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The paradox of enrichment is referred to as the counterintuitive phe-
nomenon in ecology where increasing the resources available to the
prey population can lead to instability and a higher likelihood of popu-
lation fluctuations. We study the converse situation where the prey’s
environment is degrading as caused by, e.g., climate change, and ask
if the dynamical interplay between this degradation and stochasticity
might actually be beneficial to stabilization of the prey population.
The underlying dynamical systems are nonautonomous and subject
to noise, and we uncover a phenomenon pertinent to the paradox of
enrichment: rare rarity. In particular, in a slow-fast ecosystem with
a sole stable equilibrium, noise can induce dynamical excursions of
a trajectory into a region with low or near-zero species abundance,
resulting in rarity. Surprisingly, it is the same noise that can facilitate
a rapid recovery of the abundance of the rare species, making short
the duration of the rarity in comparison with the time interval between
two adjacent rare-rarity events. As the environment continues to
degrade, the occurrence of such rarity events can be nonuniform in
time and even more rare. The intermittent occurrence of rare rarity is
caused by the dynamical interplay between the phase-space distance
from the stable equilibrium to the boundary separating two distinct
regions of transient dynamics: one resulting in trajectories directly to
the stable equilibrium and another to trajectories a region of near-zero
prey abundance. The rare-rarity phenomenon can also arise in other
natural systems such as the climate carbon-cycle system.
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Consumer-resource interactions often exhibit cycles of prey1

over exploitation, crash, and recovery. When the prey2

population’s growth capacity is sufficiently low due, for exam-3

ple, to limited resources or poor habitat quality, these cycles4

are expected to dampen out over time and the system will5

approach a stable equilibrium point. Enrichment of the prey’s6

environment destabilizes this equilibrium via a Hopf bifurca-7

tion. The more favorable conditions allow for a larger and8

faster prey recovery after over exploitation, resulting in large,9

sustained oscillations. This is known in ecology as the para-10

dox of enrichment: the counterintuitive phenomenon where11

increasing the availability of resources, such as nutrients in12

an ecosystem, can lead to instability and a higher likelihood13

of population fluctuations in consumer-resource systems (1–14

7). In this paper, we consider the converse situation where15

the prey’s environment is degrading and ask if the interplay16

between the direct negative impacts of this degradation and17

stochasticity might actually lead to stabilization of the prey18

population. In particular, we shall demonstrate that the non-19

linear dynamical effect of the degradation can lead to species20

rarity but noise can play the beneficial role of quick recovery,21

a phenomenon that we call “rare rarity.” 22

Species rarity is characterized by a low abundance of certain 23

species, which can be induced by multiple mechanisms. For 24

example, global climate change is having significant impacts 25

on ecological systems on different scales, resulting in slow and 26

gradual deterioration of the species population and eventually 27

leading to rarity. A tipping-point transition (e.g., a saddle- 28

node bifurcation) is a dynamical mechanism that can lead to 29

rarity: the species abundance decreases suddenly to a near-zero 30

level as a parameter of the system passes through a critical 31

point. In a neighborhood beyond a Hopf bifurcation leading 32

to stable oscillations of the population density, at least one 33

population size becomes small in size for a certain time interval 34

corresponding to transient rarity during the limit cycle. In 35

fast-slow and excitable systems, another mechanism of rarity 36

can arise: it can be induced by a trajectory visiting a phase- 37

space region with low species abundance - the phenomenon of 38

dynamical excursion. (Some background topics pertinent to 39

this work are presented in SI Appendix (Sec. I), which include 40

recovery from rarity, tipping, dynamical excursion, noise in 41

ecological systems.) 42

We focus on species rarity caused by dynamical excursions 43

and find that demographic noise, multiplicative noise that 44

arises commonly in ecological systems, can make the rarity 45

“rare” in time by facilitating a rapid recovery of the abundance 46

after the excursion, thereby preventing extinction. More specif- 47

ically, we present a rarity phenomenon in a noisy slow-fast 48
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predator-prey system. The system is subject to continuous49

parameter change with time caused by, e.g., environmental50

changes, and stochastic disturbances modeled by ecologically51

realistic demographic noise. In the absence of noise, the pa-52

rameter changes can cause the system to evolve towards a53

dynamical excursion, after which the species abundances be-54

come near zero, making them rare. Demographic noise can55

facilitate a quick recovery process of the rare species to a high56

abundance level. As a result, an intermittent behavior can57

emerge: the system undergoes an excursion again, generating58

rarity, followed by a fast recovery, and so on. A surprising59

finding is that, due to the demographic noise, the time dura-60

tion in which the system exhibits species rarity is relatively61

short compared to the time interval between two adjacent62

rare-rarity events, i.e., the excursion-induced rarity is rare!63

The species are resilient in the sense that, in a long time in-64

terval, on average they are able to maintain a high abundance65

level, in spite of occasionally or intermittently becoming rare.66

The phenomenon of rare rarity is also found in a stochastic67

carbon-cycle system [SI Appendix (Sec. II)], suggesting the68

generality of this phenomenon in nonlinear slow-fast ecological69

and physical systems.70

Results71

Slow-fast predator-prey model. We consider a variant of the72

slow-fast Rosenzweig-MacArthur predator-prey system (8),73

subject to demographic noise and parameter variations with74

time (e.g., as the result of environmental change). For simplic-75

ity, we assume that the resources available to the prey species76

in its habitat decline continuously and linearly with time. The77

nonautonomous dynamical system subject to multiplicative78

noise is described by the following set of stochastic differential79

equations:80

κẋ = x(1 − ϕx) − xy

1 + ηx
+ ξ

√
xdB(t) [1a]81

ẏ = xy

1 + ηx
− y + ξ

√
ydB(t) [1b]82

ϕ̇ =
{

r, ϕmin < ϕ < ϕmax

0, otherwise,
[1c]83

where x and y are the populations of the fast (prey) and slow84

(predator) species, respectively, 0 < κ ≪ 1 quantifies the time-85

scale separation between the prey’s and predator’s life span,86

η is the predator’s interaction time with the prey, and the87

term ξ
√

ydB(t) describes the demographic noise with ξ as the88

noise amplitude and dB(t) being an independent Gaussian89

random process of zero mean and unit variance (9, 10). Let ϕ90

be the time-dependent bifurcation parameter that is inversely91

proportional to the carrying capacity of the prey habitat. It92

varies linearly with time at the rate r from ϕmin initially to93

ϕmax after certain time. As ϕ(t) increases with time, the94

carrying capacity of the prey habitat deteriorates continuously,95

so ϕ(t)’s increase with time could, roughly, be the result of the96

ever increasing human influences on the ecosystem. The three97

quantities, r, ϕmin and ϕmax define a proper or calibrating98

time scale of the nonautonomous dynamical system Eq. (1):99

Ts ≡ ϕmax − ϕmin

r
, [2]100

with which the duration of various dynamical events of the101

system can be compared. The quantity Ts is the time interval102

over which an environmental change is assumed to happen. We 103

integrate the nonautonomous system Eq. (1) using a standard 104

second-order method for stochastic differential equations (11). 105

   

   

      

Fig. 1. Demonstration of the phenomenon of the rare rarity of the prey population in
the nonautonomous predator-prey system Eq. (1). (a) Time-varying parameter ϕ(t),
which is inversely proportional to the carrying capacity and increases linearly from
ϕmin ≈ 0.09 at t = 0 to ϕmax ≈ 0.2 at the rate r = 0.0002. (b) A representative
time series (a random realization) of the prey population for η = 0.8 and κ = 0.01.
The amplitude of the demographic noise is ξ = 0.1. For this realization, during the
time interval in which the capacity parameter ϕ changes, there are four occurrences
of the rarity of the prey population. (c) A magnification of a typical rarity event, which
lasts for a quite short time relative to the system time scale Ts, signifying “rare rarity.”
(d) The corresponding Time series y(t) of the predator population.

Rare rarity in the prey population. Figure 1(A) shows the time- 106

varying parameter ϕ(t) for r = 0.0002, ϕmin = 0.09, and 107

ϕmax = 0.199. The corresponding time series of the prey 108

population x(t) is shown in Fig. 1(B) for η = 0.8 and κ = 0.01, 109

and noise amplitude ξ = 0.1. During the time interval in which 110

the control parameter ϕ varies, there are four occurrences of 111

rarity in which the prey population reaches a dangerously 112

low, near-zero level. The remarkable feature is that each 113

occurrence of rarity lasts only for a relatively short time, as 114

exemplified in Fig. 1(C), a magnification of one of the rarity 115

events. The rarity event lasts for a short time in the sense 116

that, in terms of the calibrating time Ts, the duration of the 117

rarity event is less than 1%. Figure 1(C) also shows that, 118

after temporally approaching some near zero value, the prey 119

population quickly recovers to the normal level. Such a rarity 120

event can thus be regarded as a “quick” transient event of 121

temporary population collapse. In the entire observational 122
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time interval, the total duration of all rarity events is thus123

short, rendering rare the rarity events. In fact, the length124

of the rarity interval is related to the intrinsic time scales of125

the predator-prey system determined by the parameter κ that126

characterizes the time-scale separation between the lifetimes127

of the two species: predator and prey. In general, the life128

spans on different trophic levels follow an allometric slowing129

down (12), i.e., species on a higher trophic level (here the130

predator) grow slower than the species on lower trophic levels131

(the prey). Note that, in spite of the rare rarity occurrences132

of the prey population, the predator population maintains at133

a level well away from zero, as shown in Fig. 1(D).134

The time series exemplified in Fig. 1(B) is one random135

realization of the underlying stochastic dynamical system. To136

statistically characterize the phenomenon of rare rarity, we137

define two quantities: (1) ∆Tc, the time interval between138

two adjacent rare-rarity events, and (2) Nc, the number of139

occurrences of such events in the time interval [0, Ts]. The140

statistics of the two quantities can be obtained from a large141

number of dynamical realizations. Figures 2(A) and 2(B)142

show a histogram of ∆Tc on a linear and logarithmic scale,143

respectively, from 800 independent realizations. It can be seen144

that the distribution of ∆Tc is algebraic or power-law, which145

is characteristic of typical intermittent behavior in nonlinear146

dynamical systems (13). The corresponding histogram of Nc147

is shown in Fig. 2(C), which is approximately Gaussian with148

the mean value ⟨Nc⟩ ≈ 8 and variance σNc ≈ 3. As the rate149

r of parameter change increases, on average the number of150

occurrences of rare rarity decreases, due to the reduction in151

the time duration Ts of the parameter variation, as shown in152

Fig. 2(D).153

Dynamical mechanism of rare rarity: a deterministic au-154

tonomous approach. To uncover the dynamical mechanism for155

the phenomenon of rare rarity as exemplified in Figs. 1 and 2,156

it is necessary to examine the global phase-space structure (8)157

and study the corresponding autonomous deterministic system158

of Eq. (1) with the bifurcation parameter ϕ:159

κẋ = x(1 − ϕx) − xy

1 + ηx
[3a]160

ẏ = xy

1 + ηx
− y, [3b]161

which is a slow-fast system. We choose the value of ϕ from162

an interval in which both the average prey and predator pop-163

ulations are nonzero. For a perfect time-scale separation of164

predator and prey, κ = 0, we can compute the stability of the165

critical manifold by transforming the system Eq. (3) in slow166

time t into fast time τ = κt, leading to167

ẋ = x(1 − ϕx) − xy

1 + ηx
[4a]168

ẏ = κ

(
xy

1 + ηx
− y

)
, [4b]169

where the dot now indicates the derivative with respect to τ .170

The independent variables t and τ correspond to the fast and171

slow times, respectively, with Eq. (3) and Eq. (4) being the172

fast and slow systems, respectively, which are equivalent for173

κ ̸= 0.174

In the limit κ = 0, the predator population y is constant,175

and only the fast dynamics of the prey x need to be consid-176

ered, which can be approximated by a one-dimensional critical177

   

   

   

   

Fig. 2. Statistical characterization of rare rarity. (A, B) Distribution of ∆Tc, the time
interval between two adjacent rare-rarity events, on a linear and logarithmic scale,
respectively, for r = 0.0002. (C) Distribution of Nc, the number of rare-rarity events
during the time interval of parameter variation for r = 0.0002. (D) The mean value
⟨Nc⟩ versus the rate of parameter change. Other parameters are the same as in
Fig. 1. For clarity, ⟨Nc⟩ is plotted on a logarithmic scale, while the shaded area
represents the standard deviation on a linear scale.

manifold (or the x-nullcline of the system) (14–16): 178

Ms = {(x, y) ∈ R2|x = 0, y = (1 − ϕx)(1 + ηx)}, [5] 179

where the first component is a line perpendicular to the fast 180

direction and the second (fold) component is a curve with a 181

fold tangent to the fast direction at the point 182

(xf , yf ) = ((η − ϕ)/2ηϕ, (η + ϕ)2/4ηϕ). 183

To elaborate, the critical manifold Ms consists of the steady 184

states of Eq. (4) with κ = 0, whose stability can be determined. 185
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Fig. 3. Phase-space structure of the deterministic predator-prey model Eq. (3). Two representative time series of the prey population from two different initial conditions: (A)
[10, 2] and (B) [10, 3] for η = 0.8, ϕ = 0.09, κ = 0.01, and ξ = 0.1. For (A), the prey population is maintained at a healthy level in the time window of observation. For (B),
rarity arises because the prey population becomes near zero for a short transient period of time. (C) Phase-space structure for ϕ = 0.09, where the white region corresponds
to the excursive initial points that undergo temporary collapse of the prey population, leading to rarity, and the initial conditions in the yellow region lead to trajectories that go
directly into the sole global stable equilibrium (the filled green circle) without the occurrence of rarity. Since the stable equilibrium is on the boundary between the white and
yellow regions, noise with an arbitrary amplitude can land the system into the white region, generating rarity, after which the system settles into stable equilibrium again. This
process can repeat, generating the intermittent rarity behavior as exemplified in Fig. 1(B) in the time period in which the control parameter ϕ varies with time but its values are
relatively small. (D) Phase-space structure for ϕ = 0.199. In this case, the stable equilibrium is near the x-axis and is far away from the boundary between the white and
yellow regions. While the white region becomes larger as compared with that in (C), noise with an extraordinarily large amplitude is required to kick the system into the white
region, making the time to observe such an event prohibitively long, as demonstrated in Fig. 1(B).

The fold component has a stable and an unstable part with186

a saddle-node bifurcation at the fold point. The other part187

of the critical manifold, the y axis as a vertical line, is stable188

but it becomes unstable below the intersection point with the189

other part of Ms. This view provides a picture of the direction190

of the trajectories in that limit, which is only slightly different191

for 0 < κ << 1.192

The equilibria of the system Eq. (4) are located at the in-193

tersections of the x- and y-nullclines. Consider the parameter194

setting in which the system Eq. (3) has one globally stable195

equilibrium in which the predator and prey coexist. Depending196

on the initial condition, the slow-fast system exhibits distinct197

transient behaviors. For example, Figs. 3(A) and 3(B) show198

two time series of the fast variable from two different initial199

conditions for η = 0.8, ϕ = 0.09, κ = 0.01, and ξ = 0.1. The200

time series in Fig. 3(A) corresponds to some “healthy” behav-201

ior of the prey population in the sense that, in spite of the202

oscillations, a finite population is maintained. However, for203

a different initial condition, there is a time interval in which 204

the fast variable approaches zero, as shown in Fig. 3(B). The 205

corresponding behavior of rarity lasts for a relatively short 206

period of time before the population recovers to a healthy 207

level. Figure 3(C) shows the phase-space structure of the 208

system Eq. (3) for fixed ϕ = 0.09 and η = 0.8, with one glob- 209

ally stable equilibrium (closed green circle) and two unstable 210

equilibria (the two yellow circles). The positions and stability 211

of the equilibria depend on the values of the parameters ϕ 212

and η. The chosen ϕ = 0.09 is quite close to a Hopf bifur- 213

cation at ϕ = 0.088, which explains the oscillations for the 214

initial condition visible in Fig. 3(A). The dashed vertical black 215

line represents the y-nullcline. The x-nullcline or the critical 216

manifold of the system is shown by a solid line and curve 217

segments, with the stable (unstable) parts in green (red). The 218

intersection points of the y-nullcline and the critical manifold 219

(x-nullcline) give the equilibria of the system. 220

Depending on the initial condition, there are two distinct 221
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transient behaviors in their convergence to the global stable222

equilibrium: direct (yellow region) and excursive (white re-223

gion). For an initial condition from the yellow region, the224

system approaches the stable equilibrium directly. However,225

for initial conditions from the excursive region, the system226

experiences a large excursion in the phase space that includes227

a close approach to zero populations, leading to a sudden tran-228

sient collapse in both the predator and prey populations before229

eventually reaching the stable steady state. Two examples230

of the dynamical trajectories, one initiated from the white231

(purple dashed line) and another from the yellow region (blue232

dashed line), are shown in Fig. 3(C). It can be seen that the233

dynamical trajectory from the initial condition in the white234

region approaches the y-axis (zero prey population) and stays235

near it for a transient period of time before leaving it and236

approaching the stable equilibrium.237

To gain more insights into the state of rarity, we recall238

that the trajectory approaches the y axis fast where x is near239

zero. In this case, the dynamic is determined only by the240

dynamics of the slow variable y. A reasonable approximation241

for the time scale, which is essential for the motion in the242

neighborhood of the y axis, can be derived by examining the243

corresponding trajectories. In particular, setting x = 0 in244

Eq. (3), we obtain ẏ = −y, whose time scale is short compared245

to that of the environmental change. The analysis of the246

dynamics in fast time τ reveals that the intersection between247

the unstable fold part and the y axis part of Ms is the point248

at which the downward moving trajectory changes from the249

influence of the stable to the impact of the unstable part of the250

critical manifold. This leads to a strong repulsion ending the251

rarity interval and pushing the system back to large population252

densities. How strong the attraction to and the repulsion from253

the y axis depends strongly on the time-scale separation κ.254

By including noise in Eq. (4), the initial conditions in the255

neighborhood of the horizontal line separating the trajectories256

(basin boundary) possessing initially a rarity event or not can257

change their behavior due to the noise. The second impact258

of the noise concerns the time when the intersection point259

between the two parts of Ms is reached. Due to the closeness260

to the line of x = 0, the noise acts mainly on y shifting the261

point at which the rarity event is ending. This shift could occur262

in either direction (either extending or reducing the duration263

of prey rarity), but because the noise has a proportionally264

larger impact on small populations, noise-driven reductions265

in y predominate and so the trend is toward shortening the266

rarity event.267

Figure 1(B) reveals that for a relatively large value of268

the bifurcation parameter ϕ, the phenomenon of intermittent269

rare rarity no longer occurs. This can also be understood270

by examining the phase-space structure of the deterministic271

system. Figure 3(D) shows, for ϕ = 0.199, that the system272

has a stable equilibrium with a near-zero predator population273

and an unstable equilibrium corresponding to the extinction of274

both species. In this case, the folded component of the critical275

manifold shrinks as compared with the case of a smaller value276

of ϕ, leading to a larger white area. However, differing from277

the case of a smaller ϕ value in Fig. 3(C), the global stable278

equilibrium is now far away from the boundary between the279

white and yellow regions. Once the system settles into the280

stable equilibrium, a noise realization of extraordinarily large281

amplitude is required to kick the system into the white region282

to exhibit the rarity of the prey population. While abnormally 283

large amplitude realizations are possible for demographic noise, 284

it would require a long time to actually experience such a 285

realization. This explains why no rarity events occur for large 286

values of ϕ in Fig. 1(B) in the time window of observation. It 287

is worth noting that, for ϕ = 0.199, the predator population 288

is near zero all the time, as can be seen from Fig. 3(D) which 289

is due to the fact that this point is close to the transcritical 290

bifurcation point (ϕ = 0.2) where the predator dies out. 291

Fig. 4. Role of noise in rare rarity. (A-C) Phase-space trajectories and the correspond-
ing time series of the prey population for ϕ = 0.09, respectively. The sole stable
equilibrium of the system lies close to the boundary between the phase-space regions
with distinct transient behavior, so even noise of small amplitude can induce a rare
rarity event. (D-F) Same legends as in (A-C) but for ϕ = 0.12. The stable equilibrium
is away from the boundary, requiring larger noise to induce a rare rarity event. This
reduces the number of such events in the same time interval as compared with (A-C).
(G-I) Same legends as in (A-C) but for ϕ = 0.199. In this case, the stable equilibrium
is far away from the boundary, requiring significantly stronger noise to induce a rare
rarity event. No such event occurs in the same time window of observation. Other
parameter values are η = 0.8, κ = 0.01, and ξ = 0.1.

The phase-space structure exemplified in Figs. 3(C) and 292

3(D) suggests that the distance between the global stable equi- 293

librium and the boundary of the regions with distinct transient 294

dynamical behaviors is key to the occurrence of the rare-rarity 295

events in terms of their frequency and regularity. To verify this 296

explicitly, we compare the trajectories and the corresponding 297

time series of the prey population of the autonomous noisy 298

system for three fixed values of ϕ: ϕ = 0.09, 0.12, and 0.199, 299

in a long time window, as shown in Fig. 4. For ϕ = 0.09, 300

the stable equilibrium is approximately on the boundary. In 301

this case, even small noise can drive the system out of the 302
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equilibrium, leading to a transient excursion in the phase space303

that stays near the y axis (near zero prey population) for some304

time, as shown in Figs. 4(A). As a result, the rare-rarity events305

associated with the prey population occur quite frequently, as306

shown in Fig. 4(B), which leads to oscillation in the preda-307

tor population as depicted in Fig. 4(C). For ϕ = 0.12, the308

position of the stable equilibrium is lower in the phase space309

as compared with the case of ϕ = 0.09 and is away from the310

boundary, as shown in Fig. 4(D), so some larger noise is re-311

quired to induce a rare-rarity event, making these events more312

infrequent than the case of ϕ = 0.09, as shown in Fig. 4(E).313

The predator population and the number of oscillations also314

decrease as shown in Fig. 4(F). For ϕ = 0.199, the stable315

equilibrium is far away from the boundary, so the dynamical316

trajectory, once approaching the equilibrium, tends to stay317

there as the required noise level to kick it out is enormous, as318

shown in Fig. 4(G). In the time window of observation, there319

is in fact no rare-rarity event, as shown in Fig. 4(H) and the320

predator population remains near zero without any oscillation,321

as can be seen from Fig. 4(I).322

Fig. 5. Statistical behavior of rare rarity events in the autonomous system Eq. (3)
subject to demographic noise. (A) Distribution of Nc, the number of rare rarity
events in a long observational time window, which is approximately Gaussian. (B)
Distribution of ∆Tc, the time interval between two adjacent rare-rarity events, which
is approximately Poisson. The system parameter values are ϕ = 0.09, η = 0.8,
κ = 0.01, and ξ = 0.1. (C) Average value ⟨Nc⟩ of rare rarity events versus ϕ. The
shaded area indicates the standard deviation of the average.

Figure 5(A) shows the distribution of the number Nc of323

the rare rarity events in the time interval [0, 1000] in the324

autonomous noisy model for ϕ = 0.09, η = 0.8, κ = 0.01, and325

ξ = 0.1, which can be approximated by a normal distribution326

[similar to that from the nonautonomous system Eq. (1) shown 327

in Fig. 2(C)]. Figure 5(B) shows the distribution of ∆Tc, the 328

time interval between two adjacent rare-rarity events, which 329

can be approximated by a Poisson distribution. The most 330

likely time interval between two adjacent rare-rarity events 331

lies in ∆Tc ∈ [16 18]. Figure 5(C) shows the mean value of 332

the approximately Gaussian random variable Nc versus the 333

bifurcation parameter ϕ where, for each fixed value of ϕ, 800 334

noisy realizations are used to calculate ⟨Nc⟩. The decreasing 335

behavior of ⟨Nc⟩ with ϕ is similar to that obtained from 336

the nonautonomous system Eq. (1), indicating that species 337

living under poorer environmental conditions (large value of 338

parameter ϕ) tend to retain their abundance and are robust. 339

Dynamical mechanism of rare rarity: a deterministic nonau- 340

tonomous approach. The final step is to consider the full 341

nonautonomous system with noise Eq. (1). Due to the time- 342

dependent change of the environmental conditions with the 343

rate r, all stationary states are transformed into quasistation- 344

ary equilibria that move in the phase space. For equilibrium 345

state in which predator and prey coexist, we have 346

(xs, ys) = (1/1 − η, (1 − η − ϕ(t)/(1 − η)2). 347

Besides the quasistationary state, the critical manifolds Ms 348

as well as the fold (xf , yf ) change their location in the phase 349

space following the environmental change. For this reason, 350

the situation is more complicated since now not all initial 351

conditions converging to the stable critical manifold without 352

a rarity event will track the quasistationary equilibrium, i.e., 353

stay in its neighborhood during the environmental change. As 354

shown previously (8), there are also tipping trajectories that 355

cross the fold and exhibit the collapse-like behavior (excursion), 356

the rarity event. In the phase space, there exists a boundary 357

– a canard trajectory – which separates tracking and tipping 358

trajectories. Now we can have different situations when the 359

noise is acting on those two types of trajectories. A noiseless 360

tipping trajectory can be pushed by the noise over the canard 361

trajectory to make it a trapping trajectory and vice versa. 362

But a tracking trajectory can also be pushed over the fold by 363

the noise. The fourth case could be that the noise prevents 364

tipping. All of those scenarios are possible. We illustrate one 365

of the scenarios by plotting the trajectory shown in Fig. 4 in 366

the full three-dimensional phase space spanned by x, y, and ϕ. 367

Figure 6 shows two trajectories similar to that one in 368

Fig. 1(B) in 3D including the critical manifold and the canard. 369

The shaded red region represents the stable part of the critical 370

manifold, while the blue area indicates the unstable part. The 371

moving fold point (xs, ys) is depicted by a solid black line, and 372

the stable equilibrium is shown with a dashed yellow line. The 373

singular canard is represented by a blue trajectory, and the 374

folded saddle singularity is marked by a yellow circle. Due to 375

the time-scale separation, the noise is acting mainly on the 376

critical manifold, not perpendicular to it. The initial condi- 377

tions for the green trajectory shown in Fig. 6(A) [magnified 378

in Fig. 6(B)] are selected from the upper region of the criti- 379

cal manifold above the critical canard, where the trajectory 380

exhibits a tipping behavior in a noiseless environment. In 381

contrast, the initial conditions for the trajectory in Fig. 6(C) 382

[magnified in Fig. 6(D)] are chosen from the lower region of the 383

critical manifold, in which in a noiseless environment resulting 384

in a trapping behavior. As a result, if the initial condition 385
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Fig. 6. Critical manifold Ms of the nonautonomous system Eq. (4) and its stability. The shaded red (blue) region represents the stable (unstable) parts, the moving fold point
(xs, ys), and the stable equilibrium is depicted by a solid black line and a dashed yellow line, respectively. The singular canard is represented by a blue trajectory, and the
folded saddle singularity is marked by a yellow circle. Green curves illustrate trajectories corresponding to the initial conditions (A) above and (C) below the singular canard (the
initial condition in depicted with a red dot). Panels (B) and (D) provide magnified views of (A) and (C), respectively, for clarity.

is chosen from the lower part, noise will first kick the system386

over the fold, and then the system returns after the rarity387

event back to the critical manifold but further down as ϕ has388

changed. It will get pushed by the noise to more rarity events389

until it ends up too far from the fold where the noise cannot390

push the system over the fold, as shown in Fig. 1(B).391

Discussion392

The key parameters of an ecosystem can depend on time, and393

this time dependence becomes increasingly more relevant due394

to the systematic and persistent climate and environmental395

changes caused mostly by human activities. To model realis-396

tic ecosystems as accurately as possible, a description based397

on nonautonomous dynamical systems (17–24) becomes more398

meaningful and even necessary. Ecosystems are also subjected399

to noise, including multiplicative demographic noises. The400

study of rate-dependent phenomena in conjunction with noise401

can lead to unexpected phenomena as studies of the inter-402

play between noise-induced and rate-induced tipping show403

(25). This work reports another phenomenon: rare rarity in404

ecosystems. In particular, rarity as characterized by some key405

dynamical variable approaching a near-zero value can arise406

in slow-fast as well as in excitable dynamical systems when a407

trajectory visits a phase-space region containing the zero point408

of this dynamical variable. Such an excursion can be induced409

by a time-dependent variation of a control parameter as well410

as by noise. There are two possible mechanisms that can “kick”411

the system out of this region close to zero: one is the noise412

and another is the time-scale separation between the different413

components in a slow-fast system. Both mechanisms can make414

the dynamical event last for a short time only in comparison415

with the typical time scale of environmental change. Both 416

noise and time-scale separation coupled with nonautonomy 417

play the role of a double-edged sword: driving the system 418

into rarity and then quickly away from it, making the rarity 419

event rare. As a bifurcation parameter changes with time, 420

the “barrier” for the trajectory to cross to reach the rarity 421

region can become higher, making rarity events even more 422

rare. This explains our counterintuitive result that even when 423

the parameter change is in itself detrimental (e.g., degradation 424

of the prey’s carrying capacity), it can protect the population 425

from excursions to rarity. This stabilizing effect is related to 426

the paradox of enrichment, but in reverse. 427

We have uncovered this phenomenon of rare rarity in two 428

nonautonomous dynamical systems subject to noise: a variant 429

of the slow-fast Rosenzweig-MacArthur predator-prey system 430

and a climate carbon-cycle system, and developed an initial 431

theoretical understanding of the phenomenon through a phase- 432

space analysis of the stochastic dynamical trajectories. A com- 433

mon dynamical feature for rare rarity to arise is the existence 434

of a sole stable equilibrium. Due to excitability or in slow-fast 435

systems with curved critical manifolds, two distinct regions 436

of transient dynamics can arise: one resulting in trajectories 437

going directly to the stable equilibrium and another leading to 438

trajectories that experience an excursion to a different region 439

in the phase space, e.g., a region of near-zero prey abundance 440

in population dynamical systems, before approaching the sta- 441

ble equilibrium. The distance between the stable equilibrium 442

and the boundary separating the two distinct regions is the 443

key to the dynamical interplay between nonautonomy and 444

noise: as a bifurcation parameter changes, the distance can 445

increase/decrease, thereby requiring stronger/weaker noise to 446
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drive the system into the rarity region. When observing the447

occurrence of the rarity events with time, one typically finds448

a nonuniform type of intermittent behavior as the frequency449

by which such events occur decreases continuously with time450

[e.g., Fig. 1(B)]451

The duration of rarity events was studied in Ref. (26)452

using a similar predator-prey model, except without time-scale453

differences and under constant parameter values. Without454

time-scale separation, the predator also becomes rare during455

epochs of prey rarity. As a result, the trajectory passes much456

more closely in phase space to the saddle points at joint457

extinction (0, 0) and predator extinction (1/ϕ, 0) [the yellow458

circles in Figs. 3(C), 4(A), and 4(D)]. Because the dynamics459

slow near saddles, the closer the stochastic trajectory comes to460

these saddles, the longer it takes for the populations to recover461

and complete the cycle. Quick recovery from rarity therefore462

occurs in part due to the slowness of the predator decline,463

which keeps trajectories from approaching near enough to the464

y = 0 axis to be trapped in a long transient by the saddle.465

Future work to explore how much time-scale separation is466

needed for the behavior to switch from a delayed recovery (as467

in Ref. (26)) to a rapid recovery (as shown here) from rarity468

would be informative.469

In ecological systems, the relevant source of stochastic in-470

fluence is often demographic noise and the time scales of the471

predator and prey variables typically differ drastically. As a472

result, the phenomenon of rare rarity can occur, where the473

prey population density decreases quickly to a near-zero value,474

followed by a rapid recovery. Rare rarity is triggered by the475

interplay between noise and the intrinsic slow-fast dynamics of476

the system coupled to time-dependent environmental changes,477

such that when a species becomes rare, a quick recovery can478

occur. This suggests that in slow-fast ecological systems, habi-479

tat degradation can act as a double-edged sword with both480

negative and beneficial effects on the prey population. En-481

vironmental deterioration due to climate change can cause482

a decrease in the prey carrying capacity but, surprisingly, it483

also reduces the probability of rate rarity events in the prey484

population. A similar phenomenon was found in a proto-485

typical excitable climate-carbon cycle system with additive486

noise [SI Appendix (Sec. II)], suggesting the generality of the487

phenomenon.488
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Supporting Information Text11

1. Pertinent background12

A. Recovery from rarity. Understanding how rare species avoid extinction is critical for conservation. For species that13

are chronically rare, persistence has been attributed to factors such as high local abundances (despite very low regional14

abundance) (1), reproductive adaptations that offset low encounter rates with potential mates (2), and dispersal and niche15

shifts (3). For species that only experience rarity during acute collapse events, such as those that we considered in this study,16

extinction avoidance relies on fast recovery. In single-species populations, this can be accomplished by a high intrinsic growth17

rate (4). In multi-species communities, recovery requires not only that the rare species can grow quickly, but that it can do so18

under the specific pressures being imposed by interacting species (5). In continually deteriorating environments, rare species19

must also be able to recover under worse environmental conditions as those that may have caused the collapse to rarity in the20

first place (6).21

B. Tipping in ecological systems. In an ecological system with two coexisting stable equilibria (stable steady states or fixed-point22

attractors), one associated with healthy survival while the other with extinction, as a parameter changes through a critical23

point, an inverse saddle-node bifurcation can occur, beyond which the survival attractor no longer exists, leaving the extinction24

attractor as the only final steady state of the system. This leads to a tipping point at which the species abundances decrease to25

near-zero values (7–32), which can be considered as below an empirical extinction threshold (33). Besides population dynamics26

in ecology, tipping points are relevant to phenomena in other fields such as epidemic outbreak (34), climate change (35), and27

the sudden switch from normal to depressed mood in bipolar patients (36).28

When the parameters of a system vary with time, rate-induced tipping (R-tipping) can occur (16, 37–40). In particular, for29

certain initial conditions leading to trajectories approaching the survival equilibrium attractor in the absence of time-dependent30

parameters, a population with these initial conditions can become extinct if some parameters change too fast with time.31

The rate of parameter change thus becomes a key “hyperparameter” of the system: as it increases through a critical value,32

some initial conditions will switch their destination from healthy survival to extinction. It was recognized that the rate of33

environmental change is effectively a parameter affecting the dynamics across different scales in ecology (41). In a recent34

study focusing on complex ecological networks (42), a global approach to R-tipping was introduced with the finding that the35

probability of R-tipping defined with respect to initial conditions taken from the entire relevant phase-space region can increase36

rapidly as soon as the rate of parameter changes becomes nonzero. For simple fast-slow systems, one can identify even a37

boundary in the phase space – a canard trajectory – which separates tipping from tracking (i.e., following the survival state)38

initial conditions (38, 40, 43). Besides population dynamics, the phenomenon of R-tipping is relevant to fields such as climate39

science (44, 45), neuroscience (43, 46), vibration engineering (47), and even competitive economy (48).40

C. Dynamical excursion in slow-fast and excitable systems. In ecological systems, another mechanism for rarity can arise in41

slow-fast (38) and excitable systems (40, 43, 49, 50). In an early work (49) on a predator-prey model with a Holling type-III42

predator response, it was found that noise can sustain a transient in the setting that the system has only one globally stable43

equilibrium. There are two distinct types of trajectories: one that reaches the equilibrium directly and another approaching44

the equilibrium through an excursive behavior with a sudden but transient excursion away from the equilibrium in both the45

predator and prey populations. During the excursion, the prey population can reach a near-zero level, resulting in rarity. When46

noise is present, an intermittent behavior can arise between low-amplitude random oscillations around the equilibrium and the47

infrequent high-amplitude oscillations away from the equilibrium. In a more recent work (38) on the Rosenzweig-MacArthur48

predator-prey model, the impact of a specific type of time-dependent parameter change (a linear reduction of the habitat49

quality over time) on the transient response of the slow-fast dynamics was studied. It was found that a sudden excursion from50

the stable equilibrium can cause the fast variable (the prey population density) to temporary collapse to exceedingly low values.51

Note that R-tipping is not the only mechanism in which transient dynamics can cause regime shifts. It has been shown that52

transients causing regime shifts are ubiquitous in ecological systems (51–55) with significant management implications (56, 57).53

D. Noise in ecological systems. Ecological systems are continually exposed to stochastic disturbances and the effects of noise54

on the dynamics of these systems have been a topic of study with a long history (28, 58–74). In general, there are two types of55

noises in ecological systems: external and internal, where the former can be modeled as additive Gaussian white noise (75, 76)56

and the latter are demographic or multiplicative noise (59, 66, 71, 77–79). Demographic noises as a manifestation of internal57

stochasticity are of particular importance to ecological systems due to the intrinsic uncertainties in reproduction, growth, death,58

competition, and intraspecific migration. Computationally, a demographic process can be modeled as multiplicative noise with59

its strength proportional to the square root of the fluctuating abundance. In the context of tipping, the beneficial role of noise60

in facilitating species recovery after a tipping event was recognized (28, 29).61

2. Carbon-cycle system: positive feedback loop in climate dynamics62

In climate dynamics, a positive feedback loop called the climate-carbon cycle can arise: the release of CO2 or other greenhouse63

gases into the atmosphere can increase the global temperature, but the latter can strengthen the climate driving forces that can64

amplify the CO2 released into the atmosphere through peat decomposition. The essential nonlinear dynamics governing the65

feedback phenomenon, also known as the compost-bomb instability, can be modeled by a prototype of a carbon-temperature66
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system proposed in 2011 (80) with the key prediction that the instability depends strongly on the rate of global warming.67

Subsequently, this model was found to belong to the general class of the so-called type-B excitable systems (16), where an68

analytical solution indicated that, if the excitable system has a ramped parameter with an asymptotically stable equilibrium69

and a locally folded critical (slow) manifold, a critical value of the ramping rate can arise, above which an excitable response70

occurs.71

Differing from the ecosystems, here we employ additive noise to illustrate that the phenomenon of rare events is general72

in fast-slow and excitable systems, regardless of the nature of the noise (i.e., multiplicative or additive). Specifically, we73

demonstrate that a nonautonomous climate-carbon cycle system subject to environmental noise with a time-varying parameter74

can exhibit the phenomenon of rare rarity. We consider the carbon-temperature model with the parameter values from Ref. (80),75

where global warming is modeled by an atmospheric temperature ramp, as shown in Fig. S1(A). The nonautonomous dynamical76

system is described by77

ϵṪ = Cr0eαT − λ

A
(T − Ta) + ξ2

T [1a]78

Ċ = B − Cr0eαT + ξ2
C [1b]79

Ṫa =
{

r if Tamin < Ta < Tamax

0 otherwise,
[1c]80

where C and T are the vertically integrated soil carbon content and soil temperature, respectively, parameter B is the rate81

of increasing carbon by litter fall from plants and its value can decrease by microbial decomposition proportional to the82

exponential temperature (we fix B = 1.055), r0 = 0.02 is the specific soil respiration rate, λ = 5.049 is the soil-to-atmosphere83

heat transfer coefficient, the three scaling parameters are α = ln(3.5)/10, ϵ = 0.175, A = 39, and ξT,C is the noise amplitude.84

Due to the considerable variation in the time scales of variables, the system described by Eq. Eq. (1) can be classified as an85

extremely stiff system. The pronounced imbalance in the ratio of fast to slow time scales can lead to inherent instability in86

numerical solutions. This imbalance poses a challenge for standard numerical methods in accurately capturing the dynamics87

of extremely stiff systems. Consequently, it is necessary to consider specialized techniques or implicit methods to enhance88

accuracy. In our work, we employ an implicit stochastic Runge–Kutta method (81–83) to integrate the system Eq. (1). (The89

algorithmic details are presented in Appendix 3.)90

Fig. S1. Time trajectory of the nonautonomous system Eq. (1). (A) Ta (B) T (C) C for initial condition (T0, C0, Ta0 ) = (14, 17, 0) for r = 0.02, Tamin = 0, and
Tamax = 10.

To be concrete, we assume that the range of temperature variation is Tamin = 0 and Tamax = 10, as shown in Fig. S1(A).91

The corresponding time series of T (t) and C(t) are shown in Figs. S1(B) and S1(C), respectively. It can be seen that the92

carbon concentration C(t) exhibits the phenomenon of rare rarity. Similar to the slow-fast predator-prey system, noise induces93
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Fig. S2. Statistical behaviors of rare rarity events in the climate-carbon cycle system. (A) Distribution of the time interval ∆Tc between two chronologically adjacent rare
rarity events and (B) distribution of the number Nc of rare rarity events, for r = 0.012, Tamin = 0, and Tamax = 10. (c) Mean value ⟨Nc⟩ of rare rarity events versus r,
where the shaded area represents the standard deviation from the average. The larger value of rate r, the smaller number of rare rarity events in the climate-carbon cycle
system Eq. (1).

intermittent occurrences of rare rarity. For low atmosphere temperatures, multiple rare rarity events can occur in short94

intervals, leading to potentially catastrophic outcomes. However, as the atmospheric temperature increases, there is a decline95

in the occurrence of such events, resulting in longer intervals between successive events. The distribution of the time interval96

between two consecutive events is approximately power-law and the number of such events can be modeled as a Gaussian97

random variable, as shown in Figs. S2(A) and S2(B), respectively. Figure S2(C) shows the mean value ⟨Nc⟩ associated with98

rare rarity events versus the rate r of linear temperature increase. As the atmospheric temperature Ta increases, the compost99

decomposition becomes more robust to noise, with the probability of experiencing multiple rare rarity events decreasing to near100

zero. This indicates that global warming can have a significant impact on the dynamics of the climate-carbon cycle system,101
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with higher atmospheric temperatures leading to more robust and stable compost decomposition in the cycle.102

In the context of carbon-cycle dynamics, a rarity event represents an unexpected and potentially catastrophic excursive103

transient behavior that can lead to a drastic reduction in the soil carbon content and a corresponding increase in the emission104

of carbon into the atmosphere. However, when there is a global warming trend in which the atmospheric temperature Ta105

increases linearly from Tamin to Tamax at a constant rate r, the number of excursive transient collapses in soil carbon content106

decrease, accompanied by an increase in the interval between two consecutive rarity events, as exemplified in Figs. S1(B)107

and S1(C). These findings suggest that, as the atmospheric temperature continues to increase, a reduction in soil carbon108

content can occur, but the probability of transient collapse reduces as well. The implication is that global warming can counter109

intuitively enhance the robustness of the climate-carbon cycle against environmental noise. More specifically, as the soil carbon110

content declines while the noise amplitude remains constant, fewer excursive rare rarity events (compost-bomb instability) are111

likely to occur. Overall, these results provide insights into the dynamics of the climate-carbon cycle system under different112

atmospheric temperature conditions, which are relevant to making effective mitigation and adaptation strategies for combating113

global warming.114

3. Stochastic Runge-Kutta Method115

Table S1. Butcher tableau of improved implicit SRK methods Eq. (3) - list of coefficients

c1 a11 a12 · · · a1s b11 b12 · · · b1s

c2 a21 a22 · · · a2s b21 b22 · · · b2s

...
...

...
. . .

...
...

...
. . .

...
cs as1 as2 · · · ass bs1 bs2 · · · bss

ĉ1 â11 â12 · · · â1s

ĉ2 â21 â22 · · · â2s

...
...

...
. . .

...
ĉs âs1 âs2 · · · âss

β1 β2 · · · βs γ1 γ2 · · · γs η1 η2 · · · ηs

Table S2. Coefficients of improved implicit SRK methods Eq. (3) for s = 2

1
3

5
12 − 1

12 0 0
1 3

4
1
4 4 0

0 0 0
1 1 0

3
4

1
4 0 1 1 − 1

A nonautonomous dynamical system subject to multiplicative noise can generally be written as116

ẋ = f(x) + ξ(t)g(x), [2]117

where the deterministic dynamics of the system are described by a d-dimensional nonlinear function f : Rd → Rd, the second118

term describes the demographic noise with ξ(t) being a Gaussian random process, and the function g(x) is also a d-dimensional119

function g : Rd → Rd. For the climate-carbon cycle model Eq. (1), we have g(x) = 1.120

For nonstiff deterministic differential equations, a commonly used method for solving the corresponding stochastic differential121

equations (SDE) is some second-order algorithm (81). However, if the deterministic equations are stiff, a more robust122

computational method such as the implicit stochastic Runge-Kutta (SRK) algorithm (82) can be used. Under the Itô–Taylor123

series expansion, the implicit integration method can be characterized by its extended Butcher tableau. For the case of124

multidimensional Itô SDEs, the enhanced implicit SRK method is described as125

xn+1 = xn +
s∑

i=1

βif(tn + ciδt, Hi)δt

+
s∑

i=1

γig(tn + ĉiδt, Ĥi)Iδt
r

+
s∑

i=1

ηig(tn + ĉiδt, Ĥi)
Iδt

r0

δt
,

[3]126
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for n = 0, 1, · · · , N − 1 with stages:127

Hi = xn +
s∑

j=1

aijf(tn + cjδt, Hj)δt

+
s∑

j=1

bijg(tn + ĉjδt, Ĥj)
Iδt

r0

δt

[4a]128

129

Ĥi = xn +
s∑

j=1

âijf(tn + cjδt, Hj)δt, [4b]130

where the increments Ir0,r are the mixed stochastic-classical integrals in the corresponding sub intervals [t, t + h], which can be131

calculated in the following way. Starting from independent standard normally distributed random variables ξr, ζr ∼ N(0, δt),132

one computes:133

Ir = δt1/2ξr [5]134

Ir0 = δt3/2(ζr/
√

3 + ξr)/2. [6]135

The Butcher tableau represents the coefficients of the improved SRK method, where the weights ci and ĉi are chosen such that136

c = Ae and ĉ = Âe. The improved SRK method Eq. (3) is implicit (explicit) when the matrices A, B, and Â are full (lower137

triangular) matrices.138
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