
Adaptive network approach to exploration-exploitation trade-o� in

reinforcement learning
Mohammadamin Moradi,1 Zheng-Meng Zhai,1 Shirin Panahi,1 and Ying-Cheng Lai1, 2
1)School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287,
USA
2)Department of Physics, Arizona State University, Tempe, Arizona 85287, USA

(*Electronic mail: Ying-Cheng.Lai@asu.edu)

(Dated: 25 September 2024)

A foundational machine-learning architecture is reinforcement learning, where an outstanding problem is achieving an
optimal balance between exploration and exploitation. Specifically, exploration enables the agents to discover optimal
policies in unknown domains of the environment for gaining potentially large future rewards, while exploitation relies
on the already acquired knowledge to maximize the immediate rewards. We articulate an approach to this problem,
treating the dynamical process of reinforcement learning as a Markov decision process that can be modeled as a non-
deterministic finite automaton and defining a subset of states in the automaton to represent the preference for exploring
unknown domains of the environment. Exploration is prioritized by assigning higher transition probabilities to these
states. We derive a mathematical framework to systematically balance exploration and exploitation by formulating it as
a mixed integer programming problem to optimize the agent’s actions and maximize the discovery of novel preferential
states. Solving the MIP problem provides a trade-off point between exploiting known states and exploring unexplored
regions. We validate the framework computationally with a benchmark system and argue that the articulated automaton
is effectively an adaptive network with a time-varying connection matrix, where the states in the automaton are nodes
and the transitions among the states represent the edges. The network is adaptive because the transition probabilities
evolve over time. The established connection between the adaptive automaton arising from reinforcement learning and
the adaptive network opens the door to applying theories of complex dynamical networks to address frontier problems
in machine learning and artificial intelligence.

In the development of artificial intelligence, reinforcement
learning (RL) has been playing a foundational role. For
example, AlphaGo, a computer program that plays the
board game Go, is based mostly on RL. In RL, agents
learn optimal decision-making policies through trial and
error. In particular, an RL agent interacts with the en-
vironment that it is in, receives feedback in the form of
rewards or penalties, and updates its strategy accord-
ingly. The dynamical process of RL has two major in-
gredients: exploration and exploitation. More specifically,
exploration is necessary for discovering potentially bene-
ficial actions or states that may yield higher rewards in
the long run, but exploitation involves utilizing the already
acquired knowledge to maximize the immediate rewards.
While exploration may lead to states with better rewards,
excessive exploration can impede the agent’s ability to ex-
ploit the known profitable actions, in addition to the risk
that no such states can be found. Further, excessive ex-
ploitation can lead to suboptimal policies due to insuffi-
cient exploration of the state space. For efficient and ef-
fective learning in RL, a balance between exploration and
exploitation is essential. In spite of previous efforts, there
is no definite solution to the exploration-exploitation bal-
ance problem. This article presents an approach to this
problem based on the automata theory - a mathematical
framework for treating systems with discrete states and
transitions. The basic idea is that the dynamical process
of RL can be viewed as a Markov decision process that
can be represented as a nondeterministic finite automa-
ton. Accordingly, a subset of states in the automaton can
be defined to represent the preference for exploring un-

known domains of the environment. The RL agent is en-
couraged to prioritize exploration when higher transition
probabilities are assigned to these states, thereby realizing
control of the dynamical behavior of the RL agent. A for-
malism is derived, providing a systematic way to balance
exploration and exploitation. The framework is verified
computationally through a benchmark system, where an
optimal trade-off point is explicitly demonstrated. A key
message pertinent to this Focus Issue is that the articu-
lated automaton for achieving an optimal balance between
exploration and exploitation can be viewed as an adaptive
network with a time-varying connection matrix, where the
states in the automaton are effectively nodes in the net-
work and the transitions among the states are edges con-
necting the nodes. The transition probabilities evolve over
time depending on factors such as the current state and
action. While explicit equations describing the couplings
among the nodes cannot be explicitly written down, they
are implicitly defined by the interactions of the RL agent
with the environment through actions. The present work
establishes a natural “bridge” between a frontier problem
in RL and adaptive networks, suggesting the possibility
that some well developed theories in the field of complex
dynamical networks may be exploited to benefit machine
learning and artificial intelligence in terms of understand-
ing and optimization.



2

I. INTRODUCTION

Complex systems in the real world are often described
by interactive networks comprising interconnected dynamical
units. Adaptivity or plasticity emerges as a predominant trait
within such networks, where both the connectivity structure of
the network and the dynamics of individual nodes evolve over
time1–16. The adaptivity enables the network to respond to
changing conditions, leading to emergent properties and phe-
nomena that do not arise in static networks. Adaptive dynam-
ical networks encompass a diverse spectrum of systems capa-
ble of adjusting their connectivity according to their dynamic
states17. Indeed, incorporating adaptivity into static networks
allows a wide range of systems across diverse domains to be
studied, from biological neural circuits to social networks and
beyond15,16. While static networks have gained significant at-
tention over recent decades, it remains challenging to under-
stand the holistic dynamical behaviors of adaptive networks
due to the complex interplay between the network structure
and dynamics.

In this paper, we aim to establish a connection or a “bridge”
between adaptive networks and a basic and open problem
in reinforcement learning (RL) - a fundamental machine-
learning paradigm that has revolutionized artificial intelli-
gence. In RL, agents learn optimal decision-making policies
through trial and error, and RL algorithms learn by interact-
ing with an environment, receiving feedback in the form of
rewards or penalties, and updating their actions or behavior
accordingly18–20. In spite of the widespread use of RL in
science, engineering and technologies, a challenging problem
is the exploration-exploitation trade-off21 that arises from the
need to balance between gathering new information about the
environment (exploration) and exploiting the existing knowl-
edge to maximize rewards (exploitation). Specifically, explo-
ration is necessary to discover potentially beneficial actions
or states that may yield higher rewards in the long run, but
exploitation simply utilizes the already acquired knowledge
to maximize the immediate reward. Striking a balance be-
tween exploration and exploitation is crucial for RL agents to
learn efficiently, because overly excessive exploration can im-
pede the agent’s ability to exploit the known profitable actions
while excessive exploitation can lead to suboptimal policies
due to insufficient exploration of the state space22–26.

There were previous works on exploration-exploitation
trade-off in RL. A common approach to exploration in RL
is the so-called ε-greedy strategy19, where the agent selects
the action with the highest estimated reward value with the
probability ε and explores a random action with the proba-
bility 1− ε . While this approach is simple to implement and
provides a basic level of exploration, there is a lack of adapt-
ability because the fixed exploration rate as determined by the
value of ε does not account for changes in the environment
or agent’s learning progress, leading to either excessive or in-
sufficient exploration. A widely used technique is the upper
confidence bound (UCB) algorithm27,28, which balances ex-
ploration and exploitation based on the uncertainty of the ac-
tion values. UCB algorithms assign exploration bonuses to
actions based on their uncertainty estimates, encouraging the

agent to explore less certain actions. While UCB methods of-
fer a principled approach to exploration, they often rely on
strong assumptions about the reward distribution and may not
scale well to large state spaces due to the computational com-
plexity. Thompson sampling29–31 is a Bayesian-based method
that addresses exploration by maintaining a posterior distri-
bution over the parameters of the RL model. Instead of re-
lying on explicit uncertainty estimates, Thompson sampling
selects actions probabilistically according to the posterior dis-
tribution. This approach naturally balances exploration and
exploitation and has shown promising results in various con-
texts, but it can be computationally demanding, especially in
complex environments with high-dimensional state and ac-
tion spaces32,33. Another line of research focused on intrinsic
motivation, which augments the external reward signal with
additional intrinsic rewards based on the agent’s curiosity or
novelty of experiences. Curiosity-driven exploration methods,
such as the intrinsic motivation module34–36 or the curiosity
reward approach37–39, encourage the agent to explore novel or
uncertain states, fostering a more diverse exploration behav-
ior. However, these methods often require a careful tuning of
hyperparameters and may introduce additional complexities
such as the need for separate reward models. Finally, there is
a growing recent interest in leveraging formal methods and au-
tomata theory to address the exploration challenge in RL40–43.
Existing works in this area have primarily focused on certain
specific aspects of exploration, such as option discovery or
novelty detection. A systematic framework for balancing ex-
ploration and exploitation is still lacking44.

With respect to complex dynamical systems, recent years
have witnessed widespread adoption of machine learning in-
cluding RL across various areas such as evolutionary game
dynamics45, control systems46,47, epidemic spreading48, crisis
prediction49–51, and artificial complex dynamical memory52.
There are also recent efforts in developing adaptive networks
that integrate RL with complex dynamical systems45. Our
approach to addressing the exploration-exploitation balance
problem is unique in that we exploit the principles of the au-
tomata theory53,54 from the point of view of adaptive networks.
In particular, the theory of automata provides a mathemati-
cal framework for modeling and analyzing systems with dis-
crete states and transitions. By modeling the RL problem as
a Markov Decision Process (MDP) and representing it as a
nondeterministic finite automaton (NDFA), we arrive at a for-
malism to explicitly capture and manipulate the exploration
preference of the RL agents. Our approach entails defining a
subset of states in the NDFA that represent the preference for
exploring unknown domains of the environment. These states
are characterized by higher transition probabilities, thereby
encouraging the agent to prioritize exploration. By assign-
ing appropriate transition probabilities within this subset, the
exploration behavior of the RL agent can be controlled. The
formalism provides a means to systematically balance explo-
ration and exploitation in RL and offers a unique perspective
for understanding the dynamics of exploration within the RL
framework, leading to a better exploration-exploitation bal-
ance. We computationally validate our framework in terms of
exploration efficiency and the overall learning performance.



3

In Sec. II, we present our formulation of the adaptive net-
work approach to exploration-exploitation balance in RL by
introducing the NDFA, justifying it as an adaptive network,
and formulating the satisfaction of the exploration preference
as a mixed integer programming (MIP) problem. In Sec. III,
we study a concrete example to illustrate the preference in-
duced MDP implementation and formulation of the MIP.
In Sec. IV, we demonstrate that our automata theory-based
framework can lead to an optimal exploration-exploitation
balance in RL through a benchmark system: the movements
of a taxi on a spatial grid. In Sec. V (Discussion), we point out
the limitations of the framework and offer a future perspective.
In Appendix A, we present four potential application exam-
ples: robotic maintenance in a power grid, sensor calibration,
circuit design optimization, and control system optimization,
and describe how each problem can be formulated using our
adaptive automaton or adaptive network framework.

II. ADAPTIVE NETWORK APPROACH TO
EXPLORATION-EXPLOITATION BALANCE IN
REINFORCEMENT LEARNING: THEORETICAL
FORMULATION

We argue and show that the exploration-exploitation bal-
ance problem can be formulated as an MIP problem based
on linear temporal-logic constraints. In particular, a funda-
mental concept in computer science is abstract machines ca-
pable of transitioning between different states based on in-
puts. These machines, known as automata, provide a mathe-
matical framework for modeling and analyzing systems with
discrete states and transitions. Further, temporal logic is a
formal logic used to reason about events and their relation-
ships over time. It models and analyzes the dynamic behavior
of RL training process, verifies control systems, predicts out-
comes and identifies vulnerabilities. In our work, the theory
of automata is used as a foundational tool for modeling the
exploration-exploitation balance in RL. In the following, we
introduce finite automata as a class of adaptive networks and
show how linear temporal-logic formulas quantify preferences
to address the exploration-exploitation balance problem.

A. Non-deterministic �nite automaton (NDFA)

A nondeterministic finite state machine (NDFA) is a theo-
retical model used in computer science to recognize patterns
within input strings of symbols. Unlike a deterministic finite
state machine (DFA) where each state and input symbol de-
termines a single, unique next state, an NDFA can transition
to multiple possible states for a given input. This allows the
NDFA to explore multiple potential state sequences simulta-
neously. When given an input string of symbols, the NDFA
processes each symbol by moving through its states, which are
connected by transitions. These transitions are defined based
on the symbols of the string, but the key feature of an NDFA
is that, for any given state and symbol, there may be several
possible next states, or even none. In some cases, an NDFA

can also transition to a new state without consuming any in-
put symbols. The NDFA accepts the string if there exists at
least one sequence of transitions leading from the initial state
to an accepting (or final) state that corresponds to the entire
input string. If no such sequence exists, the NDFA rejects the
string. This nondeterminism means that the automaton does
not follow a single path; instead, it explores multiple paths
simultaneously and determines if any path leads to success.
NDFAs are particularly useful in theory because they are con-
ceptually simpler and often easier to design than DFAs. Im-
portantly, for any NDFA, there exists an equivalent DFA that
recognizes the same language, even though the DFA might
have more states53,55. Based on the NDFA, preferences over
accepting conditions can be modeled56. A DFA is a five-tuple

⟨S̃,Σ,δ , s̃0,φ⟩,

where S̃ represents the set of automaton states, Σ is the set of
possible automaton symbols/actions, δ is the transition func-
tion, s̃0 is the initial automaton state, and φ represents the pref-
erence formula(s). To incorporate preferences into an MDP,
we define the preference induced MDP, which is a 4-tuple:

⟨S̃×S,A,d,∆⟩,

where S denotes the set of MDP states, A is the set of MDP
actions, and d is the probability of initial state distribution.
The transition function ∆ is defined as

∆((s̃′,s′)|(s̃,s),a) = P(s′|s,a)∗1{s̃′}{δ (L(s′), s̃)}, (1)

which means that from MDP state s and automaton state s̃,
under action a, the probability of going to MDP state s′ and
automaton state s̃′ is equal to the sum of the probabilities of
going into s′ from s taking action a for all possible transitions.
In our problem, S̃ = S and A only include one action: manda-
tory movement, because in each step of RL, an agent must
take an action. The distribution of initial state d is uniform.
Without any loss of generality, given that S̃ is equivalent to
S, we proceed to use “s” instead of “(s̃,s)” for simplicity. In
Eq. (1), L is the labeling function that maps MDP states to
their correspondent automaton actions, which is the identity
map in our case.

To explain the definition (1), we consider an example: a
Taxi. As illustrated in Fig. 1(a), a taxi is situated within
a 2 by 2 grid environment and is engaged in the pursuit of
accomplishing specific objectives using four actions: going
up, down, left, and right. Assume the taxi driver has a de-
terministic policy π derived from previous training as going
up in states {0}, {1}, and {3}, and going left in state {2}.
Further, assume that the taxi employs the ε-greedy method
for exploration (with the probability 1− ε) and exploitation
(with the probability ε). Table I lists the transition matrix for
this preference-induced MDP. Taking into account the training
procedure of the RL agent as well as the objective of explor-
ing unexplored territories while simultaneously reaching the
goal, we establish the following preferences:

• PA: getting to the star cell is the final goal;



4

0 3

1

23𝜀 + 1
4

1 − 𝜀
2 1 − 𝜀

4

1 − 𝜀
4

1 − 𝜀
2

3𝜀 + 1
4

1 − 𝜀
2

3𝜀 + 1
4

1 + 𝜀
2

1 − 𝜀
4

1 − 𝜀
4

1 − 𝜀
4

01

23

(a) (b)

FIG. 1. An example illustrating exploration-exploitation in RL and the emergence of an automaton. (a) Within a bounded 2 by 2 grid
environment, a taxi is positioned and tasked with achieving predefined objectives through a set of four distinct actions: moving upwards,
downwards, leftwards, and rightwards. The goal is to successfully navigate towards the star cell. Within the grid, the highlighted blue cell
indicates the unexplored cell to be explored during the training phase. (b) The resulting automaton based on the probabilities of different
transitions using the ε-greedy approach.

• PB: exploring the unexplored area first is preferred to
getting to the star cell;

• PC: getting to the goal is preferred to getting to any
other cell except the unexplored cells;

• PD: getting to the unexplored cell is preferred to getting
to the star cell and getting to the star cell is preferred to
getting to the other cells;

• PE: exploring the unexplored area first is preferred to
getting to the other cells.

The resulting automaton is illustrated in Fig. 1(b). The au-
tomaton so constructed has four states, where the preferences
can be implemented as the following logic formulas:

• φPA : F{3}
• φPB : {1} ⪰ {3}
• φPC : {3} ⪰ {0,2}
• φPD : {1} ⪰ {3} ⪰ {0,2}
• φPE : {1} ⪰ {0,2,3}

Note that Fψ (“eventually” operator) denotes that ψ occurs at
some point in the future and A ⪰ B is read as “A is preferred to
B.” Transforming preferences into temporal logic formulas in
the form {P} ⪯ {P′} enables us to formulate an MIP problem
to find an optimal policy to maximally satisfy the exploration-
exploitation balance, where exploration is incorporated into
the problem by employing φPE as the preference, while the
exploitation requirement is fulfilled by establishing a criterion
based on the frequency of the agent reaching the star cell dur-
ing training.

A concrete example of an automaton is presented in
Sec. III.

TABLE I. Transition matrix (∆(s′|s,a)) based on the automaton in
Fig. 1(b)

Current\Next {0} {1} {2} {3}

{0} 1
2 (1− ε) 1

4 (1− ε) 1
4 (3ε +1) 0

{1} 1
4 (1− ε) 1

2 (1− ε) 0 1
4 (3ε +1)

{2} 1
4 (1− ε) 0 1

2 (1− ε) 1
4 (3ε +1)

{3} 0 1
4 (1− ε) 1

4 (1− ε) 1
2 (1+ ε)

B. Automaton as an adaptive network

Adaptive networks represent a frontier in the study of com-
plex systems, offering a dynamic framework that can capture
the complicated interplay between structure and function1–16.
In network science, adaptivity is referred to as the dynamic
evolution of network topology, where nodes and edges adjust
their connections and strengths based on the system’s dynam-
ics or external stimuli57. Conventionally, a general class of
N-dimensional adaptive dynamical networks can be defined
by the following set of coupled differential equations:

ẋxxi(t) =FFF(xxxi(t))+σ ∑
j

ki j(t)HHH[xxxi(t),xxx j(t − τ)], (2)

k̇i j(t) = G[ki j(t),xxxi(t),xxx j(t),η ], (3)

where the dynamical function F governs the dynamics of each
individual node described by an m-dimensional state vector xi,
H is the coupling function, σ is the overall coupling strength,
and ki j are the elements of the dynamical adjacency matrix
K that describes the time dependence of the topological con-
nectivity of the network. The entries of this weighted matrix
evolve over time according to a general adaptation evolution
function G, and η in G is the adaptation parameter.



5

The dynamic topology inherent in adaptive networks en-
genders a spectrum of collective behaviors such as complete
or cluster synchronization58,59, where complete synchroniza-
tion denotes a state wherein all nodes within the network
achieve identical dynamical states, irrespective of their initial
conditions or interaction complexity. This global coherence
facilitates efficient information propagation and system-wide
coordination. The master stability function approach60–65 can
be used to study the stability of the complete synchronous so-
lution in adaptive networks66,67, when the mathematical func-
tions governing the network dynamics are available. However,
in real-world applications, the exact equations governing the
system dynamics are unknown. In fact, real-world systems of-
ten can be viewed as a black box - a situation similar to non-
deterministic automata, where various actions evoke different
responses, rendering inapplicable the master stability function
approach.

In formulating an adaptive automaton as an adaptive net-
work with a time-varying transition matrix, even though the
exact equations of the system are not available, they are im-
plicitly defined as the interactions of the agent with the en-
vironment through actions. The states and transitions of the
automaton can thus be interpreted within the framework of a
dynamic network describing the RL exploration-exploitation
generative procedure, where the states in the automaton are
treated as nodes in a network and the transitions between the
states are viewed as edges that effectively connect nodes in
the network. The adaptive nature of the problem is encap-
sulated by the dynamical transition matrix with time-varying
transition probabilities. These probabilities evolve over time
depending on factors such as the current state and the action
taken.

C. Formulating the satisfaction of the preferences as an MIP
problem

In an MIP problem68, some variables of the system to be
optimized are integers with a linear objective function, sub-
ject to linear constraints. In our work, the objective function
is the value of the preference satisfaction. The definition of
the value of the preference satisfaction (vps) is closely related
to the probability of occurrence of the corresponding prefer-
ence, where vps for a preference formula X0 ⪯ X1 ⪯ ... ⪯ Xn

is defined as56 P(Xi) if there exists some i such that P(Xi) ≥
P(Xi−1) while for all k ≥ i, P(Xk)< P(Xk−1) holds and is zero
otherwise. The definition of vps can be illustrated using the
example in Fig. 1. Assume that for the preference formula
φPD, the two derived policy samples induce the probabilities
as listed in Table II. From the definition of vps, policy π1 sat-
isfies the preference φPD by 80% whereas policy π2 satisfies
the preference φPD by 70%. Note that vps is not necessarily
equal to the probability of most preferred state.

To obtain the constraints for the MIP problem, we employ
a supporting variable y(t,s,a), defined as the probability of
visiting the state s at time t and taking action a, so y(T,P)
is the probability of the automaton being at state P at time
t = T (regarded as the ending point). Using the supporting

TABLE II. Probabilities of automaton ending in specific states for
two random policies

Automaton State\Policy Pπ1 Pπ1

{1} 0.1 0.7
{3} 0.8 0.2

{0,2} 0.1 0.1

variable and from the definition of vps for the preference for-
mula {P} ⪯ {P′}, we have the first set of MIP constraints as

0 ≤ vps ≤ B, (4)

B−1 ≤ vps − y(T,P′)≤ 0, (5)

B(1+ξ )+1 ≤ y(T,P′)− y(T,P)≤ B(1+ξ )−ξ , (6)
B is a binary, (7)

all y are non-negative, (8)

where ξ is a small positive number and B is a binary vari-
able: it is one if there exists a policy that satisfies the pref-
erence and zero otherwise. From Eqs. (4) and (5), it can be
seen that if there exists no such policy satisfying the prefer-
ence, then vps = 0, otherwise its value will be between 0 and
1 and is equal to y(T,P′). We enforce the events’ probabilities
and their difference to be between 0 and 1 using Eqs. (6) and
(8). The second set of the MIP constraints is responsible for
maintaining the consistence between the supporting variable
y(t,s,a) and MDP elements d and ∆. For all possible states
and for all time steps, we have

∑
a∈A

y(0,s,a) = d(s), (9)

∑
a∈A

y(t,s′,a) = ∑
a∈A

∑
s∈S

∆(s′|s,a)y(t −1,s,a). (10)

Equation (9) ensures that the probabilities denoted by the sup-
porting variable y at time t = 0 are consistent with the distribu-
tion of initial state d. Equation (10) asserts that the probability
of getting to a state at time t is equal to the sum of probabili-
ties that other possible states take the specific action to reach
the target state at time t − 1. Taking into consideration these
constraints, we formulate the maximum preference satisfac-
tion problem for the preference formula {P} ⪯ {P′} as

max
B,y,vps

vps subject to Eqs. (4−10), (11)

where B, y and vps are the optimization variables and vps is the
objective function. Equation (11) represents an MIP problem
because it includes an integer constraint [Eq. (7)], otherwise
it is a standard linear programming problem. By resolving the
optimization problem outlined in Eq. (11), we obtain the vari-
able vps, which serves as a decisive criterion for effectively
exploring the uncharted cells within the grid environment. It
is worth noting that the feasibility of the optimization prob-
lem introduced in our study is contingent upon various factors
that encompass the inherent dynamics of the Markov decision
process, the level of stringency inherent within the preference
formula, and even the choice of solver employed to tackle the



6

optimization problem. As a result, the attainability of a fea-
sible solution can be influenced by these considerations. In
the following, we present a concrete example of formulating
a preference induced MDP into MIP and obtain the solution.

III. A CONCRETE EXAMPLE OF AUTOMATON

FIG. 2. A concrete example of automaton. There are four states with
#0 being the starting state and #3 being the final state. The prefer-
ence p := {1} ⪰ {2} stipulates that ending in state #1 is preferred to
ending in state #2. As indicated in Tab. IV, using the derived policy,
76.89% of the time the system will end in state #1 compared with
ending in state #2 which takes place 0.48% of the time, indicating
that the preference is optimally satisfied.

We study a concrete example to illustrate the preference in-
duced MDP implementation and formulation of the MIP. The
specific finite automaton is illustrated in Fig. 2. The setting is

• Preference: p := (P′ =){1} ⪰ (P =){2}

• Episode length: T = 3

• MDP states:

S = {[1,1] := 0, [1,0] := 1, [0,1] := 2, [0,0] := 3}

• Automaton states: S̃ = {0,1,2,3}

• Actions: AS = {A,B}

• Initial state-pair probability distribution:

d(s̃,s) =


0.9 if (s̃,s) = (0,0)
0.05 if (s̃,s) = (1,1)
0.05 if (s̃,s) = (2,2)
0 else

TABLE III. Definition of supporting variables y(t,(s̃,s),a)

t (s̃,s) A B

t=0 (0,0) y1 y2
t=0 (1,1) y3 y4
t=0 (2,2) y5 y6
t=0 (3,3) y7 y8
t=1 (0,0) y9 y10
t=1 (1,1) y11 y12
t=1 (2,2) y13 y14
t=1 (3,3) y15 y16
t=2 (0,0) y17 y18
t=2 (1,1) y19 y20
t=2 (2,2) y21 y22
t=2 (3,3) y23 y24
t=3 (0,0) y25 y26
t=3 (1,1) y27 y28
t=3 (2,2) y29 y30
t=3 (3,3) y31 y32

• State-pair transition probability distribution:

∆((1,1)|(0,0),A) = 0.8
∆((2,2)|(0,0),A) = 0.1
∆((3,3)|(0,0),A) = 0.05
∆((0,0)|(0,0),A) = 0.05
∆((1,1)|(0,0),B) = 0.1
∆((2,2)|(0,0),B) = 0.8
∆((3,3)|(0,0),B) = 0.05
∆((0,0)|(0,0),B) = 0.05
∆((0,0)|(1,1),A) = 0.05
∆((1,1)|(1,1),A) = 0.95
∆((3,3)|(1,1),B) = 1
∆((3,3)|(2,2),A) = 1
∆((0,0)|(2,2),B) = 0.05
∆((2,2)|(2,2),B) = 0.95
∆((3,3)|(3,3),A) = 1
∆((3,3)|(3,3),B) = 1

The supporting variable y(t,(s̃,s),a) is defined as the prob-
ability of visiting the state pair (s̃,s) at time t and taking action
a. We use the variables listed in Tab. III with the purpose of
keeping the equations concise. For example, y11 is the proba-
bility of being in the state pair (1,1) at time t = 1 under action
A. With these definitions and the initial state-pair probability
distribution (d(s̃,s)), we construct the following constraints
from Eq. (9):

y1 + y2 = 0.9, (12)
y3 + y4 = 0.05, (13)
y5 + y6 = 0.05, (14)
y7 + y8 = 0. (15)

Moreover, using the state-pair transition probability distribu-
tion defined above [∆((s̃′,s′)|(s̃,s),a)], we obtain the follow-



7

ing constraints from Eq. (10):

y9 + y10 = 0.05y1 +0.05y2 +0.05y6 +0.05y3, (16)
y11 + y12 = 0.8y1 +0.1y2 +0.95y3, (17)
y13 + y14 = 0.1y1 +0.8y2 +0.95y6, (18)
y15 + y16 = 0.05y1 +0.05y2 + y4 + y5 + y7 + y8, (19)
y17 + y18 = 0.05y9 +0.05y10 +0.05y14 +0.05y11, (20)
y19 + y20 = 0.8y9 +0.1y10 +0.95y11, (21)
y21 + y22 = 0.1y9 +0.8y10 +0.95y14, (22)
y23 + y24 = 0.05y9 +0.05y10 + y12 + y13 + y15 + y16, (23)
y25 + y26 = 0.05y17 +0.0518 +0.0522 +0.05y19, (24)
y27 + y28 = 0.8y17 +0.1y18 +0.95y19, (25)
y29 + y30 = 0.1y17 +0.8y18 +0.95y22, (26)
y31 + y32 = 0.05y17 +0.05y18 + y20 + y21 + y23 + y24. (27)

The following relations are useful:

y(T,P) = y29 + y30,

y(T,P′) = y27 + y28.

Equations (4-8) then lead to the following constraints:

0 ≤ vPS ≤ B, (28)
B−1 ≤ vPS − y27 − y28 ≤ 0, (29)

B(1+ ε)+1 ≤ y27 + y28 − y29 − y30 ≤ B(1+ ε)− ε, (30)
B is a binary, (31)

all y are non-negative. (32)

The standard form of the MIP optimization problem for this
example is

max
B,y,vPS

vPS subject to Eqs. (12−31).

Using a standard equation solver, such as intlinprog in MAT-
LAB, we obtain the solution to this optimization problem as
vPS = 0.7689, B = 1, with the values of the y parameters listed
in Table IV. This solution describes the best possible way to
satisfy the preference p := {1} ⪰ {2}. Following this policy
for each state pair at each time step, it can be ensured that
76.89% of the time the preference will be satisfied - the high-
est satisfaction possible for this problem.

For each value of the exploration parameter ε ranging from
0 to 1, we follow a systematic procedure to formulate and
solve the MIP problem based on the preference-induced MDP
(inferred from the RL environment) in three steps:

Step 1: At each ε value, we formulate the MIP problem by
incorporating the preference-induced MDP. Once the
MIP problem is set up, the objective is to derive the
value of preference satisfaction, vPS, which quantifies
how well the agent explores the under-explored envi-
ronment. This value serves as an exploration indicator,
reflecting how successfully the agent balances explo-
ration according to the defined preferences within the
MDP. The higher the vPS, the better the agent is at ex-
ploring unknown states.

TABLE IV. Solution for the MIP problem of Example 1 vPS = 0.7689
and B = 1.

t (s̃,s) A B

t=0 (0,0) y1 = 0.9 y2 = 0
t=0 (1,1) y3 = 0.05 y4 = 0
t=0 (2,2) y5 = 0 y6 = 0.05
t=0 (3,3) y7 = 0 y8 = 0
t=1 (0,0) y9 = 0.05 y10 = 0
t=1 (1,1) y11 = 0.7675 y12 = 0
t=1 (2,2) y13 = 0 y14 = 0.1375
t=1 (3,3) y15 = 0 y16 = 0.0450
t=2 (0,0) y17 = 0.0478 y18 = 0
t=2 (1,1) y19 = 0.7691 y20 = 0
t=2 (2,2) y21 = 0.1356 y22 = 0
t=2 (3,3) y23 = 0 y24 = 0.0475
t=3 (0,0) y25 = 0 y26 = 0.0408
t=3 (1,1) y27 = 0 y28 = 0.7689
t=3 (2,2) y29 = 0 y30 = 0.0048
t=3 (3,3) y31 = 0 y32 = 0.1855

Step 2: In parallel, we define the criterion for measuring the
agent’s ability to achieve its primary goal (i.e., exploita-
tion). The exploitation indicator vGS quantifies the fre-
quency with which the agent reaches the desired goal
states during the training episode. This is mathemati-
cally defined by the sum of the probabilities of visiting
goal states at time t across all actions a:

vGS =
T

∑
t=1

∑
s∈Sgoal

∑
a∈A

y(t,s,a) (33)

where y(t,s,a) denotes the probability of being in state
s and taking action a at time t. This value serves as an
exploitation indicator, where a higher vGS reflects more
frequent achievement of the task or goal.

Step 3: To determine the optimal balance between explo-
ration and exploitation, we track the trajectories of both
vPS (exploration) and vGS (exploitation) as ε varies from
0 to 1. The goal is to identify the trade-off point where
the two trajectories intersect, representing the optimal
value of ε that balances both exploration and exploita-
tion. This intersection point provides critical insight
into how much exploration is necessary before the agent
should start exploiting the learned knowledge to maxi-
mize immediate rewards.

This step-by-step approach ensures that the exploration-
exploitation trade-off is systematically analyzed, with the MIP
formulation and solution serving as the foundation for de-
riving key performance metrics for both exploration and ex-
ploitation.

IV. DEMONSTRATION OF OPTIMAL
EXPLORATION-EXPLOITATION BALANCE

To test and validate our automata theory-based framework
to achieve an optimal exploration-exploitation balance in RL,



8

(a)

(b)

(c)

FIG. 3. Experimental RL environments. Shown are: (a) 3× 3, (b) 5× 5, and (c) 10× 10 grids. Random walls are positioned at various
locations. The RL goal for the taxi agent is to get to the star cell. The unexplored cells are highlighted with blue. Three elements are subject
to random generation: the placement of walls within the grid, the initial policy of the RL agent, and the probability distribution of the initial
position of the taxi. The random values are generated using a designated random seed (7, 8, and 0 for the 3× 3, 5× 5, and 10× 10 grids,
respectively).

(a) (b)

(c) (d)

FIG. 4. Determining the trade-off point. (a-d) The intersecting point of the trajectory of the value of preference satisfaction (vps) with the
trajectory of goal achievement (vgs) for different values of ε , for the 3×3 grid with four different random seeds, respectively.

we conduct experiments in grid environments of three repre- sentative sizes: 3×3, 5×5, and 10×10, as shown in Fig. 3.



9

(a) (b)

(c) (d)

FIG. 5. Determining the trade-off point for the 5×5 grid. (a-d) The intersecting point of the trajectory of the value of preference satisfaction
(vps) with the trajectory of goal achievement (vgs) for different values of ε , for the 5×5 grid with four different random seeds, respectively.

Figures 4, 5 and 6 show the respective results for the three grid
environments. The simulations are performed on computers
each with GPU GeForce RTX 4090 and CPU 13th Gen In-
tel(R) Core(TM) i9-13900KS, using Python (SpyderIDE). We
use the optimize.mil p module of the scipy package to solve
the MIP problems. For the 10× 10 grid, on average it takes
1.2 seconds to generate and solve the MIP.

The simulation setting described in Sec. II is applied to all
experiments. In particular, to introduce a higher level of com-
plexity to the environment, random walls are positioned at var-
ious locations. For example, when a wall is situated to the
right of the taxi and the taxi intends to move in that direction,
it will remain in its current cell due to the obstruction. In the
simulations, three elements are subject to random generation:
the placement of walls within the grid, the initial policy of the
RL agent, and the probability distribution governing the initial
position of the taxi. The random values are generated using a
designated random seed, each engendering distinct scenarios
and facilitating analysis of the trade-off across diverse situa-
tions. The random seeds are themselves randomly generated
from a uniform distribution. The criterion for quantifying the
frequency of goal attainment by the agent during the training
phase is indicated by Eq. 33.

We focus on determining the exploration-exploitation
trade-off point by intersecting the trajectory of value of prefer-
ence satisfaction (vps) and the trajectory of goal achievement
(vgs) for different values of ε . To evaluate the exploration

behavior of the RL agents, we derive the trajectory value of
preference satisfaction, which quantifies the degree to which
the exploration of unexplored cells preference defined by the
automaton is satisfied. Note that higher values of ε indicate
a stronger inclination towards exploitation. We compare this
trajectory with the trajectory of achieving the RL goal, which
represents the agent’s ability to accomplish the task at hand.
By examining the intersection point of these trajectories for
different ε values, we identified the optimal trade-off point
for the ε value that balances exploration and exploitation. Fig-
ures 4, 5, and 6 illustrate the results for the 3× 3, 5× 5, and
10×10 grids, respectively, demonstrating the effectiveness of
our framework in achieving the exploration-exploitation bal-
ance.

Through simulations, we identify certain instances where
an increase in ε , signifying a greater emphasis on exploita-
tion, correlates with a simultaneous increase in the trajectory
value of preference satisfaction. This indicates a heightened
level of exploration within previously unexplored cells. The
finding suggests that in certain scenarios, the initial policy and
positioning of walls pose challenges for the agent to effec-
tively explore uncharted areas. As a result, even following a
suboptimal policy can yield higher satisfaction of preferences.

The ε trade-off point that strikes an optimal balance be-
tween exploration and exploitation can be found by identify-
ing the intersection point between the trajectories of prefer-
ence satisfaction and goal achievement. This point represents



10

(a) (b)

(c) (d)

FIG. 6. Determining the trade-off point for the 10×10 grid. (a-d) The intersecting point of the trajectory of the value of preference satisfaction
(vps) with the trajectory of goal achievement (vgs) for different values of ε , for the 10×10 grid with four different random seeds, respectively.

the ideal value of ε that maximizes both the agent’s explo-
ration and its ability to achieve the desired goal. Our approach
provides a systematic and principled methodology for finding
this trade-off point. We find that the optimal trade-off point is
influenced by the grid environment size. In a smaller grid en-
vironment, such as the 3×3 grid, the trade-off point tends to
have a higher value of ε , indicating a greater emphasis on ex-
ploration. As the grid size increases, the trade-off point often
shifts towards lower values of ε , indicating a stronger focus on
exploitation. This observation suggests an effect of the com-
plexity and size of the environment on the optimal balance
between exploration and exploitation.

The simulations demonstrate the efficacy of our automata
theory-based approach to achieving an optimal exploration-
exploitation balance in RL, where the optimal exploration
strategy can be found by the ε trade-off point through the
intersection of preference satisfaction and goal achievement
trajectories. Our framework offers a systematic methodology
to control and balance exploration and exploitation, enhanc-
ing the learning capabilities of RL agents in a variety of grid
environments.

V. DISCUSSION

We have presented an automata-theory approach to address-
ing the exploration-exploitation balance in RL. Modeling the
RL problem as an MDP and subsequently representing the
MDP as an NDFA enable the dynamic nature of the RL en-
vironment to be effectively described. Our approach incorpo-
rates the preference for exploring unexplored areas in the RL
environment by designating specific states in the NDFA. The
exploration-exploitation balance problem can be formulated
as an MIP optimization problem, allowing the optimal poli-
cies that satisfy the defined preferences to be found. Lever-
aging the automata theory has led to a principled framework
for balancing exploration and exploitation in RL tasks. Simu-
lations have demonstrated the efficacy of the proposed frame-
work in achieving a favorable exploration-exploitation trade-
off. The results indicate that, in certain scenarios, even subop-
timal policies can lead to a higher satisfaction of exploration
preferences due to the challenges posed by wall positioning
and suboptimal initial policies.

It is worth stressing the connection between adaptive au-
tomaton and adaptive network. Viewing an automaton as an
adaptive network with a time-varying transition matrix entails
interpreting the states and transitions of the automaton in a
dynamic network framework. In an automaton, states rep-
resent different conditions or configurations of the system.



11

Each state can be regarded as a node in the network. Tran-
sitions in the automaton denote the movement from one state
to another based on certain conditions or inputs. These tran-
sitions can then be viewed as edges connecting the nodes in
the network. In a traditional automaton, the transition matrix
is fixed, meaning the probabilities of transitioning from one
state to another remain constant. However, in an adaptive net-
work, the transition probabilities are time-varying, which can
change over time according to various factors such as exter-
nal inputs, system dynamics, or the learning mechanism. The
transition probabilities in the time-varying transition matrix
can adapt based on the current state of the system and its inter-
actions with the environment. The adaptation may be driven
by learning algorithms, feedback mechanisms, or any other
dynamic processes. By treating the automaton as an adap-
tive network, we can analyze its behavior over time in terms
of network dynamics. This includes studying how the states
evolve, how transitions occur, and how the system adapts to
changing conditions.

A limitation is the scalability associated with the MIP for-
mulation. As the size of the environment increases, the num-
ber of constraints in the MIP problem grows exponentially, re-
quiring the development of techniques to reduce the computa-
tional complexity of the MIP formulation. Potential solutions
include exploring approximation algorithms, constraint relax-
ation methods, and decomposition approaches to efficiently
handle larger RL environments. One solution is to leverage
advanced optimization techniques, such as parallel comput-
ing, heuristics, and metaheuristic algorithms, to enhance the
efficiency of solving large-scale MIP problems encountered
in expansive environments. Exploring problem-specific refor-
mulation or decomposition approaches can also be beneficial
to reducing computational burdens.

Another limitation pertains to the criterion employed for
assessing goal achievement and determining the exploration-
exploitation trade-off. While our current criterion provides a
reasonable evaluation metric, there is room for improvement.
Future research could strive to develop more refined and adap-
tive criteria that capture the balance between exploration and
exploitation. This could involve incorporating additional fac-
tors, such as uncertainty estimation, information gain, or dy-
namic adaptation of exploration rates based on environmental
characteristics, requiring the agent’s adaptability, robustness
to environmental changes, or convergence speed to optimal
solutions to be measured. Such metrics could provide deeper
insights into the effectiveness of our framework to enable a
more comprehensive comparison with existing methods.

ACKNOWLEDGMENTS

This work was supported by AFOSR under Grant
No. FA9550-21-1-0438. We would like to attribute “Freepik”
and “Nikita Golubev” for their provision of the “tree” and
“taxi” icons utilized in Figs. 1 and 3.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available
from the corresponding author upon request.

Appendix A: Four application examples

The methods and frameworks presented in this paper pro-
vide a versatile approach to addressing complex, real-world
problems, particularly in the context of dynamic and adap-
tive environments. The RL exploration-exploitation balance,
tackled through MDP models and automata theory, has impli-
cations across a wide range of domains. These applications
span from autonomous systems and robotics to network op-
timization and system control, where intelligent agents must
navigate complex, unpredictable environments while making
optimal decisions. Here in Appendix, we explore several real-
world applications, demonstrating how our framework can be
translated into practical settings. Ranging from robotic main-
tenance in power grids to sensor calibration and control sys-
tem optimization, these examples illustrate the broad applica-
bility of our approach and its potential to significantly enhance
decision-making processes in complex environments. More
specifically, we describe these applications and show how they
can be translated into the MDP and automata frameworks.

a. Robotic maintenance in a power grid

Consider a robotic device navigating a grid-like environ-
ment to perform maintenance tasks on electrical components.
This example can be formulated as an MDP and represented
using automata as well. In the MDP formulation, the state
space comprises the locations of the robotic device in the grid-
like environment and the status of nearby electrical compo-
nents. Each state s includes the robot’s current position and
information about nearby components. Actions a correspond
to movement actions and repair actions. The agent has the fol-
lowing movement actions: “Move Up” (a1), “Move Down”
(a2), “Move Left” (a3), and “Move Right” (a4). The agent
also has the “Repair” action (a5) to fix nearby malfunctioning
components. The transition dynamics capture the stochastic-
ity of robot movement and repair success. Movement actions
lead to changes in the robot’s position, and repair actions re-
sult in fixing components. The transition functions are defined
as follows:

• For movement actions:
– s′ = (x′,y′) with probability P(s′|s,ai)

• For the repair action:
– Component status changes with probability

P(Fixed|Malfunctioning,a5)

Immediate rewards R(s,a) are based on the robot’s actions; for
example, repairing a component yields a positive reward. The
main goal is to explore the grid efficiently to discover mal-
functioning components and optimize repair actions, while
minimizing negative rewards.



12

For Automata representation, the automaton states repre-
sent different behavior modes of the robot:

• State s̃1 (“Patrol”): Exploring the grid for components
• State s̃2 (“Repair”): Repairing malfunctioning compo-

nents

b. Sensor calibration

We consider an exploration scenario involving the calibra-
tion of sensors in an environment. Each MDP state s includes
accuracy (As) and precision (Ps) levels of the pressure sensor.
Actions correspond to adjusting the calibration settings of the
sensors. These actions influence the sensors’ measurements
and their uncertainty. Adjusting the calibration settings intro-
duces uncertainties in the sensor measurements. The agent
can take actions a to adjust the calibration settings of the pres-
sure sensor. The agent has two choices: “Increase Accuracy”
(a1) and “Increase Precision” (a2). The transition dynamics
capture how the calibration process affects the sensors’ accu-
racy and precision. The transition dynamics are probabilistic
and involve uncertainty in calibration adjustments. Immedi-
ate rewards are based on the quality of the measurements af-
ter performing a calibration action. Achieving highly accurate
and precise measurements leads to positive rewards. The im-
mediate reward function R(s,a) is defined as the sum of accu-
racy and precision. The goal is to explore the space of possible
calibration settings to find the optimal configuration that max-
imizes the accuracy and precision of sensor measurements.

The automaton states represent the different stages of cal-
ibration. States could include “Initial Calibration,” “Fine-
Tuning,” “High Precision,” etc. Transitions between states are
based on the agent’s choices of calibration actions. For exam-
ple, transitioning from “Initial Calibration” to “Fine-Tuning”
could occur when the agent decides that the initial settings
need to be refined. The automaton states represent different
calibration stages, for example:

• State s̃1 (“initial calibration”): As̃1 = 50, Ps̃1 = 40
• State s̃2 (“fine tuning”): As̃2 = 50, Ps̃2 = 40
• State s̃3 (“optimized calibration”): As̃3 = 50, Ps̃3 = 40

An accepting state might signify the achievement of the best
possible calibration configuration with high accuracy and pre-
cision.

c. Circuit design optimization

In a circuit design problem, each MDP state represents the
current configuration of a circuit design, including the val-
ues of various components (resistors, capacitors, etc.) and
their connections. Actions correspond to modifying the val-
ues of circuit components, reconfiguring connections, and
making design choices. Moreover, changing component val-
ues and connections affects the behavior of the circuit. The
transition dynamics capture how modifications influence the
circuit’s performance and behavior. Immediate rewards are

based on the circuit’s performance metrics, such as signal
quality, power consumption, or noise levels. Achieving de-
sired circuit behavior yields positive rewards. The primary
goal is to explore different circuit design configurations to
optimize specific performance criteria while meeting design
specifications.

The automaton states represent different design stages, such
as “Initial Configuration,” “Parameter Tuning,” “Validation,”
etc. Further, transitions between states occur as the agent
makes design modifications. For example, transitioning from
“Initial Configuration” to “Parameter Tuning” could happen
when the agent decides to fine-tune component values. An
accepting state could signify the successful optimization of
the circuit design, where the design meets the desired perfor-
mance criteria. The agent’s decisions are driven by immediate
rewards tied to circuit performance and the long-term explo-
ration goal of achieving the best design configuration.

d. Control system optimization for a pendulum

In a control system problem, each MDP state represents the
current state of a pendulum system, including the pendulum’s
angle, angular velocity, and other relevant parameters. Ac-
tions correspond to control inputs that affect the pendulum’s
motion, such as applying torques or forces. The dynamics of
the pendulum system are affected by the control inputs. The
transition dynamics capture how the pendulum’s state changes
based on the applied control actions. Immediate rewards are
based on the stability and performance of the control system.
Keeping the pendulum balanced and minimizing oscillations
yield positive rewards. The goal is to explore different control
strategies to stabilize the pendulum and optimize its perfor-
mance.

The automaton states represent different control modes,
such as “Stabilization,” “Trajectory Tracking,” “Control Tun-
ing,” etc. Transitions between states occur as the agent selects
different control strategies. For example, transitioning from
“Stabilization” to “Trajectory Tracking” could happen when
the agent wants to move the pendulum to a specific position.
An accepting state could signify the successful optimization
of the control system, where the pendulum is stabilized and
follows desired trajectories accurately.
1L. Zhu, Y.-C. Lai, F. C. Hoppensteadt, and J. He, “Cooperation of spike
timing-dependent and heterosynaptic plasticities in neural networks: A
Fokker-Planck approach,” Chaos 16, 023105 (2006).

2C. Kuehn, “Time-scale and noise optimality in self-organized critical adap-
tive networks,” Phys. Rev. E 85, 026103 (2012).

3O. V. Popovych, S. Yanchuk, and P. A. Tass, “Self-organized noise resis-
tance of oscillatory neural networks with spike timing-dependent plastic-
ity,” Sci. Rep. 3, 2926 (2013).

4D. V. Kasatkin, S. Yanchuk, E. Schöll, and V. I. Nekorkin, “Self-organized
emergence of multilayer structure and chimera states in dynamical net-
works with adaptive couplings,” Phys. Rev. E 96, 062211 (2017).

5L. Horstmeyer, C. Kuehn, and S. Thurner, “Network topology near critical-
ity in adaptive epidemics,” Phys. Rev. E 98, 042313 (2018).

6L. Horstmeyer and C. Kuehn, “Adaptive voter model on simplicial com-
plexes,” Phys. Rev. E 101, 022305 (2020).

7R. Berner, J. Sawicki, and E. Schöll, “Birth and stabilization of phase clus-
ters by multiplexing of adaptive networks,” Phys. Rev. Lett. 124, 088301
(2020).



13

8R. Berner, S. Vock, E. Schöll, and S. Yanchuk, “Desynchronization transi-
tions in adaptive networks,” Phys. Rev. Lett. 126, 028301 (2021).

9R. Berner, S. Yanchuk, and E. Schöll, “What adaptive neuronal networks
teach us about power grids,” Phys. Rev. E 103, 042315 (2021).

10L. Horstmeyer, C. Kuehn, and S. Thurner, “Balancing quarantine and self-
distancing measures in adaptive epidemic networks,” Bull. Math. Biol. 84,
79 (2022).

11D. Schlager, K. Clauβ , and C. Kuehn, “Stability analysis of multiplayer
games on adaptive simplicial complexes,” Chaos 32, 053128 (2022).

12M. A. Gkogkas, C. Kuehn, and C. Xu, “Continuum limits for adaptive net-
work dynamics,” Commun. Math. Sci. 21, 83–106 (2023).

13B. Jüttner and E. A. Martens, “Complex dynamics in adaptive phase oscil-
lator networks,” Chaos 33, 053106 (2023).

14K. Klemm and E. A. Martens, “Bifurcations in adaptive vascular networks:
Toward model calibration,” Chaos 33, 093135 (2023).

15J. Sawicki, R. Berner, S. A. Loos, M. Anvari, R. Bader, W. Barfuss,
N. Botta, N. Brede, I. Franović, D. J. Gauthier, et al., “Perspectives on
adaptive dynamical systems,” Chaos 33 (2023).

16R. Berner, T. Gross, C. Kuehn, J. Kurths, and S. Yanchuk, “Adaptive dy-
namical networks,” Phys. Rep. 1031, 1–59 (2023).

17O. V. Maslennikov and V. I. Nekorkin, “Adaptive dynamical networks,”
Phys. Uspekhi 60, 694 (2017).

18L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning:
A survey,” Journal of artificial intelligence research 4, 237–285 (1996).

19R. S. Sutton and A. G. Barto, Reinforcement Learning: An introduction
(MIT press, 2018).

20M. A. Wiering and M. Van Otterlo, “Reinforcement learning,” Adapt.
Learning Opt. 12, 729 (2012).

21H. Liu, A. Kumar, W. Yang, and B. Dumoulin, “Explore-exploit: A frame-
work for interactive and online learning,” arXiv preprint arXiv:1812.00116
(2018).

22M. Moradi, Y. Weng, and Y.-C. Lai, “Defending smart electrical power
grids against cyberattacks with deep Q-learning,” PRX Energy 1, 033005
(2022).

23S. Song, J. Weng, H. Su, D. Yan, H. Zou, and J. Zhu, “Playing fps
games with environment-aware hierarchical reinforcement learning.” in IJ-
CAI (2019) pp. 3475–3482.

24S. Curi, F. Berkenkamp, and A. Krause, “Efficient model-based reinforce-
ment learning through optimistic policy search and planning,” Adv. Neu.
Info. Proc. Sys. 33, 14156–14170 (2020).

25M. Moradi, Y. Weng, J. Dirkman, and Y.-C. Lai, “Preferential cyber defense
for power grids,” PRX Energy 2, 043007 (2023).

26M. Moradi, S. Panahi, Z.-M. Zhai, Y. Weng, J. Dirkman, and Y.-C. Lai,
“Heterogeneous reinforcement learning for defending power grids against
attacks,” APL Mach. Learn. 2, 026121 (2024).

27Y. Zhang, P. Cai, C. Pan, and S. Zhang, “Multi-agent deep reinforcement
learning-based cooperative spectrum sensing with upper confidence bound
exploration,” IEEE Access 7, 118898–118906 (2019).

28P. Auer, “Using upper confidence bounds for online learning,” in Proceed-
ings 41st Annual Symposium on Foundations of Computer Science (IEEE,
2000) pp. 270–279.

29D. J. Russo, B. Van Roy, A. Kazerouni, I. Osband, Z. Wen, et al., “A tutorial
on thompson sampling,” Found. Trends Mach. Learning 11, 1–96 (2018).

30Y. Ouyang, M. Gagrani, A. Nayyar, and R. Jain, “Learning unknown
Markov decision processes: A Thompson sampling approach,” Adv. Neu.
Info. proc. Sys. 30 (2017).

31T. Zhang, “Feel-good thompson sampling for contextual bandits and rein-
forcement learning,” SIAM J. Math. Data Sci. 4, 834–857 (2022).

32A. Gopalan and S. Mannor, “Thompson sampling for learning parame-
terized markov decision processes,” in Conference on Learning Theory
(PMLR, 2015) pp. 861–898.

33I. Osband and B. Van Roy, “Bootstrapped thompson sampling and deep
exploration,” arXiv preprint arXiv:1507.00300 (2015).

34A. G. Barto, “Intrinsic motivation and reinforcement learning,” Intrin. Mo-
tiv. Learning Nat. Artif. Sys. , 17–47 (2013).

35A. Aubret, L. Matignon, and S. Hassas, “A survey on intrinsic motivation
in reinforcement learning,” arXiv preprint arXiv:1908.06976 (2019).

36N. Chentanez, A. Barto, and S. Singh, “Intrinsically motivated reinforce-
ment learning,” Adv. Neu. Info. proc. Sys. 17 (2004).

37J. Li, X. Shi, J. Li, X. Zhang, and J. Wang, “Random curiosity-driven ex-

ploration in deep reinforcement learning,” Neurocomputing 418, 139–147
(2020).

38O. Zhelo, J. Zhang, L. Tai, M. Liu, and W. Burgard, “Curiosity-driven ex-
ploration for mapless navigation with deep reinforcement learning,” arXiv
preprint arXiv:1804.00456 (2018).

39L. Zheng, J. Chen, J. Wang, J. He, Y. Hu, Y. Chen, C. Fan, Y. Gao, and
C. Zhang, “Episodic multi-agent reinforcement learning with curiosity-
driven exploration,” Adv. Neu. Info. proc. Sys. 34, 3757–3769 (2021).

40X. Li, Z. Serlin, G. Yang, and C. Belta, “A formal methods approach to
interpretable reinforcement learning for robotic planning,” Sci. Robot. 4,
eaay6276 (2019).

41N. Fulton and A. Platzer, “Verifiably safe off-model reinforcement learn-
ing,” in Tools and Algorithms for the Construction and Analysis of Systems:
25th International Conference, TACAS 2019, Held as Part of the Euro-
pean Joint Conferences on Theory and Practice of Software, ETAPS 2019,
Prague, Czech Republic, April 6–11, 2019, Proceedings, Part I (Springer,
2019) pp. 413–430.

42B. Könighofer, F. Lorber, N. Jansen, and R. Bloem, “Shield synthesis for re-
inforcement learning,” in Leveraging Applications of Formal Methods, Ver-
ification and Validation: Verification Principles: 9th International Sympo-
sium on Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes,
Greece, October 20–30, 2020, Proceedings, Part I 9 (Springer, 2020) pp.
290–306.

43G. Amir, M. Schapira, and G. Katz, “Towards scalable verification of deep
reinforcement learning,” in 2021 formal methods in computer aided design
(FMCAD) (IEEE, 2021) pp. 193–203.

44J. Yang, I. Borovikov, and H. Zha, “Hierarchical cooperative multi-
agent reinforcement learning with skill discovery,” arXiv preprint
arXiv:1912.03558 (2019).

45C. Du, Y. Lu, H. Meng, and J. Park, “Evolution of cooperation on
reinforcement-learning driven-adaptive networks,” Chaos 34 (2024).

46S. E. Razavi, M. A. Moradi, S. Shamaghdari, and M. B. Menhaj, “Adaptive
optimal control of unknown discrete-time linear systems with guaranteed
prescribed degree of stability using reinforcement learning,” Int. J. Dyn.
Cont. 10, 870–878 (2022).

47Z.-M. Zhai, M. Moradi, L.-W. Kong, B. Glaz, M. Haile, and Y.-C. Lai,
“Model-free tracking control of complex dynamical trajectories with ma-
chine learning,” Nat. Commun. 14, 5698 (2023).

48Y. Lu, Y. Wang, Y. Liu, J. Chen, L. Shi, and J. Park, “Reinforcement learn-
ing relieves the vaccination dilemma,” Chaos 33 (2023).

49L.-W. Kong, H.-W. Fan, C. Grebogi, and Y.-C. Lai, “Machine learning pre-
diction of critical transition and system collapse,” Phys. Rev. Res. 3, 013090
(2021).

50L.-W. Kong, H.-W. Fan, C. Grebogi, and Y.-C. Lai, “Emergence of transient
chaos and intermittency in machine learning,” J. Phys. Complex. 2, 035014
(2021).

51S. Panahi and Y.-C. Lai, “Adaptable reservoir computing: a paradigm for
model-free data-driven prediction of critical transitions in nonlinear dynam-
ical systems,” Chaos 34, 051501 (2024).

52L.-W. Kong, G. A. Brewer, and Y.-C. Lai, “Reservoir-computing based as-
sociative memory and itinerancy for complex dynamical attractors,” Nat.
Commun. 15, 4840 (2024).

53J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata
Theory, Languages, and Computation, 3rd ed. (Addison-Wesley, New York,
2006).

54B. Khoussainov and A. Nerode, Automata Theory and Its Applications
(Springer Science & Business Media, 2012).

55M. O. Rabin and D. Scott, “Finite automata and their decision problems,”
IBM J. Res. Develop. 3, 114–125 (1959).

56J. Fu, “Probabilistic planning with preferences over temporal goals,” in
2021 American Control Conference (ACC) (IEEE, 2021) pp. 4854–4859.

57R. Berner, Patterns of Synchrony in Complex Networks of Adaptively Cou-
pled Oscillators (Springer Nature, 2021).

58C. Zhou and J. Kurths, “Dynamical weights and enhanced synchronization
in adaptive complex networks,” Phys. Rev. Lett. 96, 164102 (2006).

59F. Sorrentino and E. Ott, “Adaptive synchronization of dynamics on evolv-
ing complex networks,” Phys. Rev. Lett. 100, 114101 (2008).

60L. M. Pecora and T. L. Carroll, “Master stability functions for synchronized
coupled systems,” Phys. Rev. Lett. 80, 2109 (1998).

61T. Nishikawa, A. E. Motter, Y.-C. Lai, and F. C. Hoppensteadt, “Hetero-



14

geneity in oscillator networks: Are smaller worlds easier to synchronize?”
Phys. Rev. Lett. 91, 014101 (2003).

62L. Huang, K. Park, Y.-C. Lai, L. Yang, and K. Yang, “Abnormal syn-
chronization in complex clustered networks,” Phys. Rev. Lett. 97, 164101
(2006).

63X. Wang, L. Huang, Y.-C. Lai, and C. H. Lai, “Optimization of synchro-
nization in gradient clustered networks,” Phys. Rev. E 76, 056113 (2007).

64L. Huang, Y.-C. Lai, and R. A. Gatenby, “Dynamics-based scalability of
complex networks,” Phys. Rev. E 78, 045102 (2008).

65L. Huang, Q. Chen, Y.-C. Lai, and L. M. Pecora, “Generic behavior of
master-stability functions in coupled nonlinear dynamical systems,” Phys.
Rev. E 80, 036204 (2009).

66F. Sorrentino, G. Barlev, A. B. Cohen, and E. Ott, “The stability of adaptive
synchronization of chaotic systems,” Chaos 20, 013103 (2010).

67R. Berner, S. Vock, E. Schöll, and S. Yanchuk, “Desynchronization transi-
tions in adaptive networks,” Phys. Rev. Lett. 126, 028301 (2021).

68N. Pisaruk, Mixed Integer Programming: Models and Methods (Belarus
State University, 2019).


