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Data-driven model discovery of complex dynamical systems is typically done using sparse opti-
mization, but it has a fundamental limitation: sparsity in that the underlying governing equations of
the system contain only a small number of elementary mathematical terms. Examples where sparse
optimization fails abound, such as the classic Ikeda or optical-cavity map in nonlinear dynamics and
a large variety of ecosystems. Exploiting the recently articulated Kolmogorov-Arnold networks, we
develop a general model-discovery framework for any dynamical systems including those that do not
satisfy the sparsity condition. In particular, we demonstrate non-uniqueness in that a large number
of approximate models of the system can be found which generate the same invariant set with the
correct statistics such as the Lyapunov exponents and Kullback–Leibler divergence. An analogy to
shadowing of numerical trajectories in chaotic systems is pointed out.

Discovering the model of a system from observational
or measurement data has been a fundamental problem
since the beginning of science. For nonlinear dynami-
cal systems, data-driven identification, and forecasting
have attracted a great deal of research in the past four
decades [1–37]. A diverse array of methodologies have
been developed, e.g., calculating the information con-
tained in sequential observations to deduce the determin-
istic equations [2], approximating a nonlinear system by
a large collection of linear equations [1, 7, 12], fitting dif-
ferential equations to chaotic data [9], exploiting chaotic
synchronization [15] or genetic algorithms [17, 27], in-
verse Frobenius-Perron approach to designing a dynam-
ical system “near” the original system [19], or using the
least-squares best approximation for modeling [26]. An
approach that has gained considerable interest is sparse
optimization, where the system functions are assumed to
have a sparse structure in that they can be represented
by a small number of elementary mathematical functions,
e.g., a few power- and/or Fourier-series terms. What is
needed then is to estimate the coe�cients associated with
these terms. In a high-order series expansion, the coef-
ficients with the vast majority of the terms are zero, ex-
cept for a few. The problem of finding these nontrivial
coe�cients can then be naturally formulated [28, 38] as
a compressive-sensing problem [39–43]. Under the same
idea, a popular method was later developed [44, 45].

The sparse-optimization approach is e↵ective for sys-
tems whose governing equations are su�ciently simple
in the sense of sparsity, such as the chaotic Lorenz [46]
and Rössler [47] oscillators whose velocity fields contain
a small number of low-order power-series terms. How-
ever, sparsity can be self-sabotage because, while it is
the reason that the approach is powerful, it also presents
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a fundamental limitation: it works only if the system
equations do in fact have a sparse structure. Dynamical
systems violating the sparsity condition arise in physi-
cal and biological situations. A known example is the
Ikeda map that describes the propagation of an optical
pulse in a cavity with a nonlinear medium [48, 49], whose
functions contain an infinite number of series expansion
terms. Many ecological systems and gene-regulatory cir-
cuits whose governing equations have a Holling-type of
structure [50, 51] also violate the sparsity condition [52].
For these systems, the sparse-optimization approach to
model discovery fails absolutely and completely.

In this Letter, we articulate an entirely di↵erent ap-
proach to discovering the models of any dynamical sys-
tems including those that do not meet the sparsity con-
dition. The idea exploits Kolmogorov-Arnold networks
(KANs), a recent computational framework for repre-
senting sophisticated mathematical functions [53] based
on the classical Kolmogorov-Arnold theorem [54–56] that
any multivariate mathematical function can be decom-
posed as a sum of single-variate functions, as illustrated
in Fig. 1(a). KANs decompose complex high-dimensional
problems into simpler, more manageable univariate func-
tions, allowing for more e�cient training and better in-
terpretability of the machine-learning model, addressing
some of the limitations in traditional neural networks
such as the black-box nature and computational ine�-
ciency. As a result, KANs are rapidly gaining attention
as a promising alternative in machine learning.

In contrast to a standard neural network with thou-
sands and perhaps millions of weights and biases but
always fixed all the same activation functions say atan
or ReLu, a KAN is a small network of say a dozen
nodes but each di↵erent and carefully designed activation
functions. We consider a dynamical system described
by dx/dt = F(x) or alternatively by xn+1 = F(xn),
including where F(x) does not possess a sparse struc-
ture. Our goal is to find an approximation of F(x), de-



2

noted as G(x), such that the system dx/dt = G(x) or
xn+1 = G(xn) produces the identical dynamical behav-
iors as the original system (e.g., the same attractor with
the same statistical and dynamical invariants to within
certain numerical precision). We demonstrate, using the
Ikeda map and a chaotic ecosystem as illustrative exam-
ples, that such a function G(x) in an implicit form can
indeed be found by the KANs.

                         

                  
       

               

   

            

             

            
        

   

   

FIG. 1. Basics of KAN. (a) Kolmogorov-Arnold theorem and
neural network. (b) Schematic illustration of two di↵erent
structures (blue and green) leading to two di↵erent functions
M(x) and L(x) that generate the same dynamics as xn+1 =
F(xn) in the relevant phase-space domain.

The interpretability of the KAN structure lies in its
accessibility to the internal mechanisms of the model,
such as the activation functions Fi(x), Gi(x), and Ki(x)
in Fig. 1(b). Unlike the conventional machine-learning
methods, which often operate as “black boxes,” KANs
provide a more transparent view of how inputs are trans-
formed into outputs. This transparency allows for a bet-
ter understanding of the underlying dynamics and how
each function influences the system’s behavior, thereby
making them more interpretable than conventional meth-
ods. Figure 1(b) presents two di↵erent KAN struc-
tures highlighted in blue and green. The blue KAN
has two inputs and two outputs without any hidden
nodes, where the functions M1 = F1(xn) + F3(yn)
and M2 = F2(xn) + F4(yn) are linear combinations
of the activation functions Fi for i = 1, · · · , 4. The
green structure has two extra hidden nodes where L1 =
K1

�
G1(xn)+G3(yn)

�
+K3

�
G2(xn)+G4(yn)

�
and L2 =

K2

�
G1(xn) + G3(yn)

�
+ K4

�
G2(xn) + G4(yn)

�
. Both

structures produce the same dynamics in the relevant

phase-space domain (yellow shaded area), where the dy-
namics outside of this domain can be di↵erent. This con-
cept will be elucidated below with a concrete example.
From the standpoint of data-driven model discovery,

the Ikeda map represents perhaps the most di�cult kind
of system - so far there has been no success with any
sparse optimization method. The two-dimensional map
is given by [48, 49] xn+1 = 1+µ (xn cos(�n)� yn sin(�n))
and yn+1 = µ (xn sin(�n) + yn cos(�n)), where �n =
0.4 � 6(1 + x2

n + y2n)
�1 and µ is a bifurcation parame-

ter. (We fix µ = 0.9, so that the map generates a chaotic
attractor in the phase-space domain (x 2 [�1, 2], y 2
[�2.5, 1]). Sparse optimization fails spectacularly for this
system because in either the power- or the Fourier-series
expansions or a combination of both, an infinite number
of terms are required to represent each map function - see
Supplementary Information (SI) for more details [57].

   

   

   

   

   

   

   

   

FIG. 2. KANs applied to the Ikeda map. (a) A KAN struc-
ture with 2 input, 4 hidden, and 2 output nodes. (b) Training
(red) and testing (black dashed) loss curves. (c) Chaotic at-
tractor during the training phase (blue - ground truth; orange
- KAN produced). (d,e) Time series during the training. The
blue and orange traces overlap well, signifying a high training
accuracy. (f) Chaotic attractor during testing (blue - ground
truth; orange - KAN produced). (g,h) The corresponding
time series. While the predicted time series diverges from the
ground truth after a few iterations due to chaos, the KAN
generates the correct attractor in the pertinent phase-space
domain. The true Lyapunov exponents of the chaotic attrac-
tor are [0.5025,�0.7263]. The KAN predicted model gives
the values of the two exponents as [0.5075,�0.7182], agreeing
with the ground truth.

We first use a [2, 4, 2] KAN structure, as shown in
Fig. 2(a), which has 2 input, 4 hidden, and 2 output
nodes. The time-series data contain 104 points, with 80%
allocated for training and the remaining 20% for testing.
The training process contains 50 iterations with the fol-
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lowing hyperparameter values: k = 3 (cubic B-splines),
grid size G = 10 for the splines, regularization parame-
ters � = 0 and �entropy = 10, learning rate 0.1, and a zero
initial random seed. (see SI [57] for a detailed description
of these hyperparameters). Training is administered in a
feedforward process in which the KAN is trained to min-
imize the di↵erence between the input and output so as
to predict the evolution of the Ikeda map into the future
with the input of the dynamical variables from the past.
The training loss as a function of time is shown as the red
curve in Fig. 2(b), and the KAN-produced attractor and
time series during the training phase in comparison with
the ground truth are shown in Figs. 2(c-e), respectively.
The training loss decreases rapidly to zero, indicating
high training accuracy and e�ciency with skill. For the
testing phase, we use the same set of parameter values
but replace the original input data point with the out-
put of the KAN at each iteration. The testing loss is
shown in Fig. 2(b) as the black dashed curve, and the
KAN predicted attractor and time series are shown in
Figs. 2(f-h), respectively. While the KAN-predicted time
series diverges from the ground truth after a few itera-
tions due to chaos, the predicted attractor agrees with
the ground truth well, indicating that the KAN has gen-
erated the correct model of the Ikeda map.

To demonstrate that a KAN can be readily modified
to generate a di↵erent representation of the Ikeda map
but with the same chaotic attractor, we construct a more
sophisticated architecture than the one in Fig. 2(a), as
shown in Fig. 3(a). The training and prediction results
are shown in Figs. 3(b-h).

For generality, we now present results from a
continuous-time system, a chaotic ecosystem [58] of three
dynamical variables: Ṅ = N (1�N/K)�xpypNP/(N+
N0), Ṗ = xpP (ypN/(N +N0)� 1)� xqyqPQ/(P + P0),
and Q̇ = xqQ (yqP/(P + P0)� 1), where N , P , and Q
are the populations of the primary producer, the herbi-
vore, and the carnivore, respectively, and the bifurcation
parameter K is the carrying capacity. For K = 0.98 and
other parameters set as xp = 0.4, yp = 2.009, xq = 0.08,
yq = 2.876, N0 = 0.16129, and P0 = 0.5, the system
exhibits a chaotic attractor [58]. A power-series expan-
sion of the velocity field contains an infinite number of
terms, violating the sparsity condition - see SI for more
details [57].

Our KAN architecture has a [3, 3] structure (3 input
and 3 output nodes, no hidden nodes), as illustrated in
Fig. 4(a). The neural network was trained using 10,000
data points of sampling interval �t = 0.5 (corresponding
to about 1,155 cycles of oscillation), with 90% of the data
allocated for training and the remaining 10% for testing.
The training process involved 100 iterations for the fol-
lowing hyperparameter values: cubic B-spline (K = 3),
grid size G = 3, � = 0, �entropy = 10, learning rate
0.5, and a zero initial random seed. Figure 4(b) shows
the rapid decrease in the training and testing loss with
increasing epochs. The KAN generated attractor and
the corresponding time series during the training phase

   

      

      

   

   

   

FIG. 3. A KAN configuration generating a di↵erent represen-
tation of the Ikeda map but with the same chaotic attractor.
The KAN has 2 input, 10 hidden, and 2 output nodes. Leg-
ends are the same as those in Fig. 2. The two Lyapunov
exponents of the KAN predicted model are [0.5033,�0.7311],
which again agrees with the true exponents.

are shown in Figs. 4(c-f), where a comparison with the
ground truth indicates successful training. The KAN at-
tractor and the time series generated during the test-
ing phase are shown in Figs. 4(g-j), demonstrating the
KAN’s forecasting power. The Lyapunov exponents of
the attractor are consistent with the true values. (De-
tailed comparative results for the power spectra, corre-
lation dimension and three types of distance divergences
are provided in SI [57].)
To gain insights into the meaning of the interpretabil-

ity of the KAN-discovered models, we o↵er a mathemati-
cal scheme to interpret machine-learning modeling errors
of as representing the true underlying system. The is-
sue of considering models that produce realistic data,
even with orbital errors, is general. In our case, the
KAN model G is said to produce identical behavior as
the true system F if numerically computed orbits of G
shadow some true orbits of F, at least for the observed
finite time of the data set. For maps, if a true orbit of
F is a sequence OrbitF(x0) = {x0,F(x0),F2(x0)...} ⌘
{x0,x1,x2, ...}, it is unreasonable to expect that a good
but imperfect model G will produce an orbit, denoted as
OrbitG(x0) = {x0,G(x0),G2(x0)...} ⌘ {x0, x̃1, x̃2, ...},
that stays close to OrbitF (x0). If the model is good in
the sense that a pointwise error e(x) = |G(x) � F(x)|
on the domain x 2 D satisfies in terms of the sup-norm,
kek1 := supx2D |e(x)| < ✏ for some small ✏ > 0, then at
each step of the model the error is small: x̃i+1 = G(x̃i) =
F (x̃i)+✏i and with each step error, 0  |✏i| < ✏. Nonethe-
less a small normed error of the function di↵erence be-
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FIG. 4. KAN applied to a chaotic ecosystem. (a) KAN struc-
ture with 3 input and 3 output nodes. (b) Training and testing
loss curves. (c) KAN generated attractor during the train-
ing phase (orange), which agrees completely with the ground
truth (blue). (d-f) KAN generated time series (orange) in
agreement with the true time series (blue). (g-j) Similar to
(c-f) but for the testing phase. Due to chaos, the KAN gen-
erated time series diverges from the true ones from the same
initial condition, but the KAN attractor agrees with the true
one. The true Lyapunov exponents are [0.0053, 0,�0.2288].
The exponents of the KAN-generated attractor are consistent:
[0.0095,�5.8⇥ 10�6,�0.3932]. The errors arise from the im-
plicit numerical evaluation of the Jacobian matrix.

tween the system and model alone does not prevent the
model from producing an unrealistic orbit OrbitG(ix0)
that behaves quite di↵erently from any orbit of F, e.g., a
model orbit that diverges to infinity even if the true or-
bit produces bounded attractor. Furthermore, it is even
more di�cult to consider a model orbit that has statisti-
cal properties such as the invariant measure of a chaotic
attractor analogous to the attractor of the true system.

The KAN was represented as an e�cient way to replace
a standard multi-layer perceptron (MLP) [53] and, in so
doing, the weights of edges are in principle eliminated,
but in practice they are absorbed into representing the
various activation functions at the vertices of the net-
work. That is, in stating the basic form of a KAN as
G(x) =

P2n+1
q=1 �q �

Pn
p=1 �q,p(xp), in practice each ac-

tivation function �q,p was represented as a cubic spline
numerically [53], and therefore each has many internal
fitted parameters of the scalar piecewise cubics. Col-
lecting all these as the set of parameters ⇥q,p for each
�q,p, and ⇥q for each �q, we can state the complete
collection of parameters ⇥ = [q(⇥q) [ ([qp⇥q,p) and
rewrite the function to emphasize the internal parame-
ters: G⇥(x) =

P2n+1
q=1 �q,⇥q �

Pn
p=1 �q,p,⇥+q,p(xp), and

for a multivariate argument x = (x1, x2, ..., xd) 2 Rd. It
is shown [53] that a regularized fit to the data by a loss
function L(D;⇥) (over a data set D with respect to the
fitting parameters ⇥), with an objective of data fidelity
as least squares fit across the data set balanced against
L2 norm on the parameters to prevent overfitting.

While excellent fit when optimizing L(D;⇥) was ob-
served, it is possible to emphasize sparsification. That is,
one or some of the activation functions may be set to zero,
a procedure that was called “pruning” [53]. This proce-
dure is possible when the representation of the activation
functions by splines is su�ciently fine so that there are
more parameters than data points. In such case, L(D;⇥)
will generally have nontrivial level sets. The sparsifica-
tion concept speaks to one of the many reasons to exploit
these level sets, generally in terms of machine-learning
interpretability, where the fitted KAN model is pushed
toward just a few physics recognizable activation func-
tions and the residual in a few terms is collected. The
mathematical reason this kind of procedure is possible
hinges on the implicit function theorem [59]. In brief,
the KAN model function G⇥(x) can be varied smoothly
with respect to the fitting parameters so that L(D;⇥) = c
is constant for a given parameter c. Therefore even fol-
lowing numerical optimization to a small value c, there
will generally be smooth level sets with respect to the ⇥
parameters to emphasize other goals of explainability. A
smooth implicit function ⇥ = h(s) exists under the con-
ditions of a nonsingular Jacobian derivative D⇥L that
continues a c-level set, and in principle this level of con-
stancy L(D;h(s)) = c set may intersect the other useful
or desirable interpretabile states, including sparsification.

To summarize, we exploited KANs to solve the prob-
lem of data-driven model discovery for any dynamical
systems including those for which the popular sparsity-
optimization approach to finding the governing equations
fails. Our result may be understood as realizing shad-
owing in the functional space where KANs find certain
functions that produce the same dynamics. These func-
tions may or may not have the same mathematical forms
as the governing equations of the system and may even
be implicit with a numerical representation. In the space
of all functions, an infinite number of such “shadowing”
functions may exist. We demonstrated that KAN-based
machine learning can indeed find many of them, depend-
ing on the neural-network architecture.
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I. KOLMOGOROV-ARNOLD NETWORKS

Kolmogorov-Arnold networks (KANs) are based on the Kolmogorov-Arnold representa-

tion theorem, which states that any continuous multivariate function can be decomposed

into a finite set of univariate functions and their combinations [1]. Conventional neural

networks have limitations such as their “black-box” nature and high computational costs,

but KANs can potentially alleviate these limitations as a promising alternative in machine

learning. Furthermore, a conventional deep neural network may have thousands or millions

of nodes, and hence weights and biases but all the same activation functions standards such

as atnh, ReLu, or sigmoid. A KAN, however, may be dramatically smaller with dozens of

nodes, but all empirically fitted with di↵erent threshold functions that give meaning and

interpretability to the results. This follows their power and ability in machine learning for

dynamical systems.

A. Activation functions

In the numeric phase of KAN training, each one-dimensional (1D) function is parameter-

ized as a B-spline curve, where B-splines, or basis splines, are piecewise-defined polynomials

that o↵er a flexible and e�cient way to represent functions. The B-spline is defined by

its degree, a set of control points, and a knot vector that determines where and how the

polynomial pieces connect. In a KAN, the 1D function fi(x) can be expressed as a linear

combination of B-spline basis functions Bj(x):

fi(x) =

X

j

cjBj(x), (S1.1)

where cjs are the learnable coe�cients that are optimized during the training process to best

fit the data. However, the activation functions in KANs are not limited just to B-splines;

they can incorporate a combination of a basis function b(x) (often a residual function) and

the B-spline function. Each final activation function can then be written as

�i(x) = b(x) + fi(x), (S1.2)

where b(x) = x/(1 + e
�x
).

B. Hyperparameters

Hyperparameter tuning in KANs plays a crucial role not only in optimizing machine-

learning performance but also in enhancing its interpretability by promoting a sparser struc-

ture. A primary hyperparameter is the overall penalty strength � that controls the overall

regularization magnitude. The penalty strength of entropy, denoted as �ent, is specifically

designed to control sparsity and reduce the number of active activation functions. A larger

�ent value encourages the machine-learning model to utilize fewer functions, potentially lead-

ing to a simpler and more interpretable model. Another important set of hyperparameters is

those associated with the B-spline activation functions, such as the order K and the number
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G of control points of such a spline. More specifically, in a B-spline, each control point

corresponds to a basis function, a polynomial of order K. These control points play a role in

the interpretability of the model: a smaller number G of control points can make the model

more challenging to interpret as it restricts the complexity of the basis functions. In addi-

tion, the structure of KANs, which includes the number of hidden nodes and hidden layers,

provides another set of key hyperparameters impacting the model capacity and accuracy.

The learning rate, the number of iterations, and the batch size are also crucial, as they can

a↵ect the convergence speed and stability of the training process.

C. Number of KAN parameters

In a KAN, the total number of trainable parameters is determined by the number of acti-

vation functions in close relation to the architecture of the network defined by the numbers

of the input nodes (Ni), of the hidden nodes in each hidden layer (Nh1, Nh2, . . . , Nhj), and

of the output nodes (No). The structural complexity of the KAN is then determined by the

number of activation functions (Na), expressed as

Na = (Ni ⇥Nh1) + (Nh1 ⇥Nh2) + · · ·+ (Nhj ⇥No). (S1.3)

Consider the numeric training phase of KAN. Each activation function within the KAN is

parameterized by a B-spline curve represented as a linear combination of the basis func-

tions, as outlined in Eq. (S1.1). Each B-spline curve is characterized by (G +K) trainable

coe�cients. The total number of trainable parameters in a KAN is then given by:

(G+K)⇥Na, (S1.4)

which gives a direct relationship between the network’s architecture and its trainable pa-

rameters. Increasing the number of hidden layers or nodes can significantly impact the total

number of parameters, influencing the network’s capacity and complexity of the learned rep-

resentations. Table S1 presents the number of trainable parameters for the KAN structures

used to generate the Ikeda and food-chain dynamics.

System

Parameters
Structure G K Na

Ikeda 1 [2,4,2] 10 3 208

Ikeda 2 [2,10,2] 10 3 520

Food-Chain [3,3] 3 3 54

TABLE S1. Number of trainable parameters in KAN

II. DYNAMICAL INVARIANTS AND STATISTICAL ANALYSIS

Statistical analysis o↵ers quantitative metrics to assess how accurately a KAN model

replicates the underlying behavior of a system, facilitating performance comparison. Quan-

tities such as the Lyapunov exponents, power spectra, correlation dimensions, and statistical
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distances allow us to assess the accuracy and fidelity of the KAN-produced models in cap-

turing the complex dynamics of the ground truth. Here we provide a brief description of

each of the above quantities.

A. Lyapunov exponents

Lyapunov exponents are critical indicators of the dynamical behavior of a system, par-

ticularly in identifying chaos. They measure the average rate at which trajectories in the

system diverge or converge along di↵erent local directions in the phase space. To compare

the dynamics of KAN-produced models with the ground truth, we calculate the Lyapunov

exponents for both. A positive Lyapunov exponent signifies a sensitive dependence on initial

conditions - the hallmark of chaos [2]. For the KAN model, we compute the Lyapunov ex-

ponents using the standard numerical approach that involves the Jacobian matrix and QR

decomposition [3]. First, we initialize a set of orthonormal vectors that evolve according to

the dynamics of the system. At each time step, we numerically calculate the Jacobian matrix

J(x) of the KAN model, which represents the local linearization of the system. A commonly

used method is Newton-based, e.g., the standard finite di↵erence method, the central finite-

di↵erence method, and the complex-step derivative approximation method [4, 5].

The standard finite di↵erence (SFD) method approximates the derivative by evaluating

the function at slightly perturbed values around a point. The forward finite di↵erence

formula is typically used, which is given by:

f
0
(x) ⇡ f(x+ h)� f(x)

h
,

where h is a small step size. This method is straightforward to implement but su↵ers from

truncation errors and can be sensitive to the choice of h, potentially leading to inaccuracies,

especially when h is too large or too small. The central finite di↵erence (CFD) method

improves on SFD by taking the average of the forward and backward di↵erences:

f
0
(x) ⇡ f(x+ h)� f(x� h)

2h
.

This method generally yields better accuracy than SFD because it reduces the truncation

error, making it second-order accurate. However, it requires two function evaluations for

each derivative calculation, which can be computationally expensive. Additionally, there

are situations where only forward or backward evaluation is feasible, limiting the use of

the central method. The complex-step derivative approximation (CDA) method o↵ers even

greater accuracy by leveraging complex arithmetic:

f
0
(x) ⇡ Im(f(x+ ih))

h

where i is the imaginary unit. This method is known for its precision, as it avoids the

subtraction errors that can plague a finite di↵erence method and o↵ers an e↵ective means

to achieve highly accurate derivatives with smaller step sizes [6]. However, it is only appli-

cable when the function f(x) supports complex numbers and does not involve non-analytic

functions such as those containing absolute values or conditional statements. While the
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CDA method is highly accurate and e�cient, its use is restricted by the requirement that

the function support complex numbers. Since KANs cannot be evaluated using complex

numbers, we opt for the CFD method, which o↵ers a reliable balance between accuracy and

practical applicability.

The numerically calculated Jacobian matrix allows us to update the orthonormal vectors,

whose dynamical evolution is tracked over time and their growth rates are calculated. To

maintain the orthonormality and prevent numerical errors, we perform QR decomposition

on the product of the Jacobian matrices at each step. The logarithms of the diagonal

elements of the resulting upper triangular matrix R give the local Lyapunov exponents. By

averaging these values over a long integration time, we obtain values of the exponents. The

calculated Lyapunov exponents for the KAN-produced Ikeda and food-chain systems are

listed in Tabs. S2 and Tabs. S3.

TABLE S2. Lyapunov exponents of the

Ikeda dynamics

Sys

LEs
L1 L2

Ground Truth 0.502494 -0.726278

Ikeda 1 0.507518 -0.718239

Ikeda 2 0.503313 -0.731115

TABLE S3. Lyapunov exponents of the food-chain

dynamics

Sys

LEs
L1 L2 L3

Ground Truth 0.009495 -0.00058 -0.393213

Food chain 0.005354 -0.000005 -0.228759

Despite di↵erent models, the resulting Lyapunov exponents are essentially the same,

revealing the same attractor.

B. Power spectrum

Power spectra provide another way to compare the KAN-produced model with the ground

truth, as shown in Fig. S1. It can be seen that the KAN model captures the underlying

periodicities and complex oscillations present in the ground truth dynamics for both the

Ikeda and food-chain systems.

C. Correlation dimension

The correlation dimension is a measure of the fractal structure of a system’s attractor in

phase space. It quantifies the complexity of the dynamical system by describing how the

number of points within a given distance scales with the distance. To compare the KAN-

produced model with the ground truth, we calculate the correlation dimension for both sets

of time series data. This involves reconstructing a phase space from the time series and

then using methods such as the Grassberger-Procaccia algorithm to estimate the correlation

dimension [7]. The results listed in Tab. S4 show a close match in the correlation dimensions,

indicating that the KAN model is fully capable of replicating the true attractor of the target

system.
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FIG. S1. Power spectrum Comparison. Shown are the power spectra of the KAN-produced dy-

namics (orange) compared with the ground truth (blue): (a,b) the two KAN models generating

the same Ikeda dynamics as described in the text, and (c) the food-chain dynamics.

System

Model
Ground Truth KAN

Ikeda 1 1.6296 1.7062

Ikeda 2 1.62968 1.6134

Food chain 2.5732 8 2.3649

TABLE S4. Comparison of correlation dimension between and KAN model and ground truth
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D. Statistical distance: three measures of divergence

Statistical distances are another measure of comparing the similarities of the two attrac-

tors in the phase space. Commonly used measures include the Kullback-Leibler divergence

and Hellinger or total-variation divergence [8, 9]. The measures characterize the di↵erences

between the distributions on the attractors from di↵erent angles. More specifically, The

Kullback-Leibler divergence measures how one probability distribution Q diverges from a

second, reference probability distribution P :

KL(P ||Q) =

X

i

P (i) log
�P (i)

Q(i)

�
,

which is asymmetric and indicative of how much information is lost when Q is used to ap-

proximate P . The Hellinger distance, derived from the Bhattacharyya coe�cient, measures

the similarity between two distributions:

H(P,Q) =

sX

i

�p
P (i)�

p
P (i)

�2
,

which is symmetric and gives the maximum possible di↵erence between P and Q. The total-

variation divergence measures the maximum di↵erence between the probabilities assigned

to the same event by two distributions:

�(P,Q) =
1

2

X

i

|P (i)�Q(i)|,

which is symmetric and gives the overall di↵erence between the two distributions in terms

of their probability masses.

For all three divergence measures, a smaller value indicates greater similarity between

the distributions, while a larger value suggests a more significant di↵erence. To compare the

KAN model with the ground truth, we first estimate the probability density functions of

both attractors using the kernel density estimation method. We then compute the Kullback-

Leibler, Hellinger, and total-variation divergences. The results for both the Ikeda and food-

chain systems are presented in Tab. S5, where distribution p corresponds to the ground

truth model and distribution q is from the KAN-produced model. To ensure the reliability

and fairness of the comparison, we also compare the probability density function of the

ground truth Ikeda attractor p with that of a random attractor q with the following results:

KL(P ||Q) = 1.0532, H(P,Q) = 0.6024, and �(P,Q) = 0.5999. These results demonstrate

that the KAN-produced attractors are essentially statically identical to the ground truth

(within numerical errors), highlighting the e↵ectiveness of the KAN model in capturing the

true system’s behavior.

III. SPECTACULAR FAILURES OF SPARSE OPTIMIZATION APPROACH TO

FINDING EQUATIONS FOR THE IKEDA MAP AND CHAOTIC FOOD-CHAIN

SYSTEM

The sparse-optimization approach to finding the governing equations of nonlinear dynam-

ical systems from data was first introduced in 2011 [10]. The idea is that power-series or
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System

Method
Kullback-Leibler Hellinger Total-variation

Ikeda 1 0.0124 0.0556 0.0595

Ikeda 2 0.0180 0.0652 0.0669

Food chain 0.0002 0.0034 0.0063

TABLE S5. Attractor distribution comparison between ground truth and KAN-produced models.

The small divergence values indicate that the model and the true systems produce essentially the

same attractor.

Fourier-series expansions can be used to approximate smooth but nonlinear dynamical func-

tions, converting the problem to that of estimating the coe�cients of the series-expansion

terms. If the series contain many high-order terms, the number of coe�cients to be esti-

mated is large, making the problem unsolvable. However, the equations of many classical

dynamical systems are relatively simple in terms of series expansion in the sense that a vast

majority of the coe�cients are zero, resulting in a sparse coe�cient vector. The sparsity

allows the use of sparse optimization methods such as compressive sensing to solve the coef-

ficients. An advantage of the sparse-optimization methods lies in the need to of only limited

observational data.

In the main text, it is emphasized that the Ikeda system violates the sparsity condition as

the map functions contain an infinite number of power-series or Fourier-series terms. When

applying sparse optimization to such a system, every term, no matter how many are initially

assumed, exists. As a result, any such algorithm would fail spectacularly. Here we present an

example of such a spectacular failure when attempting to estimate the dynamical equation

of the Ikeda map using a commonly used sparse-optimization algorithm [11] that employs

library of base functions including polynomials, inverse functions, products, exponential,

and sinusoidal functions, etc. The estimated map functions are

x
+
=14.413e

x
+ 21.543e

y � 10.137x� 18.639y

+ 5.308 sin(x) + 15.552 sin(y)� 41.853 cos(x) + 6.222 cos(y)

� 0.218 sin(x+ y)� 10.137x� 18.638y � 28.135x
2 � 8.364y

2
+ 0.152xy,

y
+
=� 3.604e

x
+ 0.170e

y
+ 5.990x� 0.282y

� 9.407 sin(x) + 3.029 cos(x) + 0.903 cos(y) + 0.246 sin(x+ y)

+ 5.990x� 0.283y + 2.439x
2
+ 0.493y

2
+ 0.552xy.

(S3.5)

The food-chain system described in the main text is another example where sparse opti-

mization fails spectacularly. The estimated governing equations are

x
+
=3.445e

x
+ 6.290 sin(x) + 0.869 sin(y)

� 3.424 cos(x) +�0.391 sin(x+ y)� 8.528x

� 0.710y +�3.967x
2
+�1.363

xy

1 + x
,

y
+
=0.572y

2
+ 2.050xy � 3.879

xy

1 + x

z
+
=0.

(S3.6)
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The time series produced by these equations (orange) versus the ground truth (blue) are

shown in Figs. S2(a) and S2(b) for the Ikeda map and the food-chain system, respectively.

It can be seen that the discovered equations fail to produce the true time series from the

respective system.

     

          

   

   

FIG. S2. Comparison of time series from the equations found by sparse optimization and the

ground truth. Shown are two sets of time series (orange: equations from sparse optimization; blue:

ground truth) for (a) Ikeda map and (b) chaotic food-chain system described in the main text.

The sparse-optimization method fails to find the correct equations.

IV. KAN MODEL DISCOVERY OF THREE CLASSICAL NONLINEAR DYNAM-

ICAL SYSTEMS

A. Logistic map

The map is given by [12]

X(n+ 1) = rX(n)
�
1�X(n)

�
(S4.7)

where X(n) represents the population at generation n, and r is a parameter that controls

the growth rate. For values of r between 0 and 4, the map displays a range of behaviors

from stable fixed points to periodic and chaotic attractors. For r = 4, the map generates a

chaotic attractor in the unit interval X 2 [0, 1].
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FIG. S3. KAN Model applied to the logistic map. (a) KAN model structure with one input and

one output node, without hidden nodes. (b) Training and testing loss curves over 10 iterations. (c)

Attractor and (d) time series during the training phase (orange) in comparison with the ground

truth (blue), indicating high accuracy in first-step predictions. (e) Attractor and (f) time series

during the testing phase. The KAN model faithfully replicates the logistic map’s dynamics, in

spite of the inevitable divergence due to the fundamental sensitive dependence on initial conditions

of chaotic systems.

We utilize a simple KAN structure, as depicted in Fig. S3(a), which consists of a single

input and a single output node without any hidden nodes. We use 10
4
time-series data

points, where 80% are for training and the remaining 20% for testing. The training process

spans 10 iterations, with the following hyperparameter values: K = 3 (cubic B-splines), grid

size of 5 for the splines, loss-function parameters � = 0 and �entropy = 10, learning rate 0.1,

and a random seed initialized to zero. Similar to the examples in the main text, training is

administered in a feedforward process, where the KAN is trained to minimize the di↵erence

10



between the input and output, predicting the future evolution of the target system based on

the past dynamical variables. The red curve in Fig. S3(b) shows the training loss over time,

while Figs. S3(c) and S3(d) display the KAN-produced attractor and time series during the

training phase in comparison with the ground truth. The rapid decrease in the training loss

to zero signifies high training accuracy and e�ciency.

During the testing phase, we maintain the same set of training parameter values but

replace the original input data point with the output of the KAN at each iteration. The

black dashed curve in Fig. S3(b) represents the testing loss, and Figs. S3(e) and S3(f)

show the KAN-predicted attractor and time series, respectively. While the KAN-predicted

time series diverge from the ground truth after several iterations due to the fundamental

sensitivity to initial conditions, the predicted attractor closely aligns with the ground truth,

demonstrating that the KAN has successfully learned the chaotic dynamics of the logistic

map.

B. Circle map

The map is given by

X(n+ 1) = X(n) + ⌦� K

2⇡
sin(2⇡X(n)) mod 1, (S4.8)

where X(n) represents the phase at iteration n, ⌦ is a frequency parameter, and K is a

nonlinearity parameter. The map’s behavior varies from periodic and quasiperiodic motions

to chaos, depending on the values of K and ⌦. For K > 1, chaos can arise. We fix K = 1

and ! = 0.3, for which the map exhibits quasiperiodic behavior with the trajectories that

do not repeat exactly but densely cover a region of the phase space without ever closing.

Figure S4(a) illustrates the KAN structure, which consists of a single input and a single

output node, with two hidden layers (three nodes in the first and two nodes in the second

layer). The dataset consists of 10
4
points, with 90% allocated for training and 10% for

testing. Training involves 200 iterations. The hyperparameter values are: K = 3 (cubic

B-splines), grid size of 5 for the splines, loss-function parameters � = 0 and �ent = 10,

learning rate 0.1, and a random seed set to zero. The training (testing) is carried out in

a feedforward (recurrent) process. The red (black dashed) curve in Fig.S4(b) illustrates

the training (testing) loss over time. Figures S4(c,e) and S4(d,f) show the KAN-generated

attractor and time series during the training and testing phases, respectively, in comparison

with the ground truth. The rapid convergence of the training loss to zero highlights a high

accuracy and e�ciency in training. The time series during the testing phase diverges from

the ground truth after more than 700 iterations, indicating an e↵ectively zero Lyapunov

exponent and good agreement of predicted attractor with the ground truth. This example

then demonstrates that KAN is a faithful representation of a dynamical system generating

quasiperiodic dynamics.
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FIG. S4. KAN applied to the circle Map. (a) Structure of the KAN, which includes a single

input and output node with two hidden layers. (b) Training and testing loss curves over 200

iterations. (c) Attractor and (d) time series during the training phase (orange) in comparison with

the ground truth (blue), demonstrating high accuracy of first-step prediction. (e) Attractor and

(f) time series during the testing phase, demonstrating that the KAN model e↵ectively replicates

the map dynamics, following the true time series for more than 700 steps before diverging. Such

a long prediction time is indicative of the null Lyapunov exponent characteristic of quasiperiodic

motion.
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FIG. S5. KAN applied to the Hénon map. (a) KAN structure: two input and two output nodes,

no hidden layers. (b) Training and testing loss curves over 50 iterations. (c) Attractor and (d) time

series during the training phase (orange) in comparison with the ground truth. (e) Attractor and

(f) time series during the testing phase, demonstrating that the KAN model e↵ectively replicates

the chaotic dynamics of the Hénon map.

C. Hénon map

The two-dimensional map is given by [13]

x(n+ 1) =1� ax(n)
2
+ y(n),

y(n+ 1) =bx(n),
(S4.9)

where x(n) and y(n) are the dynamical variables at the n
th
iteration, a and b are parameters.

The standard Hénon attractor is for a = 1.4 and b = 0.3. The KAN has a [2, 2] structure, as

13



illustrated in Fig. S5(a), with two input and two output nodes. The dataset comprises 5⇥10
4

points with 90% for training and the remaining 10% for testing. The training process spans

50 iterations, with the following hyperparameter values: grid size 10, spline order K = 3,

� set to 0, �entropy set to 10, learning rate of 0.1, and a random seed initialized to zero.

The results in Figs. S5(b-f) demonstrate that KAN represents a data-discovered model that

faithfully generate the ground-truth Hénon chaotic dynamics.
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