-
quency (ω3 = 0) and two complex conjugate eigenfrequencies,
whereas for κ12 > κEP , it has three distinct real eigenfrequen-
cies.

ductors are coupled through electromagnetic induction in
which the voltages VLn

and currents In flowing through
the inductors are related to each other asVL1

VL2

VL3

 = iω

 L1 M12 M13

M12 L2 M23

M13 M23 L3

I1I2
I3

 , (1)

where Ln are the inductances and Mnk (n, k = 1, 2, 3) is
the mutual inductance. Applying the Kirchhoff voltage
law, we have

iωI1 + iωM12
L1

I2 + iωM13
L1

I3 + R1
L1

I1 + 1
ic1L1ω

I1 = 0, (2a)

iωM12
L2

I1 + iωI2 + iωM23
L2

I3 + R2
L2

I2 + 1
ic2L2ω

I2 = 0, (2b)

iωM13
L3

I1 + iωM23
L3

I2 + iωI3 + R3
L3

I3 + 1
ic3L3ω

I3 = 0. (2c)

These equations can be recast into a Schrödinger-type of
equation:

iİ = HI, (3a)
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H =


−iR1

L1
− 1

C1L1ω
M12
L1

ω M13
L1

ω

M12
L2

ω −iR2
L2

− 1
C2L2ω

M23
L2

M13
L3

ω M23
L3

−iR3
L3

− 1
C3L3ω

 ,(3b)

where I = (I1, I2, I3)
T are the system variables and H

is the effective Hamiltonian operator. The simplified
approximation of Eq. (3) can be obtained by assum-
ing ω ≈ ω0 and defining the resonant frequencies as
ω0 = 1/

√
CnLn with Ln = L and Cn = C. The gain/loss

parameter is γn = Rn

√
C/L and the inductive coupling

coefficient is κnk = Mnk/L. The effective Hamiltonian is

then reduced to H = ω0(H̃ − I):

H̃ =

−iγ1 κ12 κ13

κ12 −iγ2 κ23

κ13 κ23 −iγ3

 , (4)

where I is a 3 × 3 identity matrix. Using the substi-
tution ω̃ = 1 + ω/ω0, we can calculate the eigenfre-
quencies through the associated characteristic equation

det
(
H̃ − ω̃I

)
= 0:

ω̃3 + i (γ1 + γ2 + γ3) ω̃
2

−
(
κ2
12 + κ2

13 + κ2
23 + γ1γ2 + γ1γ3 + γ2γ3

)
ω̃

−
(
2κ12κ13κ23 + i

(
γ1γ2γ3 + γ1κ

2
23 + γ2κ

2
13 + γ3κ

2
12

))
= 0.

(5)

The real and imaginary parts of the characteristic equa-
tion are, respectively,

ω̃3 −
(
κ2
12 + κ2

13 + κ2
23 + γ1γ2 + γ1γ3 + γ2γ3

)
ω̃ (6)

− (2κ12κ13κ23) = 0,

and

(γ1 + γ2 + γ3) ω̃
2 (7)

−
(
γ1γ2γ3 + γ1κ

2
23 + γ2κ

2
13 + γ3κ

2
12

)
= 0.

From the characteristic equation, we can then determine
the conditions for the system to be pseudo-Hermitian and
the conditions under which a third-order EP can emerge.

Pseudo-Hermiticity. A system whose Hamiltonian
can be related to its adjoint through a similarity trans-
formation is a pseudo-Hermitian system satisfying

det
(
H̃ − ω̃I

)
= det

(
H̃† − ω̃I

)
.

For a symmetric Hamiltonian, this condition can be sim-
plified to

det
(
H̃ − ω̃I

)
= det

(
H̃∗ − ω̃I

)
or

Im{det
(
H̃ − ω̃I

)
} = 0,

which is Eq. (7) with the following conditions:

γ1γ2γ3 + γ1κ
2
23 + γ2κ

2
13 + γ3κ

2
12 = 0, (8a)

γ1 + γ2 + γ3 = 0, (8b)

where the condition (8b) stipulates a balance between
the total gain and loss of the system. We consider the
first resonator’s gain γ1 = −g and the other resonator’s
losses γ2 = αγ3, leading to

γ2 =
αg

1 + α
,

γ3 =
g

1 + α
.

Exceptional point. From Eq. (6), we see that a third-
order EP arises when the following conditions are met:

κ2
12 + κ2

13 + κ2
23 + γ1γ2 + γ1γ3 + γ2γ3 = 0, (9a)

2κ12κ13κ23 = 0, (9b)

where the condition (9b) can be satisfied only if one of
the coupling coefficients is zero. For κ13 = 0, we can
solve Eqs. (8a) and (9a) to obtain

κ12 = g

√
1 + α

2 + α
, κ23 =

g

(1 + α)
√
2 + α)

. (10)

The last possible case is κ23 = 0. In this case, Eqs. (8a)
and (9a) do not have a solution.
In Ref. [78], the constraints needed for the emergence

of EPs in the presence of symmetries were described,
where an nth-order EP can emerge when 2(n − 1) real
constraints are satisfied. Our goal is to study the emer-
gence of higher-order EPs within the context of pseudo-
Hermitian systems. To generate a stable nth-order EP,
both the pseudo-Hermiticity and EP conditions need to
be satisfied, where n eigenvalues and their correspond-
ing eigenstates coalesce. For example, Eqs. (8a) and (8b)
define the pseudo-Hermiticity condition, while Eqs. (9a)
and (9b) ensure the existence of a third-order EP. Al-
together, four constraints need to be satisfied, which is
consistent with the previous result [78].
In general, the feasibility of realizing higher-order EPs

in one-dimensional space depends on the realization of
the pseudo-Hermitian matrix. It is necessary that the
conditions for both pseudo-Hermiticity and EP be satis-
fied. For instance, the condition in Eq. (9b) can only be
satisfied if one of the coupling coefficients is zero. Yet,
for κ23 = 0, the system becomes infeasible, as Eqs. (8a)
and (9a) no longer have a solution. This illustrates the
delicate balance needed to generate a higher-order EP in
practical systems.
In the following, we study two distinct physical per-

turbation scenarios, each with its potential applications
in threshold sensing, and present a circuit system with a
non-injective structure that is not suitable for threshold
sensing.
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A. Mutual coupling κ12 as a perturbation

For κ13 = 0, Eq. (6) leads to three eigenfrequencies
that evolve smoothly as a function of the perturbation
κ12. Figures 5(b) and 5(c) show the real and imaginary
parts of the eigenfrequency, respectively. It can be seen
that, when κ12 is perturbed, the response of the three
coupled RLC resonators has a branch structure. Before
the EP, Re{δω} = 0 and the system is insensitive to the
input. At the bifurcation point κEP , all eigenfrequen-
cies and their corresponding eigenvectors coalesce, and
a small added perturbation can abruptly induce a fre-
quency shift and result in a strongly nonlinear response.
Now consider a time-varying inductive coupling parame-
ter κ12(t), where the input signal can be decomposed as
κ12(t) = κb + κssin(νt) with κb the dc part of the cou-
pling strength, κs the amplitude of the oscillatory part,
and ν the angular frequency. To investigate stochastic
resonance in such a structure, we consider white noise
with standard deviation σ added to the time-varying cou-
pling κ12(t), where κb + κs ≤ κEP . For κ12(t) ≤ κEP ,
a stochastic EP arises as a sensory threshold, resulting
in an intermittent output of random frequency shift, as
shown in Fig. 6(d), with a spectral peak at the signal
angular frequency ν.

The effect of the stochastic EP can be quantified by
the SNR of the output, which is the ratio of the signal
power to the background noise power. To calculate the
SNR statistically, we need the power spectral density -
the Fourier transform of the autocorrelation function of
the output. The power of the signal is proportional to
the peak height of the power spectrum at the frequency
of the time-varying input. Since all the spectrum other
than the peaks is the background noise, the power of the
noise is the sum of the rest of the spectral densities at
the other frequencies. Figure 6(e) shows that the SNR of
the system has a broad peak in σc > 0. Initially, as σ in-
creases from zero, the SNR rapidly increases, suggesting
that the noise paradoxically enhances the performance
of the sensor. This observation holds up to an optimal
level of the noise σc, where the SNR gradually decreases
beyond this point. This result indicates that stochas-
tic high-order EP not only amplifies the sensitivity to
perturbations but also contributes to an overall improve-
ment in the system performance, which is characteristic
of a stochastic resonance. The remarkable feature is that
the SNR initially increases rapidly with the noise am-
plitude and, after reaching the maximum at an optimal
noise level, the SNR decreases slowly. This gives rise to
a wider range of the noise amplitude around the opti-
mal noise to achieve a relatively large SNR. The phe-
nomenon can be exploited for practical applications of
sensors such as wearable sensors in which a stochastic
EP arising from physiological motion overcomes the neg-
ative effect of noise, resulting in more accurate tracking
of a person’s vital signs [27].

   

   

   

   

   

FIG. 6. Emergence of a stochastic resonance through a
stochastic EP as a sensory threshold. (a) Input sinusoidal
signal κ12(t) of amplitude κb + κs = 0.099. (b) Gaussian
white noise of amplitude σ = 0.03. (c) The noisy input sig-
nal. (d) Output of the system, a sequence of the pulses that
appear randomly in time. (e) SNR as a function of the noise
amplitude σ. This smooth and broad SNR curve is obtained
by averaging 1000 independent realizations of the process and
the shaded area indicates the standard deviation. Other pa-
rameter values are α = 50, γ = 0.1, and κ13 = 0.

B. Capacitive Perturbation ε

Consider a capacitive perturbation ε applied to the
relay resonator at EP, where κ13 = 0, κ12 and κ23 take
on values as in Eq. (10). The characteristic equation of
the perturbed system is

det
(
Ĥ − εHe − ω̂I

)
= 0,
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FIG. 7. Effect of a capacitive perturbation on the EP dy-
namics. Shown are the (a) real and (b) imaginary parts of
the eigenfrequency evolution of the system (3) as a function
of the perturbation ε for α = 1, γ = 0.1, κ13 = 0, and
κ23 = (1+α)3/2κ12. (c) Reflection spectrum of the system in
response to a capacitive perturbation. Shown is the eigenfre-
quency shift in response to the perturbation ε.

where He is a 3× 3 matrix that has one nonzero element
on the second entry of the main diagonal. We have

ω̂3 − εω̂2 + iε
αg

1 + α
ω̂ − ε

g2

1 + α
= 0. (11)

Fixing α = 1 and g = 0.1, the real and the imaginary
parts of the eigenfrequency can be obtained by solving
Eq. (11), as shown in Fig. 7(a) and 7(b), respectively.
It can be seen that any small perturbation applied to
the EP (the bifurcation point of the system) gives rise
to three different complex numbers, among which only
one has physical significance: the eigenfrequency associ-
ated with a higher spectral resolution, in close relation
to having a higher Q factor or a narrower linewidth split-
ting Im{δω}. This suggests the eigenfrequency with the
smallest magnitude of the imaginary part as the feasi-
ble choice for sensing applications, corresponding to the
green curve ω̂1 for ε < 0 and the red curve ω̂2 for ε > 0 in
Fig. 7. The eigenfrequency shift in response to the per-
turbation ε at EP exhibits a monotonic pattern, where

the response of the system corresponding to one side of
EP can selectively be filtered out, e.g., the green dot-
dashed part of the response in Fig. 7(c). In this case, the
system has a saddle point εEP . The system’s response
to perturbations smaller than EP is unresponsive to the
input (it is filtered out) and a small perturbation larger
than EP can abruptly induce a frequency shift leading to
a highly nonlinear response.

We now study the case where the input signal is the
time-varying coupling parameter: ε(t) = εb + εs sin(νt),
where εb is the dc part of the coupling strength, εs the
amplitude of the oscillatory part, and ν is the angular
frequency, and εb + εs ≤ εEP , as shown in Fig. 8(a). To
induce a stochastic resonance, we add Gaussian white
noise of amplitude σ, as shown in Fig. 8(b), to ε(t). The
resulting noisy input signal is shown in Fig. 8(c), where
ε(t) ≤ εEP . The output of the system is intermittent, as
shown in Fig. 8(d), corresponding to a random frequency
shift with a spectral peak at the signal angular frequency
ν. Figure 8(e) shows the the SNR of the system versus
the noise amplitude. The SNR first rises quickly with
the noise, reaches a maximum at the optimal noise am-
plitude σc, and then decreases slowly afterwards. This
is indicative of a stochastic resonance in the presence of
a stochastic high-order EP, signifying an enhancement
in the system’s performance assisted by noise in a wide
range.

C. A PT-symmetric electrical circuit

We consider a PT-symmetric electrical circuit based on
a sixth-order EP, which is composed of two LC resonators
parallel with a resistor coupled with a grounded capacitor
C0, as shown in Fig 9(a). Using the current Kirchhoff’s
law with normalization τ = ω0t, we have that the reso-
nant frequency is ω0 = 1/

√
LC, the intrinsic loss or gain

rate of the LC resonator is γ = R
√
C/L, and the cou-

pling coefficient between the two resonators is µ = C/C0.
The voltages at various nodes of the circuit can be recast
into the Schrödinger-type equation as:

iΦ̇ = HΦ, (12a)

H = i


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 1 0 −γ 0 0
µ −2µ µ 0 0 0
0 1 −1 0 0 γ

 . (12b)

The eigenfrequencies can be found through the associated
characteristic equation det(H − ωI) = 0:

ω2[ω4+
(
γ2 − 2− 2µ

)
ω2+1+2µ−2µγ2] = 0, (13)
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where I is the 6× 6 unity matrix. Solving Eq. (13) leads
to six eigenfrequencies as:

ω∗
1,2 = 0,

ω∗
3−6 = ± 1√

2

√
2 + 2µ− γ2 ±

√
γ4 + (4µ− 4)γ2 + 4µ2.

(14)

   

   

   

   

   

FIG. 8. Emergence of a stochastic resonance with a capaci-
tive perturbation, where a stochastic EP functions as a sen-
sory threshold. The system is described by Eq. (3). (a)
A time-varying sinusoidal input signal ε(t) of the amplitude
ε = −0.01. (b) Gaussian white noise of amplitude σ = 0.03.
(c) The noise input signal. (d) The output signal - a se-
quence of random pulses. (e) SNR versus the noise ampli-
tude, which is indicative of a stochastic resonance. Similar
to the resonance behavior in Fig. 6(e), the SNR initially rises
quickly with the noise amplitude and then decreases slowly
after reaching a maximum, giving rise to a relatively wide in-
terval of the noise amplitude for achieving a large SNR. Other
parameter values are α = 1, γ = 0.1, and κ13 = 0.

   

   

   

   

FIG. 9. A PT-symmetric sensing resonator with the negative
impedance that can be realized with an operational amplifier.
The system is described by Eq. (12). (a) The circuit diagram.
(b,c) Real and imaginary parts of eigenfrequency as a function
of perturbation ε to the parameter µ. (d) Eigenfrequency
shift in response to the perturbation ε. Other parameters are
µ0 = (−1 +

√
5)/4 and γ = (1 +

√
5)/2.

Figures 9(b) and 9(c) show ω∗
3−6 versus the perturba-

tion ε to the parameter µ. It can be seen that the
high-order EP at ω∗ = 0 holds for γEP = (1 +

√
5)/2

and µEP = (−1 +
√
5)/4. For perturbation ε < εEP ,

all the eigenfrequencies share the same absolute imag-
inary parts (Im{ω}) with different real parts, resulting
in the eigenfrequency shifts both to the right and to the
left associated with the reflection coefficient of the sys-
tem. For ε > εEP , the eigenfrequencies corresponding to
the smallest Im{ω} are highlighted in yellow and green,
which share the same absolute real parts. This implies
that the reflection coefficient of the system has eigenfre-
quency shift both to the right and to the left. Conse-
quently, the response of the system to perturbation cor-
responding to the smallest Im{ω} belongs to that of a
non-injective structure with a bifurcation point at εEP .
Figure 9(d) shows the absolute values of the frequency
shift with respect to the applied perturbation. Due to
the symmetric nature of the system’s response, the sen-
sor illustrated in Fig. 9 is not a suitable choice for sensory
threshold applications. Instead, a potential application
lies in enhancing the system’s sensory response rather
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than serving as a sensory threshold. A key factor is that
the system’s response to perturbations, whether they are
of higher or smaller values than the EP, cannot be reli-
ably distinguished [25].

In this example of a PT-symmetric electrical circuit,
there is a symmetric response to perturbations. Regard-
less of whether the perturbation is above or below the EP,
the eigenfrequency shifts to the right or the left, depend-
ing on the reflection coefficient of the system. Due to this
symmetry, the sensor presented in Fig. 9 cannot serve as
a threshold sensor because it lacks the ability to distin-
guish between higher and lower perturbations. Instead,
such systems are more suited for applications where en-
hancing overall sensitivity is the goal, rather than serving
as a threshold sensor.

IV. DISCUSSION

We have investigated the possibility of exploiting
pseudo-Hermitian systems for sensing applications, fo-
cusing on the dynamics about a high-order EP. The fre-
quency response of the sensory system with a high-order
EP to perturbations can be categorized into three sce-
narios: branch, monotonic, and non-injective. In each
case, the splitting in the real part of the frequency re-
veals EPs as a critical point around which the system
exhibits enhanced sensitivity to perturbations. A high-
order EP can enhance sensitivity, rendering it desired
for sensory threshold applications, where the system can
leverage the presence of noise to improve its performance.
We have demonstrated that the interplay among the ex-
ceptional point, perturbation as input signal, and noise
leads to a stochastic resonance. This stochastic resonance
associated with a high-order EP has one appealing fea-
ture. As indicated in Figs. 6(e) and 8(e) for two distinct
types of perturbations (input signals), the SNR versus
the noise amplitude exhibits a broad maximum. This
means that a precise tuning of the noise amplitude is not
required, as there exists a range of the amplitude in which
the SNR maintains at a high value. The phenomenon of
high-order EP induced stochastic resonance not only un-
derscores the practical applicability but also extends the
boundaries of potential applications in signal processing
and sensor technology.

The energy or frequency splitting at an EP follows an
exponential relationship with the strength of the pertur-
bation, expressed as ϵ1/(n−1), where n is the order of the
EP. This relation implies a significantly higher sensitivity
compared to that associated with a diabolic point found
in conventional sensors. In our work, we extended this
sensitivity to scenarios where the input signal is weak
and typically set at or below the sensory threshold. Un-
der such conditions, without noise, no detectable output

would be expected. However, due to the system’s ex-
treme sensitivity at the EP, even the intrinsic noise of the
system can act as a perturbation, enabling the detection
of an output. The SNR values depicted in Figs. 6 and 8
reflect this phenomenon, demonstrating that there exists
an optimal noise strength where the SNR is maximized.
This outcome is directly related to the exponential sensi-
tivity of the EP to perturbations, including noise. At low
noise levels, the input signal remains undetectable, while
at higher noise levels, the system becomes overwhelmed
by noise. As a result, there is an optimal noise strength
that enhances the SNR by leveraging the EP’s sensitiv-
ity to weak perturbations. For a fair comparison, the
original SNR value without any noise or perturbations
can be considered as a baseline value, where the system
would exhibit no detectable signal in the output due to
the input signal being below the threshold. The results
in Figs. 6 and 8 thus demonstrate how the introduction
of noise allows the system to surpass this baseline and
exhibit enhanced detection capability.
It is worth noting that the extended (monotonic)

structure is particularly appealing for real-world sens-
ing applications. It can arise in systems with PT or
pseudo-Hermitian symmetry, where broader experimen-
tal platforms are available compared with the branch-
type of structures. For example, in an optomechanical
accelerometer [28] consisting of a pair of Fabry-Péot mul-
tilayer cavities with loss and gain cavity, respectively, a
PT symmetric system with a second-order EP can be
constructed on a silicon platform. In this system, the
positive (negative) acceleration results in the right (left)
hand shift direction in spectra, which is exactly what
the monotonic structure exhibits. For pseudo-Hermitian
systems with a third-order EP [29] in cavity optomechan-
ics, the eigenvalue spectrum versus the detuning distur-
bance displays the extended structure since only the zero
imaginary part can be distinguished and observed in the
experiment. As a result, with the monotonic structure,
capacity as disturbance can then be applied to an ac-
celerometer for a wide range of applications [28, 91–93],
including navigation devices, gravity gradiometry, earth-
quake monitoring [94, 95], airbag deployment sensors in
automobiles, and consumer electronics protection. In ad-
dition, the capacity can also be designed as a hypersensi-
tive microfluid speed sensor (temperature sensor) [25, 96]
and pressure sensor [56, 97].
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