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In nonautonomous dynamical systems, rate-induced tipping (R-tipping) is a critical transition triggered by
the rate of change of a time-varying parameter, rather than its absolute value. In recent years, there is a
growing interest in R-tipping due to its relevance to significant problems of current interest, such as potential,
catastrophic collapse of various ecosystems induced by climate change. This Perspective Article provides a
brief overview of the basic concept, theory, and real-world implications of R-tipping from a global phase-space
point of view. The key quantity underlying the global approach is the probability of R-tipping defined with
respect to initial conditions in the phase space. A recently discovered scaling law governing this probability
and the rate of parameter change is introduced, with numerical support from a class of high-dimensional,
complex, and empirical ecological networks: pollinator-plant mutualistic networks. Issues such as prediction
of tipping and protection of ecosystems from R-tipping are discussed.

Once upon a time, there was a donkey grazing
near a river. At some distance from the river
there is a high ground. A flash flood had oc-
curred and the donkey began to run towards
the high ground. If the flood front did not
move so fast, the donkey would be able to get
to the high ground in time and survive. How-
ever, if the flood moved sufficiently fast, the don-
key would be swept into the water and would
not survive. In addition to the moving speed of
the water front, whether the donkey would sur-
vive also depends on its initial position: near or
far away from the river. For any specific posi-
tion, there is a critical speed of the flood, below
which there is survival but above which death
or extinction occurs. This is an intuitive pic-
ture of the phenomenon of rate-induced tipping,
or R-tipping. In nonlinear dynamics, if the sys-
tem is autonomous and bistable with two coex-
isting steady-state attractors, one corresponding
to survival and another to extinction, each with
its own basin of attraction, the basin boundary is
stationary, i.e., it does not move in time. When
a parameter changes with time so that the sys-
tem becomes nonautonomous, the basin bound-
ary will move with time. Whether a specific
initial condition will lead to system survival or
extinction depends on its location in the phase
space as well as the “speed” at which the basin
boundary moves. For an initial condition origi-
nally in the basin of the survival attractor, if it
moves more “slowly” than the basin boundary,
it will be swept into the basin of the extinction
attractor, leading to a tipping of its fate. For any
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such initial condition, there exists a critical speed
of the movement of the basin boundary, or a crit-
ical rate of the parameter change, above which
R-tipping will occur. For a given rate of param-
eter change, some initial conditions in the phase
space will experience R-tipping, while some oth-
ers will not by remaining in the basin of the sur-
vival attractor, in spite of the time variation of
the parameter. The probability of R-tipping can
then be defined for any given rate of parameter
change. How does this probability depend on the
rate? Characteristically, there are two possible
scenarios. If, as the rate becomes nonzero, this
probability increases from zero but slowly, a safe
interval will arise in the rate in which the proba-
bility remains at some near-zero value - a desired
situation. However, if the probability grows im-
mediately and drastically as soon as the rate of
parameter change increases from zero, no such
safe interval or region will exist. In this case, in
order to keep the probability of R-tipping dimin-
ishingly small, practically the rate of parameter
change must be reduced to zero. Unfortunately,
in nonautonomous dynamical systems, the de-
pendence of the probability of R-tipping on the
rate of parameter change tends to follow the sec-
ond scenario. This article presents mathematical
reasoning establishing such a dependence, or the
scaling law, and describe numerical support from
a class of complex, high-dimensional empirical
ecological networks: plant-pollinator mutualistic
networks. One implication is dire: in order to
protect ecosystems from climate change, the rate
of adverse parameter change, such as the rate of
emissions of chemicals into the atmosphere, must
be kept at near zero values.
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I. INTRODUCTION

A tipping point is a critical threshold within a complex
dynamical system where a small perturbation can lead
to significant and often irreversible system changes1–38.
Due to its implications for system stability and resilience,
the phenomenon of tipping has garnered substantial at-
tention across various scientific disciplines including cli-
mate science1,14,35, neuroscience8,18, and engineering9.
In autonomous dynamical systems, a tipping point is
the result of parameters reaching a critical level or of the
influence of noise, which are referred to as bifurcation-
induced tipping or noise-induced tipping14,37, respec-
tively. A common dynamical mechanism for tipping is
a backward saddle-node bifurcation where, as the bi-
furcation parameter increases through a critical point,
a stable steady state and an unstable one coalesce and
disappear together. Assume that the stable steady state
corresponds to a “healthy” or “survival” state of the sys-
tem. Before the bifurcation, there is bistability where the
“healthy” steady state and another steady state associ-
ated with the “collapse” or “extinction” of the system
coexist. After the bifurcation, the “healthy” steady state
no longer exists, leaving the “collapse” state as the only
attractor of the system. The backward saddle-node bi-
furcation thus leads to a tipping, after which the system
functions are destroyed.

Dynamical systems in the real world are often of the
nonautonomous type, due to the ubiquitous variations
of the systems parameters with time. For example,
influenced by the global climate change, the parame-
ters of many ecosystems can drift with time, making
them nonautonomous. When a parameter of the system
changes with time, its rate of change is of particular con-
cern - one example is the rate of carbon-dioxide emission
into the atmosphere, which has been increasing steadily
in recent decades. From the point of view of tipping,
one might tempt to think that the time rate of change of
a parameter may not be important, insofar as its value
has not reached the threshold for tipping. More specifi-
cally, consider the two cases where a bifurcation param-
eter of the system changes slowly or fast, respectively,
and suppose that the value of the parameter is still far
away from a tipping point from the bifurcation point of
view. In which case is a tipping event more likely? This
question was addressed in a series of seminal works3,8,14,
where the rate of the parameter change acts as a “super
parameter” of the system and can induce a tipping. This
is known as the phenomenon of rate-induced tipping, or
R-tipping.

The history of research on R-tipping and the current
status are briefly described, as follows. In 2008, Schef-
fer et al. proposed the critical-rate hypothesis suggest-
ing that the rate at which environmental changes oc-
cur can be more significant than the magnitude of those
changes in determining the long-term ecosystem states3.
The concepts of critical ramping rate and rate-dependent
tipping were introduced by Wieczorek et al. in 20108.

Subsequently, Ashwin et al.14,23 categorized three pri-
mary mechanisms that can lead to tipping in climate
systems: bifurcation-induced tipping, noise-induced tip-
ping, and R-tipping. A method to analyze R-tipping is
examining the bifurcation diagrams of the correspond-
ing autonomous system23,39. Another approach is con-
structing asymptotic series expansions to characterize
R-tipping40. The interplay between noise and the rate
of parameter change in triggering a tipping event was
studied41,42. R-tipping has also been investigated in
cases where the quasi-static attractor is not necessarily
an equilibrium state but can be periodic43, chaotic28 in
multi-dimensional44–46, discrete-time47, and spatiotem-
poral dynamical systems48. Furthermore, early warn-
ing signals, which are a critical indicator for detecting
tipping in dynamical systems, have been adapted to R-
tipping49–51.

Recent years have witnessed a steady growth of inter-
est in R-tipping due to its ubiquity in various natural and
man-made systems35,38,52,53. For example, R-tipping is
particularly relevant to phenomena induced by climate
change54,55. Rapid environmental changes, such as ac-
celerated global warming, can induce tipping events in
various components of the Earth’s climate system, in-
cluding ice sheets, ocean currents, and ecosystems35. For
example, the rapid melting of Arctic sea ice due to in-
creasing temperatures can trigger feedback mechanisms
that further accelerate ice loss and contribute to global
climate instability56,57. Ecosystems, characterized by
their complex interactions and nonlinear dynamics, are
also susceptible to R-tipping37,58. Rapid changes in envi-
ronmental conditions, such as deforestation, pollution, or
climate change, can push ecosystems past critical thresh-
olds, leading to regime shifts37. These shifts can result
in significant biodiversity loss and altered ecosystem ser-
vices59. For instance, coral reefs are highly vulnerable
to rapid increases in sea temperature and acidification,
which can cause widespread coral bleaching and degra-
dation60. Engineering systems, including power grids,
transportation networks, and industrial processes, are
not immune to R-tipping61. These systems often op-
erate under dynamic conditions where parameters such
as the load, demand, or operational settings can change
rapidly62. If the rates of these changes surpasses their
corresponding critical thresholds, system failures, cas-
cading outages, or catastrophic breakdowns can occur.

Most previous studies on R-tipping were from a lo-
cal perspective, focusing on initial conditions that are
proximate to the system’s steady state. The local ap-
proach is particularly effective if the system is always
near an equilibrium point. However, real-world phenom-
ena frequently occur far from some steady state due to
noise, disturbances, and inherent variabilities within the
system63–66. The nonequilibrium initial conditions can
significantly influence a system’s response to rapid pa-
rameter changes, making it essential to consider initial
conditions from a larger region of the phase space than
the vicinity of some equilibrium state36,59.
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FIG. 1. Probability of R-tipping versus the time rate of
parameter change: two possible scenarios. The first one, as
indicated by the black dashed curve, is that the R-tipping
probability increases from zero slowly with the rate, where
there is a “safe region” or “safe interval” of the rate in which
the probability remains at some near zero value, thereby pro-
viding opportunities of control or intervention to reduce the
rate of parameter change. The second scenario, as illustrated
by the solid blue curve, is that the R-tipping probability
grows dramatically and immediately as the rate of param-
eter change increases from zero. In this case, there is no
safe region: in order to keep the probability near zero, the
rate of parameter change must practically be reduced to zero.
Mathematical reasoning and numerical evidence from empir-
ical complex ecological networks tend to support the second
scenario for nonautonomous dynamical systems in the real
world.

In this Perspective Article, we provide an overview
of the R-tipping phenomenon from a global perspective.
The key quantity of interest is the probability of R-
tipping. In particular, for a given rate of the parameter
change, one chooses a large number of initial conditions
from a relevant region of the phase space. The prob-
ability of R-tipping is essentially the fraction of initial
conditions that lead to R-tipping for this particular rate
value. How does this probability depend on the rate of
parameter change? Heuristically, there are two scenar-
ios of possible dependence at the opposite extremes, as
illustrated schematically in Fig. 1. One is that the prob-
ability increases slowly from zero as the rate increases.
Such a “benign” dependence might be our hope, e.g., for
a climate system, as this means there is certain toler-
ance of the system against even fast parameter changes,
leaving rooms and opportunities for control and mitiga-
tion. The opposite scenario is that the probability of
R-tipping grows drastically and immediately as the rate
of parameter change increases from zero. In this case,
the system has no tolerance against any rate value, even
if it is small. The implication is dire: in order to avoid R-
tipping, the rate of parameter change must be reduced to
practically near zero values. Which scenario of R-tipping
do real-world dynamical systems tend to follow? The an-
swer, unfortunately, is likely to be the second scenario36.
Quantitatively, this scenario can be characterized by a
general scaling law between the probability of R-tipping

and the rate of parameter change. We shall describe a
mathematical theory to understand the scaling law and
numerical evidence from a class of complex real-world
ecological networks: the plant-pollinator networks from
different geographical regions of the world. The over-
all message is that, to prevent R-tipping from occurring
in ecosystems and climate systems, the time rate of pa-
rameter change, such as the rate of emissions of harm-
ful chemicals into the environment, must be significantly
suppressed and kept at near zero.

II. NECESSITY OF A GLOBAL PHASE-SPACE
APPROACH TO R-TIPPING

In real-world dynamical systems, parameters are not
stationary but constantly change with time. For exam-
ple, in climate systems, factors such as temperature and
CO2 emissions are not static but increase over time, in-
fluencing the system’s stability with potentially severe
consequences that can lead to the possible collapse of
the system. To gain a qualitative understanding of the
phenomenon of R-tipping in nonautonomous dynami-
cal systems from a global perspective, we compare it
with bifurcation-induced tipping in autonomous dynam-
ical systems.

         

            

   

FIG. 2. Schematic comparison of bifurcation-induced tipping
and R-tipping in a simple potential model. (a) Bifurcation-
induced tipping: static changes in the control parameter lead
to the disappearance of one steady state of the system. (b)
R-tipping: the state of the system is determined by both
the initial condition and the speed at which the parameter
changes.

For bifurcation-induced tipping, we consider the sce-
nario where, in the parameter regime of interest, two sta-
ble steady states (or attractors) coexist: a “left” state
corresponding to “normal” functioning, as highlighted
by yellow in Fig. 2(a), and a “right” or “abnormal” state.
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Each state has its own basin of attraction. If external
factors cause an increase in a bifurcation parameter of
the system, a tipping point can occur through a back-
ward saddle-node bifurcation, which is reached when the
“normal” fixed point disappears, leaving the “abnormal”
state as the sole attractor. As a result, the basin of at-
traction for the original “normal” state is absorbed into
that of the “abnormal” state. This means that, once
the system crosses this tipping point, it inevitably tran-
sitions to the “abnormal” state, with no possibility of
returning to the “normal” state through small pertur-
bations. This type of bifurcation highlights the criti-
cal threshold beyond which a system undergoes an irre-
versible transition to a drastically different state.

The R-tipping scenario is illustrated in Fig. 2(b).
Rapid variations of a parameter can trigger a critical
transition even if the parameter values remain within
some safe bounds. Consider the setting where, in the
range of parameter variations, the system exhibits bista-
bility with two coexisting stable steady-state attractors,
represented by yellow and blue, respectively, in Fig. 2(b).
Each state has its own basin of attraction, as indicated
by green and purple arrows, respectively. During the
transition, the basin of attraction of the left state (yel-
low) expands, while the basin of attraction of the right
state (blue) shrinks. In this case, the final state of the
system is determined by both the initial condition and
the speed at which the parameter changes. In particu-
lar, rapid parameter changes can push the system past
some critical threshold, causing it to settle into a differ-
ent stable state than it would under slower, more gradual
parameter changes.

Most previous studies of R-tipping focused on low-
dimensional dynamical systems from a “local” point of
view, emphasizing the behavior of specific initial condi-
tions in the vicinity of a stable equilibrium point and tra-
jectories to address issues such as the critical rate for tip-
ping. Commonly, R-tipping was conceived as an abrupt
change in the system behavior occurring at a specific
rate of change of a bifurcation parameter23. However,
real-world systems are inherently dynamic and often op-
erate under nonideal conditions66,67: they are constantly
influenced by external disturbances, fluctuating environ-
mental conditions, and inherent variability where dis-
turbances and stochastic variations are the norm rather
than the exception63,68. For example, ecological systems
are affected by changes in species interactions and en-
vironmental factors all the time, which in turn influ-
ence population dynamics and tability64–66. In these
contexts, species may face varying levels of predation,
competition, and resource availability, leading to com-
plex and unpredictable behaviors. The dynamic nature
of these systems means that they often drift away from
the equilibrium point, making them susceptible to tip-
ping events triggered by rapid changes in external condi-
tions. This variability necessitates the study of R-tipping
from a global perspective, taking into account the entire
relevant phase space rather than focusing solely on the

local dynamics surrounding the equilibrium point.
More generally, initial conditions away from an equi-

librium point can influence the system’s response to
rapid parameter changes, making it essential to consider
a broader range of initial conditions in R-tipping studies.
For example, in ecological systems, the natural variabil-
ity in species populations and environmental conditions
invalidate the assumption of initial conditions being near
some equilibrium. Similarly, in engineering systems, op-
erational parameters can drift due to external shocks or
internal variability, necessitating a comprehensive analy-
sis that accounts for a wide range of initial states. In fact,
the integration of diverse initial conditions into R-tipping
research is not merely an academic exercise, but a prac-
tical necessity for accurately assessing and managing the
risks associated with critical transitions in natural and
engineered systems. A early example of the dependency
of R-tipping on the initial condition was reported in a
thermoacoustic system69.

III. SCALING LAW OF R-TIPPING PROBABILITY

In our recent work36, a scaling law governing the de-
pendence of the probability of R-tipping on the rate of
parameter change was uncovered. To explain the scaling
law, we assume that a parameter of the system, denoted
as p(t), increases at the linear rate r from an initial value
p1 at time t = 0 to a final value p2 > p1 during the time
interval [0, T ] with T = (p2 − p1)/r. We assume a quali-
tative correspondence between the environmental condi-
tion and p(t): a smaller value of p indicates a relatively
more health state of the system. In ecosystems, such a
parameter could be, e.g., the decay rate of some species,
which tends to increase as the environment deteriorates
with time. Let Φ(r) be the probability of R-tipping. The
scaling law is

Φ(r) ∼ exp

[
−C

(p2 − p1)

r

]
, (1)

where C > 0 is a constant. This scaling law has the fol-
lowing features: (1) the probability Φ(r) is an increasing
function of r, (2) the derivative Φ′(r) is a decreasing
function of r, and (3) the maximum rate of increase in
Φ(r) occurs for r ≳ 0. The second feature indicates
that the rate at which Φ(r) increases slows down as r
increases, eventually approaching zero as r → ∞. The
third feature emphasizes the fact that, insofar as the pa-
rameter varies with time, even with a very small rate
of change, the chance of R-tipping can be nonzero and
large. This has alarming real-world implications: a slow
change in the parameter could still precipitate a system
collapse with catastrophic consequences, so simply slow-
ing down the rate of parameter change might not be
sufficient to prevent tipping. Instead, the rate of change
must be reduced to a nearly zero value to prevent R-
tipping.
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FIG. 3. Phase-space structure for different values of the rate parameter and dependence of the critical rate on initial condition.
The nonautonomous bistable system has a time-varying parameter p(t) that increases at the linear rate r from an initial value
p1 at time t = 0 to a final value p2 > p1 during the time interval [0, T ], where p1 (p2) corresponds to a health (deteriorated)
environment. There are two attractors throughout the parameter variation: a survival and an extinction attractor. (a) The
extreme case r = 0 [p(t) = p1], where the basin boundary Σ1 is located closer to the extinction attractor. (b) The opposite
extreme case r → ∞, where basin boundary Σ2 is located closer to the survival attractor. (c) The location of the basin
boundary Σ∗ for any finite rate value r∗, which is in between Σ1 and Σ2. (d) The basin boundaries for rate values r∗ ± δr with
infinitesimal δr, revealing that all initial conditions on Σ∗ share r∗ as the critical rate value for R-tipping.

A. Dependence of critical rate for R-tipping on initial
condition

To prepare for the derivation of the scaling law (1), we
analyze the dependence of the critical rate for R-tipping
on the initial condition by using the general setting of
bistability in a two-dimensional phase space in which
two steady-state attractors coexist: survival and extinc-
tion, as illustrated by the filled green and red circles,
respectively, in Fig. 3. To gain insights, we begin by
considering two extreme cases: r = 0 and r → ∞. For
r = 0, there is no change in the parameter p with time:
it stays at the initial value p1. For this relatively small
parameter value, the system is mostly “healthy” so the
basin of attraction of the survival attractor is “larger.”
In this case, the majority of the initial conditions in the
phase space will land the system in the survival attrac-
tor, so the the basin boundary Σ1 between the two basins
is located closer to the extinction attractor, as shown in

Fig. 3(a). In the opposite extreme r → ∞, for any t > 0
the system is already at the larger parameter value p2 so
the system is in a decayed environment that is hostile to
system’s normal functioning. In this case, the majority
of the initial conditions in the phase space will lead to
extinction and the basin boundary Σ2 is closer to the sur-
vival attractor, as shown in Fig. 3(b). The phase-space
structures for these two extreme cases, as illustrated in
Figs. 3(a) and 3(b) for r = 0 and r → ∞ respectively,
implies that for any finite value of r, say r∗, the basin
boundary Σ∗ must lie in between Σ1 and Σ2, as shown
in Fig. 3(c).

We now provide a mathematical reasoning for the de-
pendence of the critical rate for R-tipping on the initial
condition, which provides a geometric principle to deter-
mine the critical rate for any given initial condition. In
particular, in Fig. 3(c), all initial conditions on the basin
boundary Σ∗ have the critical rate r∗. To see this, con-
sider two parameter values in the vicinity of r∗: r∗ ± δr,
where δr is infinitesimal. For r = r∗ − δr < r∗, the
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basin boundary is located slightly closer to the extinc-
tion attractor than Σ∗, as shown in Fig. 3(d). In this
case, all initial conditions on Σ∗ belong to the basin of
the survival attractor. For r = r∗ + δr > r∗, the basin
boundary is located slightly closer to the survival attrac-
tor than Σ∗, so all initial conditions on Σ∗ now belong
to the basin of the extinction attractor. As a result, an
infinitesimal increment in the rate from r∗ will cause all
initial conditions on Σ∗ to switch their fate: from sur-
vival to extinction, indicating that r∗ is the critical rate
of R-tipping for all the initial conditions on the basin
boundary Σ∗. For a different value of the rate, say r†,
the location of the basin boundary in the phase space is
different, so the initial conditions on this boundary will
have the critical rate r†, which is different from r∗. It
is therefore apparent that, from the point of view of the
whole phase space, the concept of critical rate may not
be meaningful as there is an uncountably infinite num-
ber of critical rate values for R-tipping, depending on
the initial condition.

B. Derivation of scaling law (1)

To derive the scaling law (1), we consider two different
rates of parameter change: r1 and r2 > r1. In an au-
tonomous system, the boundary is the stable manifold
of an unstable fixed point, denoted as f , as indicated
by the filled green circle in Fig. 4. When the system
becomes nonautonomous with a time-varying parameter
p(t), the unstable fixed point and the basin boundary
become time dependent, so we write f(t) or f(p). We fo-
cus on an infinitesimal neighborhood of f(t), where the
basin boundary is approximately straight, as shown in
Figs. 4(a) and 4(b) for r = r1 and r = r2, respectively.
For the two cases, the parameter variation occurs within
the interval [p1, p2] in the time interval [0, T1] and [0, T2],
respectively. Since r2 > r1, we have T2 < T1. In each
case, the arrowed dashed line through f(t) indicates the
direction along which it moves in the phase space as the
parameter changes over time. The solid green (at t = 0)
and blue (for t = T1 or T2) line segments through f(t)
represent the boundaries separating the extinction from
the survival basin. Before the parameter variation starts
(p = p1), initial conditions below the solid green lines be-
long to the basin of the extinction attractor, while those
above belong to the survival attractor. After the param-
eter variation ends (p = p2) the initial conditions below
the solid blue lines belong to the extinction basin, and
those above belong to the survival basin.

During the parameter variation, f(t) shifts from the
green circle’s position to the blue circle’s position, caus-
ing its stable manifold (the basin boundary) to move
accordingly. Initial conditions in the light-green shaded
area, which initially belong to the survival attractor’s
basin for p = p1, will be exponentially stretched along
f(t)’s unstable direction and compressed in the stable
direction, forming a long blue rectangle. Since T1 > T2,

  

   

            

              

   

  

             

              

                  

               

   

               

   

                  

FIG. 4. A geometrical argument leading to the scaling law
(1). See text for details.

the blue rectangle for r = r1 is longer and thinner com-
pared to that for r = r2. Due to f(t)’s movement and the
changing basin boundary as the parameter varies, a por-
tion of the long rectangle (dark shaded blue) now falls
within the basin of the extinction attractor. The initial
conditions in the original green rectangle that evolve into
this dark shaded blue region are those that switch from
the survival to the extinction attractor due to the time-
dependent parameter change, experiencing R-tipping, as
indicated by the red rectangle within the green area in
Fig. 4(b). The fraction of such initial conditions for any
given rate r determines the R-tipping probability. De-
noting the fraction of R-tipping initial conditions by d(0)
and the distance between the basin boundaries along
f(t)’s unstable direction by ∆, we have

d(T ) = ∆ = d(0) exp (λT ), (2)

where λ is the unstable eigenvalue of f(t), which is as-
sumed to remain approximately constant in the course
of time variation of the parameter. Substituting T =
(p2 − p1)/r into Eq. (2) leads to the scaling law (1).
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IV. SCALING LAW OF R-TIPPING IN COMPLEX
ECOLOGICAL NETWORKS

      

FIG. 5. Illustration of mutualistic networks. (a) Mutualistic
interaction between a plant and a pollinator species. (b)
Network structure of an empirical mutualistic network from
the Web of Life database,

The derivation of the scaling law (1) is based on a
two-dimensional phase-space structure. Real-world sys-
tems are high-dimensional. Can the scaling law (1) be
expected to hold in high-dimensional nonautonomous
dynamical systems? One class of such systems that
was used36 to test the scaling law (1) is complex plant-
pollinator mutualistic networks20,24,26,30,70–77, where a
species in the plant group benefits from interacting
with some species in the pollinator group, and vice
versa, as illustrated in Fig. 5(a). The structures of
over 100 empirical mutualistic pollinator–plant networks
from many geographical regions in the world have been
well documented (Web of Life database: www.Web-of-
Life.es). One example of such a network is shown in
Fig. 5(b). At the present, a detailed computational
model for these empirical mutualistic networks is avail-
able70. In spite of their high dimensionality, due to
the nature of steady-state dynamics associated with tip-
ping, a mutualistic network can be reduced effective
to a two-dimensional system24 through some conven-
tional dimension-reduction methods, providing a feasible
paradigm for numerically testing the scaling law (1).

The dynamics of a plant-pollinator mutualistic net-
work, comprising NA pollinator and NP plant species,
are described by a system of N = NA + NP nonlinear
differential equations of the Holling type in terms of the
species abundances70:

Ṗi =Pi

(
αP
i −

Np∑
l=1

βP
ilPl +

∑NA

j=1 γ
P
ijAj

1 + h
∑NA

j=1 γ
P
ijAj

)
, (3)

Ȧj =Aj

(
αA
j − κj −

NA∑
l=1

βA
jlAl +

∑NP

i=1 γ
A
jiPi

1 + h
∑NP

i=1 γ
A
jiPi

)
,

(4)

where Pi and Aj are the abundances of the ith and jth

plant and pollinator species, respectively, i = 1, . . . , NP

and j = 1, . . . , NA. The equations account for intrin-
sic growth rates, intraspecific and interspecific competi-

tions, and mutualistic interactions, with specific param-
eters characterizing the dynamics, such as the pollinator
decay rate κ, intrinsic growth rate αP (A), and the half-
saturation constant h. The mutualistic interactions are
further quantified through parameters γ

P (A)
ij = ξijγ0/K

τ
i

that depend on whether a mutualistic interaction exists
(ξij), the general interaction parameter γ0, and the de-
gree of the plant species Ki.

   

   

   

                                   

                                

                              

                              

                                

                       

                           

                             

                           

                               

                       

                                                                 

        

FIG. 6. Scaling law of R-tipping for ten empirical mutual-
istic networks. The time-varying parameter is the pollinator
decay rate κ. (a) The network structures. (b) Structural
parameters and origins of the ten empirical networks. (c)
R-tipping probability Φ(r) versus the rate r of parameter
change. The dots are the results from direct numerical sim-
ulations of the high-dimensional networks with an ensemble
of random initial conditions from a substantial volume of the
high-dimensional phase space. The solid curves are the the-
oretical fits of the scaling law (1). Other parameter values in
the computational model are fixed: α = 0.3, β = 1, h = 0.4,
γP = 1.93, and γA = 1.77.

To introduce the rate change of a parameter, three
different scenarios were considered36 where negative en-
vironmental impacts can lead to: (1) a linear increase
in the species decay rate, (2) a linear decrease in the
mutualistic interaction strength, and (3) simultaneous

https://www.web-of-life.es/
https://www.web-of-life.es/
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linear changes in both parameters over time. Simula-
tions were conducted using ten empirical mutualistic pol-
linator–plant networks, where the intervals of parameter
variations were selected to ensure the occurrence of bista-
bility. The structures of the ten networks are illustrated
in Fig. 6(a), and their structural parameters and origin
are listed in Fig. 6(b). Figure 6(c) presents examples of
the scaling law of the probability of R-tipping Φ(r) with
the rate r where, for each network, the species decay rate
κ varies with time linearly across the interval specified in
Fig. 6(b). It can be seen that the R-tipping probabilities
for all ten networks exhibit qualitatively similar behav-
ior: as the rate of parameter change increases from zero,
the probability initially rises rapidly and then plateaus
at an approximately constant value, as predicted by the
scaling law (1). The final value of the R-tipping prob-
ability depends on the specific structural characteristics
of the network.

V. DISCUSSION

Investigating R-tipping is important for understand-
ing how complex systems respond to constant changes in
their parameters due to environmental effects. There are
two approaches to R-tipping in nonautonomous dynami-
cal systems: local and global. The local approach focuses
on the behavior near some equilibrium point, taking ad-
vantage of the corresponding autonomous system to de-
termine the conditions under which the system transi-
tions from one state to another. This approach has pro-
vided significant insights into the R-tipping mechanism.
The global approach offers a comprehensive and holistic
picture, particularly for real-world systems that are typi-
cally open, dynamic, and under the influences of stochas-
tic disturbances. Due to these effects, in the phase space
the dynamical trajectory of the system can hardly be
confined near some equilibrium point but rather, it can
wander in an extended region of the phase space. Under
such circumstances, a meaningful way to investigate R-
tipping is through a probability defined with respect to
initial conditions from the relevant phase-space region.
As a result, the notion of critical rate for R-tipping loses
its applicability, as it depends on the initial condition
and there is an uncountably infinite number of such crit-
ical values. The scaling law (1), which can be derived
through a geometric argument and has been validated
in a number of complex empirical plant-pollinator mu-
tualistic networks, suggests a dire consequence of the
rate of parameter changes: insofar as it is not zero, the
probability of R-tipping can be substantial. This can
have implications, e.g., in environmental policy making,
rendering necessary testing the scaling law in the broad
spectrum of nonautonomous dynamical systems arising
from various disciplines.

A topic of current interest is data-driven prediction
of tipping in nonlinear and complex dynamical systems.
Traditional methods often rely on detailed knowledge of

the system’s dynamics, which may not always be avail-
able. A promising approach is machine learning, es-
pecially recurrent neural-network architectures capable
of identifying dynamical patterns and predicting critical
transitions by learning from data78–86. To develop ef-
fective machine-learning models for predicting tipping,
two considerations are essential. First, the availability
of training data is crucial. While traditional classifica-
tion problems require data from both sides of the critical
transition, this is impractical since post-transition data
are not available. Training must be based on data from
the pre-critical regime, necessitating the development of
models that can extrapolate from this information. Sec-
ond, the machine-learning architecture must be capable
of Self-organizing evolution, mimicking the inherent dy-
namics of the target system. The recently developed
adaptable reservoir-computing79–83 provides a possibil-
ity.

A significant problem to which R-tipping is relevant
is the possible collapse of the Atlantic Meridional Over-
turning Circulation (AMOC)87–89 that plays a crucial
role in maintaining moderate temperature conditions in
Western Europe by transporting warmer, upper waters
northward and returning colder, deeper waters south-
ward89,90. While studies have indicated a tendency
for AMOCs to weaken in the last 30 years91,92, at the
present the AMOC is still in a stable state that ensures
the continuation of these critical ocean flows. However,
due to the increasing human influence on the climate
change, a potential halt of this circulation signifying a
collapse of the AMOC represents a shift to another sta-
ble steady state within the underlying dynamical system,
which is characteristic of R-tipping. Recent research
based on simplified stochastic dynamical system models
suggests that the AMOC may be on the course towards
collapse, with a tipping point potentially occurring as
early as 202557. Estimating the probability of the col-
lapse due to R-tipping based on measurement data is an
urgent but open problem.
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