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Anticipating a tipping point, a transition from one stable steady state to another, is a problem of
broad relevance due to the ubiquity of the phenomenon in diverse fields. The steady-state nature
of the dynamics about a tipping point makes its prediction significantly more challenging than
predicting other types of critical transitions from oscillatory or chaotic dynamics. Exploiting the
benefits of noise, we develop a general data-driven and machine-learning approach to predicting
potential future tipping in nonautonomous dynamical systems and validate the framework using
examples from different fields. As an application, we address the problem of predicting the potential
collapse of the Atlantic Meridional Overturning Circulation (AMOC), possibly driven by climate-
induced changes in the freshwater input to the North Atlantic. Our predictions based on synthetic
and currently available empirical data place a potential collapse window spanning from 2040 to
2065, in consistency with the results in the current literature.

I. INTRODUCTION

A tipping point in nonlinear and complex dynamical
systems is referred to as a transition from one stable
steady state supporting the normal functioning of the
system to another that can often be catastrophic and
corresponds to system collapse [1]. This can happen as
a system parameter passes through a critical point. For
example, in ecosystems, before tipping the system is in a
survival state with healthy species populations, while the
state after the tipping is associated with extinction [1–
8]. In the past decade, tipping point in ecosystems has
been extensively studied [1–4, 6–26]. The phenomenon
of tipping can also arise in other contexts such as epi-
demic outbreak [27], a sudden transition from normal to
depressed mood in bipolar patients [28], alterations in
the stability of the Amazon rain forest [29], an increase
in the carbon emission from Boreal permafrost [30], and
the melting of Arctic sea ice [31]. A likely scenario by
which a tipping point can occur is when a parameter of
the system varies with time - nonautonomous dynamical
systems. Suppose the system is in a normal functioning
state at the present. Due to the parameter change, at a
certain time in the future a critical point will be crossed,
leading to a catastrophic tipping. The global climate
change is causing ecosystems and climate systems of dif-
ferent scales to become such nonautonomous dynamical
systems with the increasing risk of tipping. Articulating
effective methods to reliably anticipate tipping is an ur-
gent problem with broad implications and applications.
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In this paper, we develop a reservoir-computing frame-
work tailored to anticipating tipping in nonautonomous
dynamical systems and demonstrate its predictive power
using examples from different fields. A particular appli-
cation that provided the main motivation for our work is
predicting the possible collapse of the Atlantic Meridional
Overturning Circulation (AMOC) [32–34] that supports
moderate and livable temperature conditions in West-
ern Europe [35]. The AMOC transports warmer, up-
per waters in the Atlantic northward and returns colder,
deeper waters southward [34]. Studies suggested that,
since about 30 years ago, there has been a tendency
for the AMOC to weaken [36, 37]. At the present, the
AMOC is still in a “healthy” steady state that maintains
a stable circulation of the pertinent ocean flows. A po-
tential halt of the circulation would signify a collapse of
the AMOC with dire consequences, which corresponds to
another stable steady state of the underlying dynamical
system. Such a collapse meets the criterion of a tipping
point, i.e., a transition from one stable steady state to
another.

It is worth emphasizing that the phenomenon of tip-
ping in its original context [1–8] is characteristically dis-
tinct from the more commonly studied critical transi-
tions from an oscillatory state to some final state. Ex-
amples of such transitions include a crisis through which
a chaotic attractor is destroyed and replaced by a chaotic
transient [38], the onset of synchronization from a desyn-
chronization state [39], amplitude death [40], and the en-
countering with a periodical window [41]. While ma-
chine learning, in particular reservoir computing, has
been applied to predicting such critical transitions [42–
45], a shared characteristic among the existing works is
the system’s oscillatory behavior before the transition.
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FIG. 1. Schematic illustration of the machine-learning framework for anticipating tipping in nonautonomous dynamical systems.
The system begins in a stable steady state with no deterministic oscillations in the dynamical variables. Dynamic noise is
leveraged to perturb the system, enabling the machine-learning model to detect changes and predict the tipping point even
when the system is in a parameter regime prior to tipping.

This is advantageous because the time series for train-
ing the neural networks contain the temporal variations
necessary for the machine to learn the dynamics of the
system. Predicting a tipping point is significantly more
challenging because, prior to the tipping, the system is
in a stable steady state with no oscillations in the dy-
namical variables. (See Appendix A for a more detailed
account of the notion of tipping in the literature.)

Our solution for machine-learning based prediction of
tipping is exploiting dynamic noise. In particular, time
series measured from real-world systems are noisy, and
the inherent random oscillations are naturally suited for
machine-learning training. In developing a machine-
learning prediction framework, synthetic data are needed
for validation. In this case, we generate time series with
random perturbations about the deterministic steady
state through stochastic dynamical modeling. While the
presence of noise may potentially compromise the pre-
diction accuracy, it serves a dual purpose by facilitat-
ing an adequate exploration of the phase space by the
neural network dynamics, unveiling latent features that
would otherwise remain obscured under noise-free condi-
tions. A recent work has established that dynamical noise
and/or measurement noise in the training dataset can be
beneficial to the training process through a stochastic-
resonance mechanism [46]. In addition, optimal calibra-
tion of noise levels can mitigate the risk of overfitting
and promote generalization, allowing the reservoir com-
puter to adapt to varying environmental conditions and
data distributions. Incorporating a parameter channel
into reservoir computing [42] to accommodate the time-
varying parameter, we demonstrate that the reservoir
computer can be trained to predict the occurrence of tip-
ping in the future. To show the efficacy of our prediction
framework, we present examples from climatic systems
and ecological networks. For the problem of anticipat-
ing a potential collapse of the AMOC with synthetic and

currently available empirical data, our machine-learning
scheme places a collapse window spanning from 2040 to
2065, in consistence with the results in the current liter-
ature.

II. METHODS

A. Nonlinear dynamical mechanism of tipping

In nonlinear dynamics, a typical bifurcation leading
to tipping is the forward or backward saddle-node bifur-
cation. Consider the situation of two coexisting stable
steady states (or attractors): a normal “healthy” state
and a catastrophic or “low” state, where each attractor
has its own basin of attraction. As the bifurcation pa-
rameter increases with time, the healthy attractor can
disappear through a backward saddle-node bifurcation,
after which the low state is the only attractor in the
phase space, signifying a tipping point. In the past, con-
siderable efforts were devoted to anticipating tipping by
identifying early warning indicators or signals [47–51].
A known phenomenon is enhanced fluctuations where,
as the tipping point is approached, the variances of the
measured values of the dynamical variables tend to in-
crease. The reason is that, as the system moves toward
a fold bifurcation, the dominant eigenvalue of the Ja-
cobian matrix evaluated at the steady state approaches
zero, making the landscape flatter and closer to a random
walk about the steady-state attractor. Small noise will
then generate large deviations of the trajectory from the
attractor. In a recent work, a deep-learning based time-
series classification scheme was introduced to determine if
a tipping event is about to occur and the bifurcation [51].
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B. Challenges with anticipating tipping

Oscillatory behaviors in the data in the pre-critical
regime have the benefit of system trajectory’s visiting a
substantial portion of the phase space, thereby facilitat-
ing training by enabling the neural network to effectively
learn the phase-space behavior or the dynamical climate
of the target system. Differing from existing works on
predicting critical transitions from an oscillatory dynam-
ical state to a collapsed state, we aim to predict tipping
from one stable steady state to another. In a noise-free
situation, in the pre-tipping regime the system is in a
stable steady state without oscillations in its dynamical
variables. Introducing stochasticity or noise into the sys-
tem leading to randomly oscillating dynamical variables
provides a solution for neural-network training. We ex-
ploited dynamic noise in the data for training, where val-
idation and hyperparameter optimization are performed
based on data in the pre-critical regime. During the
test or prediction phase, the reservoir computer operates
as a closed-loop, deterministic dynamical system capa-
ble of predicting how the dynamical climate of the sys-
tem changes with the time-varying bifurcation parame-
ter. Since no data from the target system in the post-
tipping regime were used for training (in a realistic situ-
ation, such data are not available), it is not possible for
the reservoir computer to correctly predict the detailed

system behavior after the tipping. However, the neural
machine is capable of generating characteristic changes
in the output variables at the tipping transition, mak-
ing its anticipation possible. (See Appendix B for more
details.)

C. Parameter-adaptable reservoir computing

We adopt parameter-adaptable reservoir comput-
ing [42] for anticipating tipping. A basic reservoir com-
puter comprises three layers: an input layer, a hidden
recurrent layer, and an output layer. Figure 2 illustrates
the basic structure of parameter-adaptable reservoir com-
puting that extends conventional reservoir computing by
incorporating an additional parameter channel for the
bifurcation parameter b. During the training, the input
time series vector u(t) and the parameter b are concur-
rently projected onto the hidden layer through the time-
series input matrix Win and the parameter input matrix
Wb, respectively. The hidden layer consists of N 1D dy-
namical neurons. Concatenating the dynamical states
of all the neurons leads to an N -dimensional vector -
the hidden state r(t) at each time step. The neural net-
work in the hidden layer is recurrent with the connection
matrix Wr and short-term memory. The output matrix
Wout projects the hidden state r(t) to the output layer,
generating the output vector v(t). The iteration equa-
tions of the parameter-adaptable reservoir computer are

r(t) = (1− αr)r(t−∆t) + αr tanh [Wrr(t−∆t) +Winu(t) +Wb(kbb+ bb)] , (1)

v(t) = Woutf(r(t)), (2)

where αr ∈ (0, 1] is the leakage parameter defining a tem-
poral scale of the reservoir network, ∆t is the time step,
tanh(·) is the hyperbolic tangent function serving as the
nonlinear activation function in the hidden layer, kb and
bb are the gain and bias of the parameter b, respectively,
and f(·) is a nonlinear output function of the reservoir
computer.

A feature of the reservoir network is the random gen-
eration and the subsequent fixation of the input matrices
Win and Wb, along with the recurrent network matrix
Wr. These matrices remain fixed during training with
only the output matrix Wout undergoing optimization.
This design choice eliminates the need for back propa-
gation in time during the training, alleviating computa-
tional cost and mitigating potential difficulties such as
vanishing and exploding gradients. Following the ran-
dom generation of the three matrices, the training pro-
cess begins by inputting the time series u(t) and the cor-
responding control parameter b through the input layer.
The dynamical evolution of the neural network follows

Input Layer Hidden Layer Output Layer

FIG. 2. Illustration of parameter-adaptable reservoir comput-
ing.

Eq. (1). This process is also referred to as the “listen-
ing phase” or “echoing phase”, as if the driving train-
ing signals are echoing in the hidden state. During the
training, Eq. (2) is not invoked as the output matrix has
not been trained yet. Multiple trials of the time series



4

data from the target system, each associated with a dis-
tinct parameter value, are presented as the training data.
Upon completion of the echoing phase for a specific trial
for a particular b value, the parameter-adaptable reser-
voir computer is re-initialized for a new echoing phase for
another training parameter value. The hidden state be-
haviors observed during the training are recorded, whose
variations are implicitly linked to the corresponding pa-
rameter value b since it affects the dynamical evolution
of the state in the hidden layer.

Let the length of each trial of the training time series be
Ttrain (in the unit of the number of steps) and the num-
ber of trials of training with different parameter values be
nb (nb = 4 in our work). The “echoing” results r(t) are
concatenated into a matrix R of dimensions N×nbTtrain.
Applying the nonlinear function f(·), we obtain the trans-
formed matrix R′ = f(R) that captures the echoing hid-
den state for subsequent linear regression. A training
target is essential. We focus on reservoir networks whose
output represents one-step prediction, where v(t) is equal
to u(t + ∆), making the training target the stacking of
all training time series with a one-step difference from

the input data, denoted as V . Finally, a ridge regression
is conducted between R′ and V to determine the output
matrix:

Wout = V ·R′T (R′ ·R′T + βrI)
−1, (3)

where βr is the coefficient of L− 2 regularization.
An alternative training approach involves supplying

a time series with a non-constant parameter value, a
nonstationary time series with the corresponding time-
varying parameter b(t) as the training data [42]. This
configuration is more practical in various scenarios and
is employed in our work.
Having successfully trained a parameter-adaptable

reservoir computer, we can now use it to make predic-
tions for a specific parameter value b of interest, which
is in a parameter regime different from that for training.
The reservoir computer autonomously extrapolates the
learned dynamics during training, generating predictions
of the system dynamics at some unobserved parameter
value. The iteration equation during prediction is given
by

r(t) = (1− αr)r(t−∆t) + αr tanh(Wr · r(t−∆t) +Winv(t−∆t) +Wb(kbb+ bb)), (4)

v(t) = Woutf(r(t)), (5)

where u(t) in Eq. (1) is replaced by v(t−∆t). Given the
recurrent structure of reservoir computing, it is necessary
to properly initialize the hidden states in order to make
any predictions. As one may observe from Eq. (1), a pre-
vious state r(t−∆t) is needed to calculate r(t). For short-
term validation, we initialize the prediction by replicating
the final hidden state obtained during the training as a
one-step previous state. This allows for a direct compar-
ison of the validation result with the actual time series,
facilitating the calculation of an error metric, such as the
root-mean-square error (RMSE), as the validation error.
To conduct long-term testing on the “climate,” where a
more diverse ensemble of predictions is required to cap-
ture the behaviors of the target system, we introduce ad-
ditional randomness. Specifically, we utilize a randomly
selected short segment from the actual time series data
to “warm up” the reservoir hidden state. To prevent the
reservoir computer from becoming stuck in a single at-
tractor, especially in the presence of multistability in the
dynamics, we introduce additive observational noise to
the “warm-up” data.

III. RESULTS

A. Anticipating a potential collapse of the AMOC

Our machine-learning framework is designed to tackle
the challenge of anticipating tipping in nonautonomous
dynamical systems in general, as shown in Fig. 1 where,
prior to tipping, the system is in a stable steady state
with no deterministic oscillations in the dynamical vari-
ables. We use four types of data: (1) synthetic data
from one-dimensional (1D) AMOC fingerprint model, (2)
synthetic data from a 2D conceptual model of AMOC,
(3) synthetic data from the Community Earth System
Model, and (4) empirical AMOC fingerprint data. As
will be demonstrated, the predicted time window of a
potential future AMOC collapse from the four types of
data are consistent with each other.

1. Anticipating AMOC collapse from 1D synthetic
fingerprint data

Due to the difficulty of continuously monitoring the
AMOC and the limited availability of long-term observa-
tional data, analyzing certain fingerprints of the AMOC
provides a viable method to gain insights [53]. For exam-
ple, sea surface temperature (SST) has been employed as
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(a)

(b)

FIG. 3. Random realizations of a tipping point transition in
the 1D stochastic AMOC fingerprint model (6). (a) Time-
varying bifurcation parameter λ that increases exponentially
with time, while other parameters are the best-estimated
values extracted from the empirical fingerprint data [52]:
A = 0.95, m = −1.3, λ0 = −2.7, σ = 0.3, t0 = 1924, and
λc = 0. (b) Ten random model realizations, with the dashed
green and red curves indicating the stable and unstable equi-
libria. In the underlying deterministic system, a backward
saddle-node bifurcation and hence a tipping point occurs at
λc = 0. In the presence of stochastic driving, the value of λ
at which the system collapses, characterized by the dynamical
variable X’s approaching a large negative value, varies among
the realizations, but they are near λ = 0 on the positive side.

a promising proxy for assessing the AMOC strength [54–
57]. Quite recently, a 1D stochastic SST model [52]
with parameter values estimated from the real data was
constructed to understand the tipping dynamics of the
AMOC. It was suggested that the AMOC may be ap-
proaching a potential collapse through a tipping point,
which can occur as early as 2025. The model is described
by the following stochastic nonlinear differential equation
with a generic bifurcation parameter λ:

Ẋt = −[A(Xt −m)2 + λ)] + σdBt, (6)

where Xt is a stochastic dynamical variable exhibiting a
tipping transition, A is a time scale parameter, m is de-
fined as µ−

√
|λ|/A with µ representing the stable fixed

point of the process, Bt is a Brownian motion, and σ is
the noise amplitude. Initially, the system is in a statis-
tically stable state with constant λ = λ0. At time t0, λ
begins to increase toward the critical point λc. As λ in-
creases, the dynamical variable Xt exhibits fluctuations
but its mean value decreases continuously. Despite the
fluctuations, Xt eventually collapses to a large negative

value, signifying the collapse of the AMOC. For fixed
model parameters at the most likely estimated values
from the AMOC fingerprint data (A = 0.95, m = −1.3,
λ0 = −2.7, and σ = 0.3, and t0 = Year 1924), the under-
lying deterministic system exhibits a backward saddle-
node bifurcation, corresponding to the coalescing point
of the stable and unstable equilibrium points, as shown
in Fig. 3, where a tipping point occurs at λc = 0 (see
Appendix C for details).

Climate change is a driving force to slow down and
eventually halt the AMOC, making the underlying dy-
namical system nonautonomous. The nonautonomous
version of Eq. (6) can be obtained by making the bifur-
cation parameter λ time-dependent. In particular, the
impact of climate change was modeled [52] by an expo-
nential increase in λ(t) with time from some initial value
λ0 < 0, as illustrated in Fig. 4(a). As λ increases towards
the bifurcation point λc = 0, the system approaches a tip-
ping point at the time Tc. In the time interval, [0, Tc], the
AMOC variable X(t) fluctuates about the stable equilib-
rium. After the tipping at Tc, X(t) rapidly decreases
to a large negative value, signifying the AMOC collapse.
The value of the tipping time Tc varies across different
realizations.

We now demonstrate that a trained reservoir computer
is able to predict the tipping time Tc. For each realiza-
tion, we divide the data into two distinct segments: train-
ing and testing, as highlighted in Figs. 4(a) and 4(b) in
purple and blue, respectively, where the end of the pur-
ple data segment marks the present time (in year). Note
that, up to the present time, the AMOC has been sta-
ble, where the dynamical variable X(t) fluctuates about
the healthy stable steady state. If there was no noise,
X(t) would be a smooth and a slowly decreasing function
of time, as exemplified in Fig. 3, and it is not possible
to train the reservoir computer with the non-oscillatory
time series. What makes training possible is noise ren-
dering oscillatory and random the time series X(t). Fig-
ure 4(c) presents one prediction run, where the blue trace
is the testing data in the time interval between now and
year 2065 (the ground truth), and the dashed red trace
is the reservoir-computing prediction. For this partic-
ular realization, the predicted AMOC collapse time is
between the years 2062 and 2063. At about the same
time, the predicted X(t) exhibits an abnormal behavior
that is drastically and characteristically different from
that prior to the tipping, indicating a successful predic-
tion of the tipping point. Note that, since the reservoir
computer has never “seen” the blue testing data segment
that includes the collapse of X(t) to some negative value,
it is not possible for the machine to predict the value of
X(t) after tipping. Nevertheless, the predicted abnormal
behavior is indicative of some critical behavior in the
system. Figure 4(d) shows a histogram of the predicted
values of Tc from 1000 reservoir-computing realizations.
For the 1D AMOC fingerprint model, the parameter-
adaptable reservoir computer predicts that a collapse of
the AMOC is likely to occur between the years 2055 and
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FIG. 4. Reservoir-computing prediction of the time window of AMOC collapse from the 1D time-dependent fingerprint model.
(a) The exponential growth with time of the bifurcation parameter λ(t), which starts from the value λ0 = −2.7 in the year
1870. The horizontal dashed line indicates the tipping point λc = 0. (b) A realization of the time series X(t), where the purple
(blue) segment represents the training and testing (validation and prediction) data, respectively. (c) The testing data (blue)
and reservoir-computing prediction (red) in the time window from year 2022 to year 2065. For this particular realization, the
AMOC variable X(t) collapses between the years 2062 and 2063 (blue, real data). The reservoir computer predicts an abnormal
behavior in X(t) at about the same critical time Tc, signifying a tipping point. (d) Histogram of the predicted AMOC collapse
time Tc obtained from 1000 machine realizations. Tipping is likely to occur between year 2055 and year 2066.

2066, which is consistent with the result in Ref. [52].

The histogram of the collapse time Tc in Fig. 4(d) was
obtained from 1000 machine realizations, but the train-
ing and testing data are from one specific realization of
the 1D AMOC fingerprint model. For different model
realizations, the tipping time Tc is different, so are the
predictions. Table I lists the prediction results from 10
model realizations. It can be seen that in all cases, the
predicted mean value of the collapse year is close to that
of the original data, providing further validation of our
reservoir-computing prediction scheme.

TABLE I. Predicted tipping time from 20 synthetic datasets

Dataset Model Tc
Tc from 1000 machine realizations

Mean Std (years)
1 2061 2062 4
2 2054 2057 6
3 2056 2057 3
4 2070 2069 6
5 2064 2062 5
6 2059 2060 4
7 2058 2060 5
8 2062 2061 4
9 2060 2062 6
10 2065 2066 4

2. Predicting AMOC collapse based on synthetic data from
a 2D conceptual model

A recent study [33] addressed the phenomenon of tip-
ping within climate systems, providing insights into how
time-varying parameters can lead to abrupt and poten-
tially catastrophic transitions in the climate. The mech-
anism of tipping was illustrated using a 2D conceptual
model [33] with two state variables, denoted as x and y.
The dynamics produced by this model closely resemble
those observed in the ocean model. The 2D model is
described by the following equations:

dx

dt
= (−r4 + 2r2 − β)x− ωŷ, (7)

dŷ

dt
= (−r4 + 2r2 − β)ŷ + ωx, (8)

where r2 = x2 + ŷ2, and ŷ is defined as y − γβ. The
parameter β is a bifurcation parameter describing the
freshwater forcing parameter, while ω represents the fre-
quency. The dependence of y on β is parameterized by γ.
The system possesses one stable and one unstable limit
cycle for β < 1. For β = 1, the limit cycles merge and
disappear in a saddle-node bifurcation [33].
To make the dynamical system (7) nonautonomous,

we assume that the bifurcation parameter β is time-
dependent: starting from an initial value β0, it linearly
increases towards a critical value βc. Dynamical noise is
introduced into the system by additive stochastic terms
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(a) (c)

(d)

FIG. 5. Reservoir-computing prediction of the time window of AMOC collapse from the 2D time-dependent conceptual AMOC
model. (a) One realization of 2D conceptual AMOC model for γ = 3 and σ = 0.1. (b) Time-varying freshwater forcing
parameter β. (c) An example of testing data (solid blue trace) and reservoir-computing prediction (dash-dotted red trace). (d)
Histogram of the predicted critical point from 1000 random reservoir realizations.

in (7) of independent Gaussian random processes of zero
mean and amplitude σ. Figures 5(a) and 5(b) show
a single realization of the evolution of the conceptual
AMOC fingerprint (x + 5r) and the β parameter over
time, respectively. As β increases, a tipping point oc-
curs at λc = 0, where the system undergoes a sudden
shift in the attractor, transitioning from random oscilla-
tions about the stable limit cycle to a stable equilibrium.
The specific tipping time varies among the independent
stochastic realizations.

To anticipate a possible tipping point, we partition the
data into two sets: training data (highlighted in pur-
ple) and testing data (in blue). The training data con-
sists of a portion of the time series of x + 5r as input
and β as a control parameter associated with oscilla-
tions about the stable limit cycle. During the testing
phase, the trained reservoir computer is employed along-
side the remaining control parameter data to predict the
tipping. Figure 5(c) shows an illustrative example, where
the real testing data are in blue and the corresponding
predicted data are represented by red. Training data are
collected for parameter values β ∈ [0.01, 0.79]. To ensure
the prediction efficacy, we repeat the whole process for
1000 random realizations of the reservoir computer. Fig-
ure 5(d) presents a histogram of the anticipated tipping
point values. In all the realizations, a tipping point is an-
ticipated to occur in the future within the time interval
Tc ∈ [140, 190], which contains the ground truth value
Tc = 159 from direct simulation of the 2D stochastic sys-
tem.

3. Predicting AMOC collapse using the synthetic data from
the Community Earth System Model

In a quite recent study of the Community Earth Sys-
tem Model (CESM) [58], an AMOC tipping event with
significant climate consequences was revealed. CESM is a
coupled climate model for simulating various components
of the Earth’s climate system simultaneously, making it
possible to explore the dynamics under the past, present,
and future climate conditions. An analysis of the output
data of CESM revealed a tipping point as characterized
by the minimum of the AMOC-induced freshwater trans-
port at the Southern boundary of the Atlantic [58].

We use the simulated AMOC strength data from
Ref. [58] to test our reservoir-computing based framework
for predicting tipping. In the CESM model, the freshwa-
ter flux forcing (FH) linearly increases at the rate 3×10−4

Sv year-1 until the model year 2200, where a maximum
of FH = 0.66 Sv is reached, as shown in Fig. 6(a). The
AMOC strength, defined as the total Meridional vol-
ume transport, is shown in Fig. 6(b), where the vertical
dashed line indicates a tipping point Tc = 1758. The
purple segment is used to train the reservoir computer
and the blue segment is the testing data. The reservoir-
computing output is shown in red in Fig. 6(c), where
an abnormal behavior in x(t) occurs at about the same
critical time Tc as the model tipping time. To charac-
terize the prediction performance, we repeat the process
using 1000 machine-learning realizations. The resulting
histogram of the predicted AMOC collapse time Tc is
shown in Fig. 6(d), which indicates that tipping is likely



8

   

   

   

   

FIG. 6. Reservoir-computing prediction of the time window of potential AMOC collapse from the CESM synthetic data. (a)
Linear time-varying freshwater flux. (b) AMOC strength, where the purple and blue segments represent the training and testing
(validation and prediction) data, respectively. The horizontal dashed line indicates the tipping point Tc = 1758. (c) Testing
data (blue) and reservoir-computing prediction (red). AMOC strength (x(t)) collapses at model year 1758 (blue, real data).
The reservoir computer predicts an abnormal behavior in x(t) at about the same critical time Tc, signifying a tipping point.
(d) Histogram of the predicted AMOC collapse time Tc obtained from 1000 reservoir network realizations. Tipping is likely to
occur between model years 1740 and 1775.

to occur between the model years 1740 and 1775.

4. Predicting AMOC collapse using empirical fingerprint
data

It is necessary to conduct tests using empirical AMOC
data. We use AMOC fingerprint sea-surface tempera-
ture (SST) datasets with the same exponential growth
of the bifurcation parameter [52], as shown in Fig. 7(a).
Figure 7(b) shows a segment of the SST data up to the
present time (in purple color), which is used for train-
ing, and a typical realization of the reservoir-computing
predicted time series (red). Prior to reaching the critical
point λc = 0, the predicted AMOC fingerprint exhibits
a smooth behavior that is essentially a continuation of
the training data, indicating no collapse. About λc = 0,
the machine-learning prediction becomes highly irregu-
lar, signifying a collapse. Figure 7(c) shows a histogram
of the predicted critical time of AMOC collapse from 1000
reservoir-computing realizations. The range of possible
collapse time is from year 2040 to year 2066, with the
median around year 2053. This result is consistent with
those in Fig. 4(d) and in Ref. [52].

To further demonstrate the generality and power of our
parameter-adaptable reservoir computing framework for
predicting tipping in complex and nonautonomous dy-
namical systems, we tested the following datasets from

alternative AMOC models and ecological networks that
exhibit a tipping point in the conventional sense of co-
existing stable fixed-point attractors: (1) mutualistic
pollinator-plant networks, (2) a plant-herbivore model,
and (3) a climate model. For models (1) and (2), a bifur-
cation parameter is assumed to vary continuously with
time. For model (3), the observed time series are col-
lected from a sequence of different constants or nearly
constant parameter values. We have also tested a three-
box AMOC model, with detailed results presented in Ap-
pendix D.

B. Anticipating tipping in pollinator-plant
mutualistic networks

We demonstrate the capability of our parameter-
adaptable reservoir-computing approach to anticipate
tipping points in real mutualistic networks. Specifically,
we study two real-world pollinator-plant networks (Web
of Life database): Network A from Flores, Acores [59]
with 10 plant species and 12 pollinator species; Network
B from an empirical study in Hestehaven, Denmark [60],
which has 8 plant species and 42 pollinator species. The
dynamical variables of these systems are the abundances
of the plant and pollinator species. We take κ, the aver-
age pollinator species decay rate, as the bifurcation pa-
rameter. Due to environmental changes, κ varies slowly
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(a)

(b)

(c)

FIG. 7. Reservoir-computing prediction of AMOC collapse
time using empirical fingerprint data. (a) An exponential
growth of the bifurcation parameter λ (from Ref. [52]). (b)
Available AMOC fingerprint SST data from year 1875 to the
present year (purple). This data segment is noisy and em-
ployed in training the reservoir computer. The red trace is
one example of the predicted SST behavior, which is smooth
until the critical value λc = 0 for collapse is reached. (c) A
histogram of the predicted AMOC collapse time from 1000
reservoir-computing realizations. The time range of potential
AMOC collapse is between the year 2040 and the year 2066.

with time. Tipping occurs in both systems, as shown in
Figs. 8(b) and 8(f), where the equilibria of the effective
plant abundance Peff averaged over all the plant species
for different κ values are plotted. The tipping point for
network A (B) is κc = 0.881 (κc = 0.796), after which
Peff decreases abruptly.

The training data are time series of the abundance
of the species in the mutualistic network. The reser-
voir computer is trained based on noisy time series from
a number of distinct values of the bifurcation param-
eter in the pre-tipping (“safe”) regime, where the net-
worked system is under correlated, demographic noise.
Specifically, for network A (B), the parameter values are
κ = 0.5, 0.6, 0.7, and 0.8 (κ = 0.4, 0.5, 0.6, and 0.7). As
the mutualistic networks are high-dimensional dynamical
systems, training using the time series from all species is
computationally costly. We employ a previously devel-
oped dimension-reduction method for mutualistic net-
works [18] and take the effective plant and pollinator
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FIG. 8. Anticipating tipping with noisy data in two real plant-
pollinator networks. (a) Noisy training data from mutualistic
network A. The four trials of data correspond to four differ-
ent training values of the control parameter κ. (b) Tipping
in network A: at the tipping point κc ≈ 0.881, the effective
abundance of the plant species Peff goes through an abrupt
regime shift to a lower level through a saddle-node bifurca-
tion. (c) Reservoir-computing predicted tipping. The vertical
dashed cyan lines correspond to the values of κ in the training
data set, all in a safe regime. Occasional predicted negative
abundance values are counted as zero. (d) Histogram of the
anticipated tipping point from an ensemble of 100 prediction
runs, where the vertical blue dashed line denotes the true
value κc. (e) Noisy training data from network B. (f) Tip-
ping in network B at κc = 0.796. (g) Reservoir-computing
predicted tipping, where the vertical dashed cyan lines cor-
respond to the values of κ in the training data set. (h) His-
togram of the anticipated tipping point from an ensemble of
100 prediction runs, with the ground truth κc indicated by
the vertical blue dashed line.

abundances, denoted as Peff and Aeff , respectively, as
the training data. Figures 8(a) and 8(e) show the Peff

components of the training data, which are noisy around
the equilibria.
In the prediction phase, we extend the bifurcation pa-

rameter into an untrained nearby regime. Figures 8(c)
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and 8(g) show the prediction results for networks A and
B, respectively, where the training parameter values are
marked by the vertical cyan dashed lines. The predicted
tipping points for both networks are near the true val-
ues. Note that, during prediction the reservoir computer
is a deterministic dynamical system designed to capture
the deterministic components of the dynamics of the tar-
get system. As a result, the machine-generated trajecto-
ries correspond to smooth, damped oscillations converg-
ing towards the fixed points, which deviate significantly
from the noisy training trajectories. The final equilib-
rium point is extracted as the predicted values of the
fixed point, as shown by the red circles in Figs. 8(c)
and 8(g). Given the stochastic nature of the training
datasets, we conduct 100 random testing trials for each
mutualistic network, where both the training data and
the relevant matrices underlying reservoir computing dif-
fer across the testing trials. Figures8(d) and 8(h) show
the histograms of the anticipated tipping point values.
Tipping is consistently anticipated in all the trials. For
network A, the predicted tipping points occur within
the interval κ ∈ [0.8405, 0.9215] about the true value
κc = 0.881. Out of 100 trials, 66 anticipate the tipping
point within the narrower interval κ ∈ [0.8608, 0.9012].
For network B, 98 out of 100 trials predict the tipping
point to fall within the interval κ ∈ [0.748, 0.844] about
the true value κc = 0.796. In addition, 66 out of 100 tri-
als foresee the tipping point within the narrower interval
κ ∈ [0.772, 0.820].

We address two pertinent issues. First, to remove any
doubt that the observed collapses in the predicting phase
might be artifacts stemming from the instability of the
reservoir computer when operating in an untrained pa-
rameter region, we obtain extrapolation results on the
opposite side of the untrained parameter region, i.e., with
κ smaller than the training values. For networks A and
B, the parameter regions tested are κ ∈ (0.35, 0.50) and
κ ∈ (0.25, 0.50), respectively. No collapse is observed
on this side of the parameter region for any trial, as the
reservoir computer predicts stable species abundances for
all trials. This justifies that the tipping behaviors pre-
dicted on the other side of the parameter region are not
artifacts. Second, while we have shown that the tipping
of the target attractor can be anticipated from a forecast-
ing approach, it is difficult to predict the actual dynamics
after the tipping. For the ground truth results shown in
Fig. 8, there is an abrupt decrease in the abundance of
the plant species after tipping but without an immedi-
ate total extinction. The reservoir computer is not able
to predict such behaviors correctly. In general, the tar-
get system can be in a new regime after tipping, which
can be far away from the training region in the phase
space. Expanding the dynamics from the training region
to such a distant new regime can be difficult and unre-
liable given the nonlinearity in the target system. For a
similar reason, the parameter region of multistability is
also not accurately predicted, since the dynamical fea-
tures of the lower state have never been “seen” by the

reservoir computer.

C. Anticipating tipping in a plant-herbivore system
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FIG. 9. Anticipating tipping point with an unknown con-
tinuously changing environmental factor in a plant-herbivore
system. (a) Simulated herbivore abundance in a parameter
region away from tipping. Training and testing data from the
target system are shown as the noisy blue curve, separated by
the vertical dashed cyan line. The red segment to the right
of the vertical dashed cyan line is the reservoir-computing
predicted abundance, which on average agrees with the blue
data. (b) Time variation of the environmental factor ν(t) that
has not yet reached the tipping point value (marked by the
horizontal dashed black line) in the testing interval. (c) The
surrogate control parameter p(t), which is assumed to increase
linearly with time. (d) Simulated time series with tipping in
the testing interval, which is successfully anticipated by reser-
voir computing (the red curve). (e) Parameter ν(t) reaching
the tipping point νc = 0.657 at the crossing of dashed black
lines, leading to the extinction behavior in panel (d). (f) The
surrogate control parameter p(t).

We study a plant-herbivore system [26, 61] in a tip-
ping parameter regime with a saddle-node bifurcation.
The dynamical variables are the biomass densities of the
plant P and the herbivore H. Two system parameters,
the plant growth rate and herbivore mortality rate, are
time-varying [26] according to a common environmental
factor ν. Increasing ν across a tipping point at νc = 0.657
results in a sudden decrease of the herbivore biomass H
and its subsequent extinction, dynamically induced by a
saddle-node bifurcation at νc. We assume that the envi-
ronmental factor ν(t) increases quadratically as a func-
tion of the time. In a realistic situation, the functional
form of ν(t) is unknown. For simplicity, we assume that
ν(t) increases linearly with time [44].
We generate two different datasets (including training

and testing) for comparison. For the first set, ν(t) is be-
low the tipping point in both the training and testing
data. For the second dataset, ν(t) is below but close to
the tipping point νc during training, but it crosses the
tipping point in the testing data, leading to a sudden
extinction of the herbivore. Demographic noise is ap-
plied to the system to generate noisy training data. In
both cases, the surrogate parameter p(t) has the same
rate of linear increase with time. Figures 9(a-c) show
the testing results for the first dataset, while Figs. 9(d-f)
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are for the second dataset. For the pre-tipping dataset,
the reservoir computer predicts the correct dynamical be-
havior of no tipping, as shown in Fig. 9(a). Likewise, for
the second dataset, the tipping behavior is correctly pre-
dicted, as shown in Fig. 9(d). We repeat the process of
training and predicting on the two settings of ν(t) 1,000
times with different random seeds for dynamical noise
and reservoir-computing matrices. For the pre-tipping
case, within the same testing time interval as in Fig. 9(a),
126 trials (12.6%) provide false positive predictions, most
of which are near the end of the testing interval where
the bifurcation parameter is closer to the tipping point.
The remaining 874 trials (87.4%) are all true negatives.
For the tipping case, only 72 trials (7.2%) fail to antici-
pate the collapse within twice the average actual time of
collapse.

D. Anticipating tipping in a climate model with
discrete control parameter scheme
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FIG. 10. Anticipating tipping in a climate model. (a) Tip-
ping behavior of the equilibrium temperature T∗ with respect
to the bifurcation parameter µ. (b) Successful prediction of
the tipping behavior by parameter-aware reservoir comput-
ing, where the bifurcation-parameter values for training are
marked by the vertical cyan dashed lines.

We consider the climate model for the ice-albedo feed-
back and represents the global temperature as a zero-
dimensional average field [62, 63]. The deterministic ver-
sion of the model is given by [62, 63]:

dT

dt
= fc(T ) =

1

4
µI0(1− (a2 − b2T

2))− eSAσST
4

= −eSAσST
4 +

µI0b2
4

T 2 +
µI0(1− a2)

4
,

(9)

where 1
4µI0(1− (a2 − b2T

2)) is the incoming solar radia-
tion subtracted by the reflected part proportional to the
albedo (a2 − b2T

2), and eSAσST
4 is the outgoing radia-

tion described by the Stefan-Boltzmann law. Following
Ref. [63], we treat parameter µ as the time-varying bifur-
cation parameter. Other parameter values are I0 = 1366,
eSA = 0.62, σS = 5.6704 × 10−8, b2 = 1.69 × 10−5, and
a2 = 1.6927. The stochastic version of the system is
given by

dT = fc(T )dt+ σnoisedW, (10)

where dW is a normalized Wiener (white noise) process.
To generate the training data, we numerically integrate
this stochastic equation by the Heun method [64] with
an additive noise of strength σnoise = 0.1 and time step
of ∆t = 0.004. A tipping point occurs at µc = 0.761, as
shown in Fig. 10(a). Figure 10(b) shows the prediction
results by our parameter-adaptable reservoir computer.
It can be seen that the tipping behavior has been cor-
rectly predicted, based on training data from the pre-
tipping regime.

IV. BENEFICIAL ROLE OF NOISE IN
ANTICIPATING TIPPING

An attractor made of a simple fixed point is zero-
dimensional and is essentially featureless with limited in-
formation about the dynamics of the target system. A
machine-learning model is unable to learn the dynamics
based on time series with only constant values. In related
previous works [65, 66], transient behaviors of the tar-
get systems before reaching the asymptotic states were
exploited in training to overcome this difficulty, where
the target system is initialized at locations in the phase
space away from the asymptotic states. Another possi-
bility is exploiting dynamical noise that drives the target
system around the fixed point. A certain level of dy-
namical noise can in fact be advantageous for parameter-
adaptable reservoir computing, as it provides the oppor-
tunity for the machine to explore a larger phase-space
region. As the target system approaches a tipping point,
the dominant eigenvalue of the Jacobian matrix around
the fixed point is approaching zero, so the system land-
scape becomes flatter and noise can effectively enlarge
the phase-space region of exploration for the reservoir
computer to learn the dynamics.
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FIG. 11. Anticipation performance with different noise lev-
els and varying complexity of reservoir computing. The rates
of successful anticipation for different levels of σnoise are ob-
tained for reservoir network of size (a) N = 1, 200, (b)
N = 800, (c) N = 500, and (d) N = 250. An optimal region
of the noise strength arises for stable and relatively accurate
anticipation, which increases with the size of the reservoir
network. A larger reservoir network can also exploit training
data at a lower noise level, while a smaller network performs
better at exploiting training data with a higher noise level.

Our computations reveal an optimal region of the noise
strength for stable and relatively accurate anticipation
results. Some too large or too small noise level δnoise
tends to reduce the performance. As the reservoir net-
work becomes larger so that it possesses a higher level of
dynamical complexity, the optimal δnoise region becomes
wider. Figure 11 shows histograms of the anticipation
accuracy for different noise levels on the climate model
with different sizes of the reservoir network, where a suc-
cess rate is defined as the fraction of the testing results
that successfully anticipate the tipping and predict the
position of the tipping point with a relative error of less
than 50%. For the climate model, a predicted µc within
the interval of [0.751, 0.772] is considered as successful.
Each success rate is calculated from an ensemble of 50
statistical realizations of the reservoir network and train-
ing data. For weak dynamical noise, the training data
are close to some constant values, making it difficult
for the reservoir computer to grasp the dynamical fea-

tures, leading to the anticipation that the target system
is near a stable steady state. While the trend by which
the equilibrium point changes slowly with the bifurcation
parameter can be anticipated as it requires only the zero-
order information about the equilibrium in the training
set, the reservoir computer can hardly predict a tipping
point, which requires higher-order dynamical features of
the target system. The small dynamical fluctuations can
also be overwhelmed by observational noises.
Large dynamical noise is harmful, too. Intuitively, in

this case, the finite training data may not be statisti-
cally representative for the machine-learning framework
to learn the deterministic component of the target sys-
tem near the equilibrium without overfilling. Extract-
ing the deterministic component from its noisy trajec-
tory is similar to the problem of information transmis-
sion through a noisy communication channel [67]. To
see this, consider a one-dimensional dynamical system
dx = f(x)dt + σnoisedW , where dW is a normalized
Wiener (white noise) process and f(t) is the deterministic
component of the dynamics. Let there be a stable fixed
point at x0 = 0, about which we have f(x) = −x+ o(x).
The system’s capacity corresponds to the information
channel capacity and is given by [67]

C =
1

2σ2
noise

∫
f(x)2P (x)dx (11)

=
1

2σ2
noise

∫
(x2 − 2xo(x))P (x)dx, (12)

where P (x) is the distribution of x under dynamical
noise. The capacity C measures the maximal rate
of information transmission. If we ignore high-order
terms o(x), P (x) is a normal distribution P (x) ∼
N (0, σ2

noise/2). However, this would result in a constant
C independent of σnoise, because C measures the maxi-
mal information transmission rate about the features of
f(x) in the entire phase space. Anticipating the tip-
ping point requires focusing on the local behavior of f(x)
about x0, and the information about f(x) away from x0

may not be useful. As a crude approximation, we inte-
grate Eq. 12 within a neighborhood x ∈ (−d, d) of the
fixed point and find that C will quickly approach zero
as the noise level increases through d. (A more accurate
approximation is to use a mask distribution in the inte-
gration to put larger weights near the fixed point.) This
provides a heuristic understanding of the disadvantage of
large noise.
In realistic applications, it is not feasible to decide or

control the noise level of the observed data. However, as
shown in Fig. 11, the optimal noise region also depends
on the complexity of the reservoir network, where a larger
network is better at exploiting the relatively small fluc-
tuations caused by a lower noise level than a smaller net-
work, and can also make the optimal noise region wider.
Overfitting can be a problem with large reservoir net-
works. As a result, the optimal noise level shifts to the
lower side as the reservoir network size increases.
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V. DISCUSSION

Recent years have witnessed significant efforts in de-
veloping machine-learning models for predicting critical
transitions in nonlinear dynamical systems. A tacit as-
sumption in these works is that oscillatory time series
are available for training the neural network. For critical
transitions such as crises, synchronization onset and am-
plitude death, this requirement can indeed be met. Tip-
ping, by its historical origin from nonlinear ecosystems,
is a different type of critical transition in that the system
is in some sort of stable steady state before and after the
transition. In a deterministic system, the available time
series are non-oscillatory. The lack of pre-tipping oscilla-
tions means that the usual temporal variations used for
training are absent, making it significantly more challeng-
ing to predict the impending shift using machine learn-
ing. This is a reason that most previous works used
detection-based approaches to extracting early warning
signals or features from observed time series before the
tipping.

We developed a forecasting-based, machine-learning
framework to anticipate tipping in nonautonomous dy-
namical systems by taking advantage of noise. Our pre-
diction is based on the presently available time-series
data in a stable steady state but under the influence of
noise. For synthetic data from a dynamical model, we
incorporate stochasticity into the governing equations to
generate noisy time series. For empirical data from the
real word, most likely they are already noisy. In any
case, the random oscillations associated with the noisy
time series make it possible to train a machine-learning
model, such as reservoir computing. We tested our pa-
rameter adaptable reservoir-computing scheme on a vari-
ety of systems from diverse fields, all sharing the common
tipping scenario: sudden transition from one steady state
to another as a bifurcation parameter passes through a
critical point. The main application is predicting the
potential collapse of the AMOC. Using simulated and
empirical fingerprint data, our results suggest that the
AMOC could halt in a time window centered about the
year 2055, with the earliest possible occurrence in year
2040. These are consistent with the recent results based
on a statistical optimization approach [52].

Our machine-learning method is predicated on the
availability of a known time-varying parameter that
drives the system towards tipping [42]. A simple assump-
tion, in the absence of detailed information, is that the
control parameter changes gradually and approaches its
unknown critical value linearly over time [52, 58]. How-
ever, this linear assumption does not fully capture the
complexities of real-world scenarios. The exact nature
of the time-varying parameter and its real-time changes
remain ambiguous. It has been found that the AMOC
is sensitive to variations in the ocean’s freshwater forc-
ing [52, 58, 68] that can manifest through surface fresh-
water fluxes such as precipitation or through the input
of freshwater from river runoff and ice melt, including

significant contributions from the Greenland Ice Sheet.
More sophisticated models suggested that the freshwater
flux exhibits a quasi-exponential behavior [69, 70]. We
have studied the case where the time-varying parameter
λ(t) changes exponentially over time. This assumption
aligns more closely with observed behaviors and enhances
the accuracy of our machine-learning prediction, enabling
better anticipation of a potential tipping of the AMOC.
Another technical issue is whether the predicted col-

lapse is merely an artifact caused by the reservoir com-
puter operating in an untrained parameter region. To
address this concern, we conducted simulations to test
the extrapolation results on the other side of the un-
trained parameter region using synthetic AMOC data.
For example, we tested λ values smaller than those in
the trained parameter interval λ ∈ (−2.5,−1.5) in the
1D AMOC model. In the simulations, we conducted 500
testing trials. For all these trials, no collapse was ob-
served in this parameter region. The reservoir computer
consistently and persistently predicted that the system
remained in a healthy, stable steady state with no in-
dication of an impending collapse. This consistent be-
havior across numerous trials strongly suggests that the
predicted collapse is not an artifact of the reservoir com-
puter functioning outside its trained parameter region,
but rather robust prediction of the system’s dynamics.
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Appendix A: Notion of “tipping point” in the
literature

In recent years, tipping points have garnered signifi-
cant attention across diverse scientific disciplines [3, 4,
6, 11, 16, 17, 71–73]. There is a public interest in the
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phenomenon of tipping as well, e.g., Malcolm Gladwell’s
popular book entitled “The Tipping Point” [74]. In cli-
mate science, a tipping point manifests itself as an abrupt
transition from one regime to another within some time
frame [75]. In ecology, the term denotes a critical thresh-
old, often regarded as a point of no return, where minor
changes in the environmental conditions can drive the
system into a fundamentally altered state [76]. In dy-
namical systems, a common situation for a tipping point
is multistability. Tipping can also occur in monostable
fast-slow dynamical systems [77].

Despite the broad spectrum of domains in which
tipping can arise, Kuehn’s work [78] identified several
common attributes shared by most tipping phenomena.
These include (1) a sudden qualitative shift in the sys-
tem’s behavior, (2) faster changes compared to regular
dynamics, (3) the crossing of a specific threshold near a
transition, (4) the emergence of a new state significantly
distant from the preceding state, (5) the presence of noise
in a deterministic system, (6) a slow recovery from per-
turbations, (7) escalating variance as the transition ap-
proaches, (8) more asymmetric noisy fluctuations, and
(9) an increase in autocorrelation prior to a transition.
Another attribute of tipping is some hysteresis behavior
associated with multistability [73]. In such an instance,
the trajectory leading to the tipping point differs signif-
icantly during forward and backward shifts, influencing
the system’s response and recovery. The hysteresis near
a tipping point, particularly in ecosystems, poses a sig-
nificant challenge, as it complicates efforts to restore the
system to its previous state following the tipping transi-
tion.

While diverse types of tipping points have been re-
ported in the literature [47], a comprehensive classifica-
tion of tipping points in dynamical systems was proposed
in 2011 [63], based on the tipping mechanism. The most
extensively studied type is bifurcation-induced tipping
(B-tipping) [79], where a small alteration in the system’s
parameters leads to an abrupt and qualitative change in
the system’s state. Another type is noise-induced tipping
(N-tipping) associated with transitions between states
due to noisy fluctuations [80]. A more recently discovered
type is rate-induced tipping (R-tipping), where a time-
varying input or parameter of the system causes the sys-
tem to “tip” away from its normal states [63]. Overall,
B-tipping is triggered by a critical level of external in-
puts or a critical value of a system parameter, N-tipping
occurs due to the presence of noisy fluctuations, and R-
tipping arises when the moving stable state cannot adapt
to an external input or a time-varying parameter of the
system [81].

Appendix B: Anticipating tipping versus predicting
critical transitions

Our work differs from the recent work on machine-
learning prediction of critical transitions in nonlinear dy-

namical systems [42], where the former is predicting tip-
ping from one stable steady state to another and the
latter is predicting a transition from an oscillatory dy-
namical state to a collapsed state. More specifically, os-
cillatory behaviors in the data in the pre-critical regime
have the benefit of system trajectory’s visiting a sub-
stantial portion of the phase space, thereby facilitating
training by enabling the neural network to effectively
learn the phase-space behavior or the dynamical climate
of the target system. However, for tipping in a deter-
ministic system, in the pre-tipping regime the system is
in a stable steady state without oscillations in its dy-
namical variables. In this case, stochasticity or noise
leading to randomly oscillating dynamical variables is
essential to neural-network training. In our study, we
exploit dynamic noise in the data for training, where val-
idation and hyperparameter optimization are performed
based on data in the pre-critical regime. During the test
or prediction phase, the reservoir computer operates as
a closed-loop, deterministic dynamical system capable
of predicting how the dynamical climate of the system
changes with the bifurcation parameter. Since no data
from the target system in the post-tipping regime were
used for training (in a realistic situation, such data are
not available), it is not possible for the reservoir com-
puter to correctly predict the system’s behavior after the
tipping. However, the neural machine is capable of gen-
erating characteristic changes in the output variables at
the tipping transition, making its anticipation possible.
A marked difference between our approach and the

method in Ref. [42] stems from variations in the tar-
get systems under consideration. The assumption in
Ref. [42] is that stochastic effects in the target system
are relatively small compared to the deterministic com-
ponent. It was demonstrated that even with relatively
small observational noise, the results remained largely
unaffected. In contrast, our study assigns crucial roles
to stochastic effects. Omitting stochastic noises renders
the training data with no variations in time and devoid
of distinctive features. During the prediction phase, our
closed-loop reservoir network operates as a deterministic
system. Consequently, evaluating metrics such as root
mean square errors during validation or hyperparameter
optimization provides limited insights into the reservoir
computer’s performance. Validation can only discern sta-
bility in the prediction with no abrupt collapse in a spe-
cific hyperparameter region. While this stable region is
generally broader than the optimized region in Ref. [42],
it does not hinder the ability to successfully anticipate
tipping.

Appendix C: A detailed account of the 1D AMOC
fingerprint model

The AMOC is a crucial component of the global ocean
circulation system, playing a vital role in regulating
global climate patterns. However, due to the challenges
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FIG. 12. Phase-space structure and bifurcation diagram of
the three-box AMOC model (D1). (a) An example of the
vector field of the model with the parameter values specified
in Tabs. II and III). (b,c) Basin of attraction of the stable
equilibria for two distinct values of the freshwater forcing pa-
rameter: H = 0.2 and H = 0.35, respectively. The basins
associated with the high (low) state is highlighted in yellow
(gray). Changing the freshwater forcing parameter results
in a decrease (increase) in the basin associated with the “on
(off)-state.” (d) A bifurcation diagram under the atmospheric
conditions of doubled pre-industrial CO2.

associated with continuously monitoring the AMOC and
the limited availability of long-term observational data,
researchers have turned to fingerprint analysis techniques
to gain insights into the dynamics of the AMOC [53]. One
such fingerprint analysis technique involves using the SST
data as a proxy for assessing the AMOC strength [54–
57], where SST is an important fingerprint of the AMOC
due to its sensitivity to changes in the ocean circulation
patterns and its ability to capture the variations in heat
transport within the North Atlantic [82–84]. In general,
the fingerprints offer the possibility of detecting changes
in the AMOC earlier than direct observations and extend
time series data into the past, potentially enabling antic-

ipation and understanding of the shifts in this critical
ocean circulation system.
The 1D AMOC stochastic fingerprint model was in-

troduced recently to describe the AMOC dynamics with
a time-varying control parameter [52]. The basic as-
sumption is that the AMOC is in equilibrium before un-
dergoing a transition, where the bifurcation parameter,
denoted as λ, undergoes slow evolution towards an un-
known critical value. In spite of its simplicity, the 1D
model produces time series in close alignment with ob-
served AMOC fingerprint data. The primary drivers such
as freshwater flux or the logarithm of atmospheric CO2

concentration are not reflected in the model, but the fin-
gerprint data generated are robust. In the vicinity of
tipping, the model is described by a dynamical variable
Xt governed by the following stochastic differential equa-
tion:

Ẋt = −(A(Xt −m)2 + λ)) + σdBt, (C1)

λ =

{
λ0 t < t0
λ0(1− t−t0

tc−t0
),

(C2)

where A is a time scale parameter, m = µ−
√
|λ|/A with

µ being the stable fixed point, Bt denotes a Brownian
motion, and σ is the noise amplitude. The underlying
deterministic system exhibits a tipping point triggered
by a saddle-node bifurcation at λ = λc = 0. Initially,
the system is in a statistically stable state with a con-
stant λ = λ0. Starting from time t0, λ undergoes a
linear change towards λc. The actual tipping time tc
exhibits fluctuations due to the stochastic forcing and
varies across different realizations. Figure 3(b) shows ten
different realizations of the tipping event for A = 0.95,
m = −1.3, λ0 = −2.7, σ = 0.3, t0 = 1924 and λc = 0.

Appendix D: Three-box AMOC model

TABLE II. Salinity and flux initial conditions for the three-
box AMOC model with doubled atmospheric CO2 (2× CO2)

Salinity Flux (m3 s−1)

SN0 = 0.034912 FN0 = 0.486× 106 FN1 = 0.1311× 106

ST0 = 0.035435 FT0 = −0.997× 106 FT1 = 0.6961× 106

SS0 = 0.034427 FS0 = 1.265× 106

SIP0 = 0.034668 FIP0 = −0.754× 106

SB0 = 0.034538

There are a number of models of the AMOC in the
literature, ranging in complexity from simple box mod-
els to the intricate atmosphere-ocean general circulation
models. These models differ in their structure and pa-
rameters, such as the five-box model [85] or the reduced
three-box model [86]. In the original five-box model,
the boxes correspond to different ocean regions: North
Atlantic (N), Tropical Atlantic (T), Indo-Pacific (IP),
Southern Ocean (S), and bottom waters (B). The AMOC
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flow (q) is directly proportional to the density gradient
of the temperatures and salinity in the N and S boxes.
In the reduced three-box model, variations in the salin-
ity of the Southern Ocean (SS) and bottom waters (SB)
are treated as constants over time due to their relatively
small and slow rate of change compared to the salinity
variations in the North Atlantic (SN ), Tropical Atlantic
(ST ), and the Indo-Pacific (SIP ). Taking the constant

salt (C) and SIP as a dependent variable, the governing
equations of the AMOC dynamics are

q =
λ [α (Ts − T0) + β(SN − Ss)]

1 + λαµ
, (D1)

where

VN
dSN

dt
= q (ST − SN ) +KN (ST − SN )− (FN0 + FN1H))S0, (D2)

VT
dST

dt
= q [γSS + (1− γ)SIP − ST ] +KS (SS − ST ) +KN (SN − ST )− (FT0 + FT1H))S0, (D3)

for q ≥ 0 and

VN
dSN

dt
= |q| (SB − SN ) +KN (ST − SN )− (FN0 + FN1H))S0, (D4)

VT
dST

dt
= |q| (SN − ST ) +KS (SS − ST ) +KN (SN − ST )− (FT0 + FT1H))S0, (D5)

for q < 0. The parameter H corresponds to the freshwa-
ter fluxes and SIP is determined by the following equa-
tion:

C = VNSN +VTST +VSSS+VIPSIP +VBSB . (D6)

The parameter values of the three-box model are listed
in Tables II and III.

TABLE III. Parameter values of the three-box AMOC model with doubled atmospheric CO2 (2× CO2)

Volume (m3) Parameters Flux Parameters (m3 s−1) Parameters

VN = 0.3683× 1017 S0 = 0.035 KN = 1.762× 106 λ = 1.62× 107m6kg−1s−1

VT = 0.5418× 1017 T0 = 3.870◦C η = 33.264× 106 γ = 0.36
VS = 0.6097× 1017 TS = 7.919◦C KS = 1.872× 106 µ = 22× 10−8◦C−1m−3s−1

VIP = 1.4860× 1017 α = 0.12 kg◦C−1m−3 KIP = 99.977× 106

VB = 9.9250× 1017 β = 790.0kgm−3 H ∈ [0.2, 0.5]

Figure 12(a) presents an example of an AMOC fin-
gerprint: tropical Atlantic salinity in relation to north
Atlantic salinity. The three-box model has two stable
equilibria as indicated by the black dots. The locations of
these equilibria and their basins of attraction depend on
the model’s parameter values. For example, Figs. 12(b)
and 12(c) show the basin of attraction for two different
values of the parameter H. The basins associated with
the high and low states are shown in yellow and gray,
respectively. As the freshwater forcing parameter H is
increased from 0.2 to 0.35, the basin of the high state
diminishes till it undergoes extinction at Hc = 0.388.
Figure 12(d) shows a bifurcation diagram of the three-

box model with respect to the parameter H ∈ [0.2, 0.5],
where the two stable equilibria are represented by the
two solid green curves. The upper (lower) equilibrium
corresponds to the “on state” (“off state).” At a criti-
cal value (Hcr = 0.388), the system undergoes a saddle-
node bifurcation where the high stable equilibrium and
the unstable equilibrium collide and annihilate together,
leaving the low stable equilibrium as the only attractor
of the system.
We now use reservoir computing to predict the tip-

ping time. In general, augmenting the freshwater input
from melting glaciers can impact the AMOC system and
bring it into closer to a tipping point, as illustrated in
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(b)
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(d)
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(f)

FIG. 13. Reservoir-computing prediction of the time window of AMOC collapse in the time-dependent three-box AMOC model.
The fresh-water flux parameter H(t) is time dependent, making the system nonautonomous. (a-c) Different realizations of the
AMOC fingerprint. The data are divided into three segments: transients, training, and testing, depicted in black, purple, and
blue, respectively. The vertical red dotted line indicates the critical time Tc of tipping under dynamical noise of amplitude
σ = 5 × 10−5. The critical point is Hc = 0.359. (d,e) An illustrative example of the testing data as represented by the solid
blue line, while the reservoir-computing prediction is indicated by the dash-dotted line. (f) Histogram of the predicted critical
point Tc from 1000 random realizations of the reservoir computer.

Figs. 13(a-c) by three different time-series realizations
for different values of H. The training data consist of
time series for SN and ST for H ∈ [0.20, 0.38], represent-
ing the system’s behavior associated with the “on-state”
equilibrium. To introduce random fluctuations about the
fixed points in the training data, we incorporate certain
levels of dynamical noise into the deterministic system.
During the testing phase, the control parameter contin-
ues to increase into the untrained regime, enabling a po-
tential tipping to be anticipated. Some representative
prediction results are shown in Figs. 13(d) and 13(e).
From an ensemble of 1000 random reservoir realizations,
we obtain a histogram the anticipated tipping point, as
shown in Fig. 13(f), where tipping occurs for all the trials
and the anticipated tipping time falls within the interval

Tc ∈ [3.3 × 104, 3.6 × 104] about the ground truth from
the model (Tc = 3.48× 104).
The results in Fig. 13 imply that the system might un-

dergo a tipping in roughly the next 350 centuries, which
are inconsistent with those from the recent study [52] that
predicts the potential collapse of the AMOC around the
mid-century under the current scenario of emissions. Dis-
crepancies between different models and studies are not
uncommon in climate science, where variations in the
complexity, assumptions, and input parameters among
the models can lead to divergent predictions. Addition-
ally, uncertainties in climate projections may stem from
different sources, including variations in the modeling
techniques, emission scenarios, and natural climate vari-
ability.
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