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In complex dynamical networks, the resilience of the individual nodes against perturbation and their influence
on the network dynamics are of great interest and have been actively investigated. We consider situations
where the coupling dynamics are separable, which arise in certain classes of dynamical processes including
epidemic spreading, population dynamics, and regulatory processes, and derive the algebraic scaling relations
characterizing the nodal resilience and influence. Utilizing synthetic and empirical networks of different
topologies, we numerically verify the scaling associated with the dynamical processes. Our results provide
insights into the interplay between network topology and dynamics for the class of processes with separable
coupling functions.

In applications involving complex dynamical net-
works, it is often of interest to assess the ability
of individual nodes to withstand disruptions or
perturbations. This defines the nodal resilience.
A network with more resilient nodes is naturally
more resistant to global catastrophic dynamical
events such as cascading failures. It is also use-
ful to quantify an individual node’s influence on
the behaviors of other nodes in the network, as
such influences determine the dynamics on the
whole network. Are there general scaling rela-
tions characterizing the dependence of nodal re-
silience and influence on the degree? To answer
this question for arbitrary nodal dynamical in-
teractions is difficult. However, if the node-to-
node coupling dynamics are separable, the scal-
ing relations exist and can be derived analyti-
cally. Situations where complex networks host
separable coupling dynamics can in fact arise in
physical and biological contexts such as epidemic
spreading, population dynamics, and regulatory
processes. This article presents an analytic the-
ory to show that both nodal resilience and in-
fluence scale with the degree algebraically, with
extensive numerical support from a large number
of synthetic and empirical networks of different
topologies. The algebraic scaling relations are
robust against variations in network properties
such as the clustering coefficient, degree correla-
tion and heterogeneity. The findings provide in-
sights into the interplay between network topol-
ogy and dynamics for tasks such as robustness
analysis, critical node identification, and network
stability enhancement.

a)Electronic mail: yhdo@knu.ac.kr

I. INTRODUCTION

Extensive research has established that the structures
of many complex networks in the real world, to some ex-
tent, exhibit general features including random1, small-
world2, and scale-free3,4 topologies. In addition to these
three well studied topologies, networks possessing a self-
similar structure can also arise5. Each topology can be
generated by a set of elementary governing rules, e.g.,
the preferential-attachment rule that results in the scale-
free topology3,4. Complex networks in the real world
host dynamical processes, leading to complex dynami-
cal networked systems. Well studied processes include
epidemic transmission6–9, traffic flows10, biological com-
petitions11–13, cascading failures14–16, and cellular sig-
naling17–23.

Considerable efforts were devoted to searching for gen-
eral dynamical behaviors on complex networks. Ear-
lier, a class of dynamics on weighted complex networks
was uncovered24, where the topological details of various
properly weighted real-world networks tend to have lit-
tle influence on a variety of dynamical processes on the
network, suggesting the possibility of developing general
strategies for controlling network dynamics. The net-
works can be biological, physical, technological, or social,
and the dynamical processes studied include synchro-
nization, epidemic spreading, and percolation. Later,
some common network dynamics were identified25 and
it was also found that a diverse array of flow patterns on
complex networks can be mapped into and described by
some specific function26,27. Subsequently, three generic
modes associated with spatiotemporal signal propaga-
tion in complex networks were discovered: distance-
limited, degree-limited, and composite propagation28.
Quite recently, discrete stability categories in complex
networked dynamics were unveiled: asymptotically un-
stable, sensitive, and asymptotically stable29.

In this paper, we investigate nodal resilience and in-
fluence in complex dynamical networks. In particu-
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lar, an individual node’s resilience measures its capa-
bility to withstand disruptions or perturbations, which
underscores the robustness of the entire system30. A
node’s influence on the network dynamics is also of in-
terest, as certain nodes can have a disproportional ef-
fect on the interactions and information flow in the net-
work31,32. Studies also offered insights into the related
issue of adaptive mechanisms of nodes in dynamical net-
works30,33,34 and the evolving landscape of nodal influ-
ences35,36. In spite of these works, a theoretical frame-
work to explain the resilience and influence of nodes was
lacking. To partially address this issue, we consider
a special class of dynamical networks whose coupling
dynamics are separable and investigate the scaling of
the resilience and influence with the nodal degree under
short-term or long-term perturbations. Representative
dynamical processes with separable coupling functions
include certain classes of epidemic spreading, population
dynamics, and regulatory processes. We analytically find
that the scaling is algebraic and validate them using syn-
thetic and empirical networks. Depending on the specific
dynamical process, the nodal resilience and influence can
be degree enhancing, degree uniform, or degree suppress-
ing. Our results offer further insights into the interplay
between network topology and dynamics for tasks such
as robustness analysis, critical node identification, and
network stability enhancement.

II. NODAL RESILIENCE AND INFLUENCE

We consider a complex dynamical network compris-
ing N interconnected nodes represented by a weighted,
undirected adjacency matrix Aij . The system dynamics
are governed by

dxi
dt

=M0(xi) +

N∑
j=1

AijM1(xi)M2(xj), (1)

where xi(t) is the vector of the dynamical variables of
node i,M0(xi(t)) characterizes the self-evolution of node
i, the product of the functions M1(xi(t)) and M2(xj(t))
describes the pairwise interaction between nodes i and
j, so the coupling is separable. In spite of this separa-
bility assumption, Eq. (1) can model certain dynamical
processes such as epidemics (denoted as E)6–9, popula-
tion dynamics (denoted as P)37, and regulatory dynam-
ics (denoted as R)17,19,20,22,23. Consider the situation
where the system has attained a steady state when a
disturbance occurs, with nodal values stabilized at xi.
Introducing a small temporary perturbation δxm at node
m, we reset the time to 0. The initial conditions for the
nodes in the network are thus given by

xi(0) =

{
xi, i ̸= m,

xm + δxm, i = m.
(2)

A. Steady-state solution

The steady state of the networked dynamical system
Eq. (1) can be obtained by solving

dxi
dt

=M0(xi) +

N∑
j=1

AijM1(xi)M2(xj) = 0. (3)

The average of M2(xj) among neighboring nodes is

⟨M2(x)⟩i =
1

ki

∑
AijM2(xj), (4)

where ki denotes the degree of node i. Substituting
Eq. (4) into Eq. (3), we have

M0(xi) + kiM1(xi)⟨M2(x)⟩i = 0. (5)

Letting

R(xi) ≡ −M1(xi)

M0(xi)
, (6)

we have, from Eq. (5),

R(xi) =
1

ki⟨M2(x)⟩i
. (7)

For λi ≡ R(xi), we have λi ∼ k−1
i , so the steady state

xi can be obtained through the inverse of R(xi):

xi = R−1(λi). (8)

B. Definition of nodal resilience and influence

After a temporary perturbation, the system undergoes
a transient phase before returning to its steady state.
The instantaneous response of node m is

∆xm(t) = xm(t)− xm, (9)

where ∆xm(t) measures the deviation of node m from
its steady state. To quantify the resilience of node m,
we use the concept of resilience triangle38. The loss of
resilience of node m is defined as

LRm =

∫
∆xm(t)

δxm
dt, (10)

where the integrand ∆xm(t)/δxm is positive38, so
LRm > 0. A larger value of LRm means that it takes
longer for the node to recover to its steady state, signi-
fying a weaker resilience. The resilience Rm of node m
can then be defined as the reciprocal of LRm, i.e.,

Rm =
1

LRm
. (11)

A smaller resilience loss LRm corresponds to a higher
resilience Rm, meaning that the node is more capable of
returning to its steady state.
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The influence Im of node m on the rest of the net-
work is defined as the cumulative resilience losses of other
nodes in the system:

Im =

N∑
i=1,i̸=m

LRi =

N∑
i=1,i̸=m

∫
∆xi(t)

δxm
dt, (12)

where larger resilience losses of the other nodes indicate
that the influence of node m is greater.

III. SCALING OF NODAL RESILIENCE

A perturbation δxm applied to the steady state of node
m gives the initial condition: xm(0) = xm + δxm, e.g.,
δxm = αxm with α = 0.1. The dynamical evolution of
m is governed by

d(xm +∆xm(t))

dt
=M0(xm +∆xm(t)) +

N∑
j=1

AmjM1(xm +∆xm(t))M2(xj +∆xj(t)), (13)

where ∆xm(t) is the instantaneous response of node m, as defined in Eq. (9). Linearizing the dynamics about
the steady state, we obtain

d∆xm(t)

dt
=

M ′
0(xm) +M ′

1(xm)

N∑
j=1

AmjM2(xj)

∆xm(t) +M1(xm)

N∑
j=1

AmjM
′
2(xj)∆xj(t) + o(∆x2). (14)

For ∆xj(t) ≪ ∆xm(t), Eq. (14) can be simplified as

d∆xm(t)

dt
= Pm∆xm(t), (15)

where

Pm =M ′
0(xm) +M ′

1(xm)

N∑
j=1

AmjM2(xj).

Solving Eq. (15), we get

∆xm(t) = δxme
Pmt. (16)

Consequently, the resilience of node m can be obtained
as

Rm =
1∫ ∆xm(t)
δxm

dt
= −Pm. (17)

Employing Eq. (6), we have

M ′
0(xm) = −M

′
1(xm)

R(xm)
+
M1(xm)R′(xm)

R2(xm)
. (18)

Utilizing Eqs. (4) and (7), we get

M ′
1(xm)

N∑
j=1

AmjM2(xj) =
M ′

1(xm)

R(xm)
. (19)

Combining these expressions, we finally obtain

Pm =
M1(xm)R′(xm)

λ2m
. (20)

Using the Hahn series, M1(xm) and R′(xi) can be ex-
pressed as

M1(xm) =

∞∑
n=0

Bnλ
βn
m and R′(xm) =

∞∑
n=0

Cnλ
ψn
m . (21)

In the limit λm → 0, the leading terms λβ0
m and λψ0

m

dominate the dynamical evolution. We have

Rm ∼ λ−2+β0+ψ0
m . (22)

Utilizing λm ∼ k−1
m , we also have

Rm ∼ k2−β0−ψ0
m , (23)

where

ζ = 2− β0 − ψ0. (24)

It can be seen from Eqs. (23) and (24) that the nodal
resilience scales with the nodal degree algebraically with
the exponent ζ.

To provide numerical support for the scaling relations
(23) and (24), we implement epidemic spreading (E),
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population dynamics (P), and regulatory dynamics (R)
on ER (Erdös-Rényi) random and scale-free networks.
The details of the network structures and dynamical pro-
cesses are listed in Tab. I. The expressions of the scaling
exponents for the E, R, and P dynamics are provided
in Appendix A.

TABLE I. Network dynamics

Dynamics Equation Notation

Epidemic dxi
dt

= −xi(t) +
∑N

j=1 Aij (1− xi(t))xj(t) E

Population dxi
dt

= −x0.8
i (t) +

∑N
j=1 Aijx

0.2
j (t) P

Regulatory dxi
dt

= −xi(t) +
∑N

j=1 Aij
xj(t)

1+xj(t)
R

Under an impulsive perturbation, the scaling of the

nodal resilience with the degree exhibits three distinct
behaviors, as shown in Figs. 1(a), 1(b), and 1(c), respec-
tively, for E, R, and P types of dynamics. For ζ > 0,
the nodal resilience increases with the degree, indicating
that the hub nodes are more resilient. For ζ ≈ 0, the
nodes in the network are uniformly resilient against the
perturbation. For ζ < 0, nodes of smaller degrees tend
to be more resilient.

IV. SCALING OF NODAL INFLUENCE Im

We first consider the case where the perturbation is
impulsive and applies to node m at t = 0. The dy-
namics of the nearest neighbor of node m, denoted as i,
described by the following equation:

d(xi +∆xi(t))

dt
=M0(xi +∆xi(t)) +

N∑
j=1

AijM1(xi +∆xi(t))M2(xj +∆xj(t)), (25)

which can be linearized about the steady state as

d∆xi(t)

dt
=

M ′
0(xi) +M ′

1(xi)

N∑
j=1

AijM2(xj)

∆xi(t)

(26)

+M1(xi)

N∑
j=1,j ̸=m

AijM
′
2(xj)∆xj(t)

+M1(xi)M
′
2(xm)∆xm(t) + o(∆x2).

Assuming that node j is far from the disturbance source
m, we have ∆xj(t) ≪ ∆xm(t). Equation (26) can then
be written as

d∆xi(t)

dt
= Pi∆xi(t) +Qi, (27)

where

Pi =M ′
0(xi) +M ′

1(xi)

N∑
j=1

AijM2(xj) and

Qi =M1(xi)M
′
2(xm)∆xm(t).

Solving Eq. (27) gives

∆xi(t) = ePit

∫
Qie

∫
−Pidtdt. (28)

Substituting Eq. (16) into Eq. (28), we get

∆xi(t) =
M1(xi)M

′
2(xm)δxm

Pm − Pi
(ePmt − ePit). (29)

Consequently, the loss of resilience of node i can be ob-
tained as

LRi =

∫
∆xi(t)

δxm
dt =

M1(xi)M
′
2(xm)

PiPm
. (30)

Similarly, M ′
2(xm) can be expressed as a Hahn series:

M ′
2(xm) =

∞∑
n=0

Cnλ
φn
m , (31)

which can be simplified as

M ′
2(xm) ∼ k−φ0

m . (32)

Combining Eqs. (17), (23) and (30), we get

LRi ∼ k−2+β0+ψ0−φ0
m . (33)

Collecting all neighboring nodes of the perturbed node
m, we obtain the scaling relation:

Im ∼ kηm, (34)

with the algebraic scaling exponent η given by

η = −1 + β0 + ψ0 − φ0. (35)

We next consider a constant perturbation: ∆xm(t) =
δxm. In this case, the nodal resilience cannot be defined,
but the influence Zm of node m can be defined as

Zm =

N∑
i=1,i̸=m

∆xi(t→ ∞)

δxm
, (36)
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FIG. 1. Patterns of nodal resilience under temporary perturbation. (a-c) Ri versus ki for E, R, and P, respectively, for all
networks. The red circles represent the results from an Erdős-Rényi random network with size N = 6, 000 and average degree
⟨k⟩ = 4, and the black diamonds give the results from a scale-free network of size N = 6, 000 and average degree ⟨k⟩ = 4.

FIG. 2. Patterns of nodal influence under temporary perturbation. (a-c) Ii versus ki for P,E, and R, respectively, for all
networks. The red circles represent the results from an Erdős-Rényi random network with size N = 6, 000 and average degree
⟨k⟩ = 4, and the black diamonds give the results from a scale-free network of size N = 6, 000 and average degree ⟨k⟩ = 4.

FIG. 3. Patterns of nodal influence under a constant perturbation. (a-c) Zi versus ki for E,P, and R, respectively, for all
networks. The red circles represent the results from an Erdős-Rényi random network with size N = 6, 000 and average degree
⟨k⟩ = 4, and the black diamonds give the results from a scale-free network of size N = 6, 000 and average degree ⟨k⟩ = 4.

where ∆xi(t → ∞) is the ith node’s response to the disturbance at the source m. From Eq. (27), we get
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Qi =M1(xi)M
′
2(xm)δxm. From Eq. (28), we obtain

∆xi(t) =
M1(xi)M

′
2(xm)δxm
Pi

(ePit − 1). (37)

In the limit t→ ∞, we get

∆xi(t→ ∞)

δxm
= −M1(xi)M

′
2(xm)

Pi
∼ k−φ0

m , (38)

and the scaling relation:

Zm ∼ kθm, (39)

where

θ = 1− φ0. (40)

To verify the scaling relations (34) and (35) for the
case of an impulsive perturbation, we use the same nu-
merical setting as in Fig. 1. The results are shown in
Fig. 2. It can be seen that the nodal influence also
exhibits three distinct scaling behaviors, as shown in
Figs. 2(a), 2(b), and 2(c) for P, E, and R types of dy-
namics, respectively. For the case of a constant per-
turbation, the simulation results to support the scaling
relations as given by (39) and (40) are shown in Fig. 3.
There are again three distinct patterns: (1) for E type
of dynamics, we have θ = 1, indicating that nodes with
larger degrees have greater influence on other nodes, (2)
for P type of dynamics, we have θ ≈ 0, so the nodal in-
fluence is independent of the degree, and (3) for R type
of dynamics, we have θ = −1. In this case, nodes with
smaller degrees have greater influence.

V. VERIFYING RESILIENCE AND INFLUENCE
SCALING WITH EMPIRICAL NETWORKS

We study the following empirical networks to test the
scaling:

1. PPI1 The yeast scale-free protein-protein interac-
tion network, consisting of 1,647 nodes (proteins)
and 5,036 undirected links. The network describes
the chemical interactions among proteins39.

2. PPI2 The human protein-protein interaction net-
work, a scale-free network, consisting of N = 2,035
nodes (protein) and L = 13,806 protein-protein in-
teraction links40.

3. PPI3 Binary protein-protein interaction net-
work of Arabidopsis thaliana, whose giant con-
nected component comprises 2,938 nodes and 7,720
links41.

4. PPI4 Multiplex genetic and protein interactions
network of Rattus norvegicus, composed of 2,350
nodes and 3,484 links42.

5. URIV The email communication network at the
University Rovira i Virgili in Tarragona in the
south of Catalonia in Spain, composed of 1,133
nodes and 5,451 links43.

6. UCIonline An instant messaging network from
the University of California Irvine44, capturing 61,
040 transactions between 1,893 users during a 218-
day period. Connecting all individuals who ex-
changed messages throughout the period leads to a
network of 1,893 nodes with 27,670 links, exhibit-
ing a fat-tailed degree distribution.

7. ECO1 A mutualistic ecological network con-
structed using data on symbiotic interactions of
plants and pollinators in Carlinville, Illinois28. The
resulting network is a bipartite graph linking 456
plants with 1,429 pollinators. When a pair of
plants is visited by the same pollinator, they mutu-
ally benefit each other indirectly by increasing the
pollinator populations. Similarly, pollinators shar-
ing the same plants possess an indirect mutualistic
interaction.

TABLE II. Structural characteristics of the empirical net-
works, including the number N of nodes, the average degree
⟨k⟩, assortativity coefficient r, and clustering coefficient C.
The rightmost column indicates the dynamical processes im-
plemented in the simulations.

Network N ⟨k⟩ r C Dynamics

PPI1 1647 3.05 -0.1059 0.1908 R

PPI2 2035 6.78 -0.2192 0.0473 R

PPI3 2938 5.25 -0.1929 0.1256 R

PPI4 2350 2.96 -0.1856 0.0853 R

URIV 1133 9.62 0.0782 0.1662 E

UCIonline 1893 14.61 -0.1880 0.1097 E

ECO1 1044 14.17 -0.1740 0.0376 P

Table II lists the structural characteristics of the em-
pirical networks and the corresponding dynamical pro-
cesses. Simulations reveal the three distinct scaling be-
haviors governing the nodal resilience and influence as
predicted by theory, as shown in Figs. 4, 5, and 6.

VI. DISCUSSION

We have studied the degree scaling of nodal resilience
and influence for a class of complex dynamical networks
that satisfy the separability condition: the coupling be-
tween a pair of nodes can be written as the product of
two functions, each depending solely on the dynamical
variable of the respective node. While this assumption
may be strong so as to make an analytic derivation of
the scaling relations possible, certain types of dynamical
processes on networks do satisfy this assumption, which
include epidemic spreading, population dynamics, and
regulatory processes. Given a specific type of dynam-
ical process on the network, e.g., epidemic spreading,
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FIG. 4. Scaling of nodal resilience for empirical networks. Shown is Ri versus ki for (a) E dynamics, (b) R dynamics, and (c)
P dynamics.

FIG. 5. Scaling of nodal influence under an impulsive perturbation. Shown is Ii versus ki for (a) P dynamics, (b) E dynamics,
and (c) R dynamics.

FIG. 6. Scaling of nodal influence under a constant perturbation. Shown is Zi versus ki for (a) E dynamics, (b) P dynamics,
and (c) R dynamics.

the roles played by the individual nodes in the process,
which depend on the nodal degree, are of interest, es-
pecially from the standpoint of control and mitigation.

For example, if it is determined that a small set of nodes
contribute disproportionally to the spreading, some op-
timal control strategy at the nodal level can be devised
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to suppress (or promote) the dynamics. Our theoreti-
cal analysis and extensive numerical computations using
a large number of synthetic and empirical networks re-
vealed that, regardless of the network structure, for a
given type of dynamical process, the scaling relations
of the nodal resilience and influence with the degree is
algebraic, which holds with respect to variations in net-
work properties such as the clustering coefficient, degree
correlation and degree heterogeneity, even when the per-
turbation is large (Appendix B).

It is worth emphasizing that our theoretical deriva-
tions of the algebraic scaling of the nodal resilience and
influence rely on the network dynamics settling into a
stable state in the absence of any perturbation. Whether
similar scaling would arise in networks with oscillatory
dynamics is an open question. Another direction to ex-
tend our study is search for nodal resilience and influence
scaling in multilayer and multiplex complex networks
that model real-world systems with interdependencies.
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Appendix A: Three types of network dynamics

1. Epidemic spreading dynamics

From the epidemics model in Tab. I, the three func-
tions in Eq. (1) are M0(x) = −Bx, M1(x) = 1 − x and
M2(x) = x. We have

R(x) =
1− x

Bx
, R′(x) =

1

B
x−2 and R−1(x) =

1

1 +Bx
.

Their Hahn expansions are

M1

(
R−1(x)

)
=

Bx

1 +Bx
= Bx−B2x2 +B3x3 − · · · ,

R′ (R−1(x)
)

=
1

B
+ 2x+Bx2,

M ′
2

(
R−1(x)

)
= 1.

From Eqs. (21), (23), (31), (34) and (39), we get

β0 = 1 , ψ0 = 0 and φ0 = 0, (A1)

and

ζ = 1 , η = 0 and θ = 1. (A2)

2. Regulatory dynamics

From the regulatory dynamics model shown in Tab. I,

we have M0(x) = −Bxa, M1(x) = 1 and M2(x) =
xh

1+xh ,
and

R(x) =
1

Bxa
, R′(x) = − a

B
x−(a+1), R−1(x) = B− 1

ax−
1
a .

Their Hahn expansions are

M1

(
R−1(x)

)
= 1,

R′ (R−1(x)
)

= −aB 1
ax

a+1
a ,

M ′
2

(
R−1(x)

)
=

hB−h−1
a x−

h−1
a

(1 +B−h
a x−

h
a )2

= hB
h+1
a x

h+1
a + · · · .

Substituting these expansions into Eqs. (21), (23), (31),
(34) and (39), we get

β0 = 0 , ψ0 =
a+ 1

a
and φ0 =

h+ 1

a
, (A3)

and

ζ =
a− 1

a
, η = −h

a
and θ = 1− h+ 1

a
. (A4)

As an example, for a = 1 and h = 1, we have ζ = 0,
η = −1 and θ = −1.

3. Population dynamics

From the population dynamics model in Tab. I, we
have M0(x) = −Bxa, M1(x) = 1, and M2(x) = xh,
leading to

R(x) =
1

Bxa
, R′(x) = − a

B
x−(a+1), R−1(x) = B− 1

ax−
1
a .

Their Hahn expansions are

M1

(
R−1(x)

)
= 1,

R′ (R−1(x)
)

= −aB 1
ax

a+1
a ,

M ′
2

(
R−1(x)

)
= h(B− 1

ax−
1
a )h−1 = hB−h−1

a x−
h−1
a .

Substituting the expansions into Eqs. (21), (23), (31),
(34) and (39), we get

β0 = 0 , ψ0 =
a+ 1

a
and φ0 = −h− 1

a
, (A5)

and

ζ =
a− 1

a
, η =

h

a
and θ = 1 +

h− 1

a
. (A6)

As an example, for a = 0.8 and h = 0.2, we have ζ =
−0.25, η = 0.25, and θ = 0.
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FIG. 7. Scaling of nodal resilience and influence with the degree under a large impulsive perturbation. The values of the
relative perturbation magnitude are α = 0.4, α = 0.7 and α = 1. (a-c) Ri versus ki for E, R, and P types of dynamics,
respectively. (d-f) Ii versus ki for P, E, and R types of dynamics, respectively. (g-i) Zi versus ki for E, P, and R types of
dynamics, respectively. The scaling is algebraic.

Appendix B: Effects of perturbation magnitude, network
clustering coefficient, degree correlation and degree
heterogeneity on scaling

1. Effect of perturbation magnitude

In our theoretical derivation of the nodal resilience
and influence scaling, small perturbations are assumed:
α = ∆xm/xm ≪ 1, so that the approximation of lin-
earized dynamics about the stable steady state is ap-
plicable. The simulation results in the main text are
obtained with α = 0.1. To find out if the three alge-
braic scaling relations hold for large perturbations, we
set α = 0.4, α = 0.7 and α = 1. The simulation re-
sults are shown in Fig. 7. It can be seen that, in spite of
the large perturbation, the nodal resilience and influence
still follow the three classes of algebraic scaling.

2. Effect of network clustering coefficient

The configuration model for complex networks stipu-
lates that the clustering coefficient tends to zero if the
network is sparse and large. However, empirical net-
works tend to have a nonzero clustering coefficient45

(e.g., 0.1). To address the effects of the clustering coeffi-
cient C on the nodal resilience and influence scaling, we
generate networks with C = 0.15 and calculate the scal-
ing relations for different types of dynamical processes.
The simulation results are shown in Fig. 8, revealing the
emergence of the three classes of algebraic scaling.

3. Effect of degree correlation

We generate networks with three different values of
the degree-degree correlation: r = −0.2, 0, and 0.2.
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FIG. 8. Impact of network clustering coefficient on nodal resilience and influence scaling. The cluster coefficient is set to be
C = 0.15. (a-c) Ri versus ki for E, R, and P types of dynamics. (d-f) Ii versus ki for P, E, and R types of dynamics. (g-i)
Zi versus ki for E, P, and R types of dynamics. The scaling remains algebraic.

The resulting scaling relations are shown in Fig. 9. It
can be seen that the correlation has little effect on the
emergence of the three classes of algebraic scaling for the
nodal resilience and influence.

4. Effect of degree heterogeneity

We generate networks with three different values of
the degree heterogeneity46–49: ν = 2.1, 3, and 4. The
resulting scaling relations are shown in Fig. 10. It can be
seen that the degree heterogeneity has little effect on the
algebraic scaling for the nodal resilience and influence.
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FIG. 9. Impact of degree-degree correlation on nodal resilience and influence scaling. Three values of the correlation are used:
r = −0.2, 0, and 0.2. (a-c) Ri versus ki for E, R, and P types of dynamics. (d-f) Ii versus ki for P, E, and R types of
dynamics. (g-i) Zi versus ki for E, P and R types of dynamics. The scaling remains algebraic.
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FIG. 10. Impact of degree heterogeneity on nodal resilience and influence scaling. Three values of the heterogeneity are used:
ν = 2.1, 3, and 4. (a-c) Ri versus ki for E, R, and P types of dynamics. (d-f) Ii versus ki for P, E, and R types of dynamics.
(g-i) Zi versus ki for E, P and R types of dynamics. The scaling remains to be algebraic.
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