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Evolutionary games model a common type of interactions in a variety of complex, networked, natural

systems and social systems. Given such a system, uncovering the interacting structure of the underlying

network is key to understanding its collective dynamics. Based on compressive sensing, we develop an

efficient approach to reconstructing complex networks under game-based interactions from small amounts

of data. The method is validated by using a variety of model networks and by conducting an actual

experiment to reconstruct a social network. While most existing methods in this area assume oscillator

networks that generate continuous-time data, our work successfully demonstrates that the extremely

challenging problem of reverse engineering of complex networks can also be addressed even when the

underlying dynamical processes are governed by realistic, evolutionary-game type of interactions in

discrete time.
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In many fields of science and engineering, one encoun-
ters the situation where the system of interest is composed
of networked elements, called nodes, but the pattern of the
node-to-node interaction or the network topology is totally
unknown. It is desirable and of significant interest to un-
cover the network topology based on time series of certain
observable quantities extracted from experiments or obser-
vations. Examples of potential applications abound: recon-
struction of gene-regulatory networks based on expression
data in systems biology [1–4], extraction of various func-
tional networks in the human brain from activation data in
neuroscience [5–8], and uncovering organizational net-
works based on discrete data or information in social
science and homeland defense. In the past few years, the
problem of network reconstruction has received growing
attention [9–16]. Most existing works were based, how-
ever, on networks of oscillators whose dynamics are
mathematically described by coupled, continuous differ-
ential equations. In particular, either some knowledge
about the dynamical evolution of the underlying networked
system is needed [9–11] or long, oscillatory signals in
continuous time are required [12–16]. The advantage of
availing oneself of continuous-time data is lost for net-
works in social, economic, and even biological sciences
where node-to-node interactions are governed by
evolutionary-game types of dynamics [17–21]. In addition
to being discrete, the available data may be sporadic and

the amount may be small. To our knowledge, the problem
of reconstructing the full topology of a network based on
discrete and ‘‘rare’’ data remains outstanding [22].
In this paper, we articulate a general method of address-

ing the problem of how to uncover network topology using
evolutionary-game data based on compressive sensing, a
recently developed paradigm for sparse-signal reconstruc-
tion [23–28] with broad applications ranging from image
compression/reconstruction to the analysis of large-scale
sensor-network data. Although convex optimization, of
which compressive sensing is one type, has been used to
reconstruct coupled-oscillator networks [9–11], we shall
show the advantages of compressive sensing, such as its
small data requirement, in solving the general inverse
problem of network reconstruction based on either con-
tinuous [29,30] or discrete data. We propose a mathemati-
cal framework to convert the problem of uncovering
network topology into that of sparse-signal reconstruction.
In a typical game, agents use different strategies in order to
gain the maximum payoff. Generally, the strategies can be
divided into two types: cooperation and defection. We will
show that, even when the available information about each
agent’s strategy and payoff is limited, our compressive-
sensing-based method can yield precise knowledge of the
node-to-node interaction pattern in a highly efficient man-
ner. We validate our method by (1) extensive numerical
computations using model complex networks and evolu-
tionary games, and (2) an actual social experiment in
which participants forming a friendship network play a
typical game to generate short sequences of strategy and
payoff data. The high prediction accuracy achieved and the
unique requirement of an extremely small data set make
our method particularly suitable for potential applications
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that reveal ‘‘hidden’’ networks embedded in various social,
economic, and biological systems.

In an evolutionary game, at any time, a player can
choose one of two strategies (S): cooperation (C) or de-
fection (D), which can be expressed as SðCÞ ¼ ð1; 0ÞT and
SðDÞ ¼ ð0; 1ÞT , where T stands for ‘‘transpose.’’ The pay-
offs of the two players in a game are determined by their
strategies and the payoff matrix of the specific game. For
example, for the prisoner’s-dilemma game (PDG) [31] and
the snowdrift game (SG) [32], the payoff matrices are

P PDG ¼ 1 0
b 0

� �
or PSG ¼ 1 1� r

1þ r 0

� �
; (1)

where b (1< b< 2) and r (0< r < 1) are parameters
characterizing the temptation to defect. When a defector
encounters a cooperator, the defector gains payoff b in the
PDG and payoff 1þ r in the SG, but the cooperator gains
the ‘‘sucker’’ payoff 0 in the PDG and payoff 1� r in the
SG. At each time step, all agents play the game with their
neighbors and gain payoffs. For agent i, the payoff is

Gi ¼
X
j2�i

ST
i PSj; (2)

where Si and Sj denote the strategies of agents i and j at the

time and the sum is over the neighbor-connection set �i of
i. After obtaining its payoff, an agent updates its strategy
according to its own and its neighbors’ payoffs, attempting
to maximize its payoff at the next round. Possible mathe-
matical rules to capture an agent’s decision-making
process include the best-take-over rule [31], the Fermi
equation [33], and payoff-difference-determined updating
probability [34]. To be concrete, we use the Fermi rule in
our simulations of evolutionary-game dynamics and gen-
erate time series accordingly, which is defined as follows.
After a player i randomly chooses a neighbor j, i adopts j’s
status Sj with the probability [33]

WðSi  SjÞ ¼ 1

1þ exp½ðGi �GjÞ=�� ; (3)

where � characterizes the stochastic uncertainties in the
game dynamics. For example, � ¼ 0 corresponds to abso-
lute rationality where the probability is 0 if Gj < Gi and 1

if Gi < Gj, and �! 1 corresponds to completely random

decision making. The probability W thus characterizes the
bounded rationality of agents in society and the natural
selection based on relative fitness in evolution.

The goal of compressive sensing is to reconstruct a
vector X 2 RN from linear measurements Y about X in
the form

Y ¼ � �X; (4)

where Y 2 RM and � is an M� N matrix. The striking
feature of compressive sensing is that the number of mea-
surements is much less than the number of components of
the unknown vector, i.e.,M� N. Accurate reconstruction

can be achieved by solving the following convex-
optimization problem:

minkXk1 subject to Y ¼ � �X; (5)

where kXk1 ¼
P

N
i¼1 jXij is the L1 norm of vector X.

Solutions to the convex-optimization problem are available
[23–28]. Convex optimization based on L1 norm has been
used for solving network-construction problems in oscil-
lator networks [9–11]. Here, we shall show that the
compressive-sensing approach provides a solution to
network-construction problems (other than oscillator net-
works) based on the small amount of data from evolu-
tionary games.
The key to solving the network-reconstruction problem

lies in the relationship between the agents’ payoffs and
strategies. The interactions among agents in the network
can be characterized by anN � N adjacency matrixAwith
elements aij ¼ 1 if agents i and j are connected, and aij ¼
0 otherwise. The payoff of agent x can be expressed by

GxðtÞ¼ax1S
T
x ðtÞ �P �S1ðtÞþ���þax;x�1ST

x ðtÞ �P �Sx�1ðtÞ
þax;xþ1ST

x ðtÞ �P �Sxþ1ðtÞþ���þaxNST
x ðtÞ �P �SNðtÞ;

(6)

where axi (i ¼ 1; � � � ; x� 1; xþ 1; � � � ; N) represents a
possible connection between agent x and its neighbor i;
axiS

T
x ðtÞ � P � SiðtÞ (i ¼ 1; � � � ; x� 1; xþ 1; � � � ; N) stands

for the possible payoff of agent x from the game with i
(if there is no connection between x and i, the payoff is zero
because axi ¼ 0); and t ¼ 1; � � � ; m is the number of
rounds that all agents play the game with their neighbors.
This relation provides us with a base to construct the vector
Gx and matrix �x in a proper compressive-sensing frame-
work to obtain a solution of the neighbor-connection vector
Ax of agent x. In particular, we write �x ¼
Fx1ðt1Þ � � � Fx;x�1ðt1Þ Fx;xþ1ðt1Þ � � � FxNðt1Þ
Fx1ðt2Þ � � � Fx;x�1ðt2Þ Fx;xþ1ðt2Þ � � � FxNðt2Þ

..

. ..
. ..

. ..
. ..

. ..
.

Fx1ðtmÞ � � � Fx;x�1ðtmÞ Fx;xþ1ðtmÞ � � � FxNðtmÞ

0
BBBB@

1
CCCCA;

G x ¼ ðGxðt1Þ; Gxðt2Þ; � � � ; GxðtmÞÞT; (7)

and

A x ¼ ðax1; � � � ; ax;x�1; ax;xþ1; � � � ; axNÞT; (8)

where FxyðtiÞ ¼ ST
x ðtiÞ � P � SyðtiÞ. The vectorsGx,Ax, and

matrix �x satisfy

G x ¼ �x �Ax: (9)

The sparsity of Ax makes the compressive-sensing frame-
work applicable. The vector Gx can be obtained directly
from the payoff data. Since ST

x ðtiÞ and SyðtiÞ in FxyðtiÞ
come from data and P is known, the matrix �x can be
calculated from the strategy data. The vector Ax can thus
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be predicted based solely on the time series. Note that the
self-interaction term axx is not included in the vector Ax

and that the self-interaction column ½Fxxðt1Þ;��� ;FxxðtmÞ�T
is excluded from the matrix �x. In a similar fashion, the
neighbor-connection vectors of all other agents can be
predicted, yielding the network adjacency matrix A ¼
ðA1;A2; � � � ;ANÞ.

We first use model complex networks to demonstrate our
method by implementing PDG and SG on three types of
complex networks: random [35], small-world [36], and
scale-free [37]. Time series of strategies and payoffs are
recorded during the system’s evolution toward the steady
state; they are used for uncovering the topology of the
interaction network. To quantify the performance of our
method in terms of the amount of required measurements
for different game types and network structures, we intro-
duce the success rates of existent links (SREL) and non-
existent links (SRNL). If the predicted value of an element
of the adjacency matrix A is close to 1, the corresponding
link is deemed to exist. If the value is close to zero, the
prediction is that there is no link. In practice, we assign a
small threshold, e.g., 0.1, so that the range of existent links
is 1� 0:1 and the range of nonexistent links is 0� 0:1.
Any value outside the two intervals is regarded as a failure
of prediction. For a single player, SREL is defined as the
ratio of the number of successfully predicted neighbor-
connection links to the number of actual neighbors, and
SRNL is similarly defined. We then average over all nodes

to obtain the values of SREL and SRNL for the entire
network. The reason for treating the success rates for
existent and nonexistent links separately lies in the sparsity
of the underlying complex network, where the number of
nonexistent links is usually much larger than the number of
existent links. The choice of the threshold does not affect
the values of the success rates, insofar as it is not too close
to 1, nor too close to zero.
The success rates of prediction for two types of games

and three types of network topologies are shown in Fig. 1.
The length of the time series is represented by the number
of measurements collected during the temporal evolution
normalized by the number N of agents; e.g., a value of 1
means that the number of used measurements equals N.
For all combinations of game dynamics and network top-
ologies examined, a perfect success rate can be achieved
with an extremely small amount of data. For example, for
random and small-world networks, the length of data re-
quired for achieving a 100% success rate is between 0.3
and 0.4. This value is slightly larger (about 0.5) for scale-
free networks, due to the presence of hubs whose connec-
tions are much denser than those of most nodes, although
their neighbor-connection vectors are still sparse. Figure 1
thus demonstrates that our method is both accurate and
efficient. The requirement of an exceptionally small
amount of data is particularly important for situations
where only rare information is available. From this
standpoint, evolutionary games are suitable to simulate

FIG. 1. Success rates of inferring three types of networks: random, small-world and scale-free, with PDG and SG dynamics. The
network size N is 100. Each data point is obtained by averaging over 10 network realizations. For each realization, measurements are
randomly picked from a time series of temporary evolution. The error bars denote the standard deviations. The payoff parameters for
the PDG and the SG are b ¼ 1:2 and r ¼ 0:7, respectively. We have also systematically tested other values of b and r and obtained
similar success rates. The average node degrees of all used networks are fixed to 6 and the noise parameter � ¼ 0:1.
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such situations as meaningful data can be collected only
during the transient phase before the system reaches its
steady state, and game dynamics are typically fast to
converge so that the transients are short. In addition, the
robustness of our method has been tested in situations
where the time series are contaminated by noise. For
example, we have studied the case where random noise
of amplitude up to 30%b (where b is the parameter char-
acterizing temptation to defect) is added to the payoffs of
PDG. When the amount of used data exceeds 0.4, the
success rate approaches 100% for random networks.
Similar performance has been achieved for small-world
and scale-free networks. The immunity to random noise
seen in our method is not surprising, as compressive sens-
ing represents an optimization scheme that is fundamen-
tally resilient to noise. In contrast, another type of noise,
noise � in the strategy-updating process, plays a positive
role in network reconstruction because this kind of noise
can increase the relaxation time toward one of the absorb-
ing states (all C or all D), thereby providing more infor-
mation for successful reconstruction.

To measure the efficiency of our method in reconstruct-
ing network structure with respect to different network
sizes N, we systematically investigate the dependence of
the minimum required data for a successful reconstruction
onN. Without loss of generality, we define the threshold Td

(minimum amount) of data required for accurate recon-
struction when the success rates of SREL and SRNL reach
99% in Fig. 1. As shown in Fig. 2, as the network size
increases, a relatively less amount of data is required to
precisely identify the links in the network. The reason is
that, for a network with complex topology, as its size is
increased, the sparsity condition can be satisfied more
readily, rendering compressive sensing more efficient.
We have also examined other types of networks, such as
random and small-world networks. The results are quali-
tatively the same as that for the scale-free networks. This
observation suggests that our method is particularly effi-
cient for large and sparse networks based on rare measur-
able information, and this efficiency is facilitated by the
characteristics of the compressive-sensing approach.

Our method can be generalized straightforwardly to
weighted networks with inhomogeneous node-to-node in-
teractions. Using weights to characterize various interac-
tion strengths, we define the weighted adjacency matrix w
as

wij ¼
�
w0 > 1; if i connects to j;

0; otherwise:
(10)

In the context of evolutionary games onnetworks, theweight
wij characterizes the situation of aggregate investment. In

particular, for both players,more investments in general will
lead to more payoffs. Given the link weights, the weighted
payoff Gw

i of an arbitrary individual is given by

Gw
i ¼

X
j2�i

wijS
T
i � P � Sj; (11)

where �i denotes the neighbor set of i. Under evolutionary-
game dynamics, the weighted-network structure is taken
into account by the weighted payoff Gw

i . To uncover such
a network from data, we need the weighted payoff vector
Gw

x , matrix �x, and weighted neighbor-connection vector
Wx for an arbitrary individual x. The vectorsG

w
x andWx are

given by

Gw
x ¼ ðGw

x ðt1Þ; Gw
x ðt2Þ; � � � ; Gw

x ðtmÞÞT;
Wx ¼ ðwx1; � � � ; wx;x�1; wx;xþ1; � � � ; wxNÞT:

(12)

Similar to unweighted networks, we have

G w
x ¼ �x �Wx; (13)

where Wx can be predicted from the strategy and payoff
data. The prediction accuracy can be conveniently charac-
terized by various prediction errors, which are defined sepa-
rately for link weights and nonexistent links with zero
weight. In particular, the relative error of a link weight is
defined as the ratio of the absolute difference between the
predicted weight and the true weight to the true weight. The
average error over all link weights is the prediction errorEw.
However, a relative error for a zero-weight (nonexistent) link
cannot be defined, so we use the absolute error Ez. Figure 3
shows the prediction errors for PDG dynamics on a scale-
free network with random link weights chosen uniformly
from the interval [1.0,6.0]. We observe that the prediction
errors decrease fast as the number of measurements is
increased. As the relative data size exceeds about 0.4, the
two types of prediction errors approach essentially zero,
indicating that all link weights have been successfully pre-
dicted without failure and redundancy, despite that the link
weights are random. We have also examined random and

FIG. 2. Threshold data Td of SREL and SRNL for a successful
reconstruction as a function of network size N for PDG and SG
on scale-free networks, where Td is defined as the amount of data
normalized by network size that enables 99% success rate. Each
data point is obtained by 10 independent realizations, and the
error bars represent standard deviations. The average node
degrees of all used networks are fixed to 6. The parameters in
the PDG and the SG are b ¼ 1:2, r ¼ 0:7, and � ¼ 0:1.
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small-world networks andobserved that, to achieve the same
level of accuracy, the requirement for data can be somewhat
relaxed as compared with scale-free networks.

We next present an example to uncover a real social
network. In the experiment, 22 participants from Arizona
State University played PDG together iteratively and, in
each round, each player was allowed to change his or her
strategies to optimize the payoff. The payoff parameter is
set (arbitrarily) to be b ¼ 1:2. The player who had the
highest normalized payoff (original payoff divided by the
number of neighbors) summed over time was the winner
and was rewarded. During the experiment, each player was
allowed to communicate only with his or her direct neigh-
bors for strategy updating. Prior to the experiment, there
was a social tie (link) between two players if they had
already been acquainted with each other; otherwise, there
was no link. Among the 22 players, two withdrew before
the experiment was completed, so they were treated
as isolated nodes. The network structure is illustrated in
Fig. 4(a). It exhibits typical features of social networks,
such as the appearance of a large density of triangles and a
core consisting of 4 players (nodes 5, 11, 13, and 16),
which is fully connected within and has more links than
other nodes in the network. The core essentially consists of
players whowere responsible for recruiting other players to
participate in the experiment. Each of the 20 players who
completed the experiment played 31 rounds of games, and
each recorded his or her own strategy and payoff at each
time, which represented the available data base for predic-
tion. The data used for each prediction run was randomly
picked from this data base. The preexisting friendship ties
among the participants tend to favor cooperation and pre-
clude the system from being trapped in the social dilemma
for a small number of rounds of games. However, for a long
run, a full-defection state may occur. In this sense, the
recorded data were taken during the transient dynamical
phase and are thus suitable for network reconstruction.
The results are shown in Fig. 4(b). We see that the social

network can be successfully uncovered, despite the
complicated decision-making process of each individual
during the experiment. Compared to the simulation results,
a larger data set (with a relative size of about 0.6) is needed
for a perfect prediction of social ties. This can be attributed
to the relative smaller size and denser connections in the
social network than in model networks.
An interesting phenomenon is that the winner picked in

terms of the normalized payoff had only two neighbors, in
contrast to the players with the largest node degree, whose
normalized payoffs are approximately at the average level,
as shown in Fig. 4(c). In addition, the payoffs of players
with smaller node degrees are highly nonuniform, while
those with higher node degrees show a smaller difference.
This suggests that players with high degree may not act as
leaders due to their low average normalized payoffs. This
experimental finding is in striking agreement with numeri-
cal predictions in the literature about the relationship be-
tween individuals’ normalized payoffs and their node
degrees [38–40]. We also observe from experimental data
that a typical player with a large number of neighbors
failed to stimulate the neighbors to follow his or her

FIG. 3. Prediction errors Ew in link weights and Ez in non-
existent links for PDG on weighted scale-free networks. The
network size is 100, and the weights follow a uniform distribu-
tion, ranging from 1.0 to 6.0. Each value of the prediction error is
obtained using 10 independent network realizations. Other pa-
rameters are the same as for Fig. 1.

(a)

(b)

Data Number of neighbors
S

uc
ce

ss
 r

at
e

(c)

FIG. 4. (a) Structure of the experimental social network.
(b) Success rates of uncovering the network topology and
(c) normalized payoff of each player as a function of node
degrees. The sizes of the red nodes in (a) denote their node
degrees, and the two light gray nodes (for players who did not
complete the experiment) are isolated without any interactions
with other nodes. The 10 independent realizations used in
calculating the average success rates were randomly chosen
from the database of 31 rounds of games.
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strategies. This observation suggests that hubs may
not be as influential as expected in social networks.
However, this finding should not be interpreted as a coun-
terexample to the leader’s role in evolutionary games
[34,41], since the network based on friendship may violate
the absolute selfishness assumption of players who tend to
be reciprocal with each other.

In summary, we proposed a general method based on
compressive sensing to uncover interaction networks based
on evolutionary-game data. The method was validated for
complex networks of different topologies and a real social
network. For all cases considered, as the number of data
points exceeds a low critical value depending on the spar-
sity of the underlying network, the prediction errors ap-
proach zero rapidly, without or with noise in the data. To
our knowledge, no previous method can match our method
in terms of the accuracy and efficiency when only a small
set of discrete data is available.

Our method, besides being fully applicable to complex
networks governed by evolutionary-game-type interac-
tions, can be applied in other contexts where the dynamical
processes are discrete in time and the amount of available
data is small. For example, inferring gene-regulatory net-
works from sparse experimental data is a problem of
paramount importance in systems biology. For such an
application, Eq. (6) should be replaced by the Hill equa-
tion, which models generic interactions among genes. In an
expansion using base functions specifically suited for gene-
regulatory interactions, a compressive-sensing framework,
mathematically represented by Eq. (4), may be established.
The underlying reverse-engineering problem can then be
solved. A challenge that must be overcome is to represent
the Hill function by an appropriate mathematical expan-
sion so that the form of compressive sensing can be met.
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