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The ever-increasing complexity of modern power grids makes them vulnerable to cyber and/or physical
attacks. To protect them, accurate attack detection is essential. A challenging scenario is that a localized
attack has occurred on a specific transmission line but only a small number of transmission lines elsewhere
can be monitored. That is, full state observation of the whole power grid is not feasible, so attack detection
and state estimation need to be done with only limited, partial state observations. We articulate a machine-
learning framework to address this problem, where the necessity to deal with sequential time-series data
with dynamical memories and to avoid a vanishing gradient has led us to choose the long short-term
memory (LSTM) architecture. Leveraging the inherent capabilities of LSTM to handle sequential data
and capture temporal dependencies, we demonstrate, using three benchmark power-grid networks, that
the complete dynamical state of the whole power grid can be faithfully reconstructed and the attack can
be accurately localized from limited, partial state observations even in the presence of noise. The per-
formance improves as more observations become available. Further justification for using the LSTM is
provided by our comparing its performance with that of alternative machine-learning architectures such as
feedforward neural networks and random forest. Despite the gigantic existing literature on applications of
LSTM to power grids, to our knowledge, the problem of locating an attack and estimating the state from
limited observations had not been addressed before our work. The method developed can potentially be
generalized to broad complex cyber-physical systems.
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I. INTRODUCTION

In complex physical systems consisting of many inter-
connected components, localized disturbances disrupting
or even disabling the system functioning such as random
perturbations or intentional attacks are expected to occur
from time to time. An example is the modern power grids,
a class of cyber-physical systems that contain a physi-
cal component with transformers and generators as well
as a cyber component with sensors, control systems, and
communication networks [1,2]. In a power grid, random
disturbances can occur but they are typically local, so are
intentional attacks that often target some particular trans-
mission lines or generating stations. Because of the scale
of the system, a full state observation is often not feasible
because it is practically impossible to observe or monitor
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all the dynamical variables. What is possible is limited,
often quite limited, partial state observations. When a ran-
dom disturbance or an attack occurs at a location or on
a part of the system that does not contain any dynamical
variables under direct observation, how can the distur-
bance or attack be accurately detected and located from
partial state observations of a small number of dynamical
variables elsewhere?

The problem of detecting and locating the source of dis-
turbance based on partial state observations elsewhere is
challenging, even when the governing equations of the sys-
tem are available. Suppose the system is described by a
set of nonlinear differential equations of the form dX/dt =
F(X̄, xD, xO), where X is the full state vector, xD is the
set of disturbed variables, xO is the set of variables under
observation, and X̄ denotes the set of variables in X exclud-
ing xD and xO. We assume that the vectors xD and xO are
distinct and do not overlap with each other, and that their
dimensions are much smaller than that of X, as the dis-
turbance is assumed to be localized and the observation is
partial and limited. The problem of locating xD from par-
tial state observations can be stated as follows. Suppose
a change in xO has been observed: xO → xO + �xO. Can
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xD be inferred from �xO? If the vector field F(X̄, xD, xO)

is nonlinear, this is, in general, not possible in a traditional
sense. One may attempt to build up a disturbance-of-attack
“library” that lists all possible �xO when xD is disturbed,
but this is not feasible either, especially when the system
is large or high-dimensional. In real-world applications,
the governing equations are usually not available. In this
case, inferring xD from �xO needs to be done in a fully
data-driven manner: on the basis of only on the time series
xO, how can xD be inferred? To our knowledge, this is a
challenging problem with no conventional solution.

In recent years, data-driven approaches to reconstruct-
ing the unknown topology of complex networks have been
developed [3–10]. However, the problem to be addressed
in this paper is not reconstructing complex-network topol-
ogy, but rather, is detecting and locating attacks on power-
grid networks using limited partial state observations. Here
we present a machine learning–based approach to detect-
ing and locating the source of disturbance or attack as well
as state estimation from partial state observations. A basic
question is what neural-network architecture is suitable
for this problem. Our choice is long short-term memory
(LSTM) [11] neural networks, a class of recurrent neu-
ral networks (RNNs) [12–14]. There are two reasons for
this choice. First, we assume that observation of some
dynamical variables of the physical system of interest,
e.g., a power grid, will generate sequential time-series
data. RNNs are fundamentally designed to handle such
data. Differing from feedforward neural networks (FNNs),
RNNs have loops in their architecture that allow informa-
tion to be passed from one step in the sequence to the
next, allowing them to capture the temporal dependen-
cies in the data. This virtue makes RNNs well suited for
tasks such as speech recognition [15,16], natural language
processing [17–19], time-series forecasting [20–29], and
signal processing and filtering [30–32]. Second, a common
difficulty with RNNs is vanishing gradients. When this
occurs, the network can no longer learn the time depen-
dencies in the data, presenting a difficulty for our problem
of detecting and locating disturbances. The requirement is
then that the neural-network architecture maintain its abil-
ity to capture the time dependencies in time. LSTM neural
networks are designed to mitigate the issue of vanishing
gradients. This is achieved by a complex cell structure
that allows the neural networks to selectively forget or
remember previous inputs, allowing them to capture the
long-term dependencies without encountering the problem
of vanishing gradients. Overall, LSTMs can be particu-
larly effective in capturing the long-term dependencies in
the network data, allowing them to detect subtle changes
in the network behavior that may be indicative of a dis-
turbance or an attack. We emphasize that the aim of this
work is the development of a machine-learning framework
for detecting attacks and estimating states from partial

observations, rather than outperforming the state-of-the-
art machine-learning methods for tasks such as regression,
classification, and network reconstruction.

To describe our work in a concrete setting, we focus on
a major class of cyber-physical systems—power grids. In
the modern world, the ability to better monitor and control
the power generating, transmission, and distribution sys-
tems is important. To prevent failures, especially cascading
grid failures caused by attacks [33], continuous tracking of
the physical health of the grid components such as trans-
formers [34,35] and energy usage [36] is necessary. Power
grids are vulnerable to both cyber and physical attacks. An
example of cyber attacks on the power grid is malicious
actors attempting to penetrate and disrupt the digital sys-
tems that control the flow of electricity [37], which can
be done through various means, such as phishing [38,39],
malware [40,41], or denial-of-service attacks [42–44]. (A
known incident was the 2015 Ukrainian power grid attack,
in which hackers were able to infiltrate the digital sys-
tems of several energy companies and shut down power to
225 000 people [41,45,46].) Physical attacks on the power
grid involve the destruction or damage of power lines,
transformers, and substations [47,48]. (A previous incident
of physical attacks was the 2013 Metcalf sniper attack,
where unknown assailants damaged 17 transformers at
a California substation, causing $15 million in damage
and nearly resulting in a power outage [49–51].) With
the rise of digital technology and the increasing intercon-
nectedness of the power grids, the threat of cyber and
physical attacks has been increasing, making the problem
of detecting and locating attacks of critical importance.

In recent years, there has been growing interest in using
machine learning to improve attack detection for power
grids [52,53], which enables large volumes of data from
physical and digital sources to be analyzed to identify pat-
terns and anomalies that are indicative of an attack. For
example, power usage data can be analyzed to identify
unusual spikes or drops in demand that may be due to
a cyber attack or physical disruption, and network traf-
fic data can be monitored to identify unusual behavior
patterns, such as a sudden influx of traffic from some
unexpected sources [54–56]. Machine learning can also be
used to automate responses to potential attacks, such as
isolating compromised systems or shutting down critical
infrastructure to prevent damage. In addition, machine-
learning tools can be used to predict the occurrence of
faults, thereby helping utility companies to address prob-
lems such as inefficient electricity inspection and irregular
power consumption [57,58]. Of particular relevance to
our work is the use of RNNs and LSTMs in applications
such as power demand forecasting, anomaly detection, and
attack detection. For example, RNNs and LSTMs were
used to analyze historical power usage data and forecast
future load demand, allowing utility companies to better
manage their resources and avoid blackouts [59–61]. The
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LSTM-based frameworks can be used to detect anoma-
lies in power usage data that are indicative of a fault or
an attack [62–65]. For attack detection, RNNs and LSTMs
were also used to analyze network traffic and system logs
for signs of cyber attacks on the power grid, based on iden-
tifying patterns such as unusual data transfers or attempts
to access restricted areas of the network [66].

Furthermore, previous studies exploited machine learn-
ing to detect the exact locations of attacks on power grids.
For instance, convolutional neural network–based frame-
works were proposed for localizing false data injection
attacks [67–70]. Alternative machine-learning frameworks
such as graph neural networks [71] and traditional support
vector machines and random forest [72] with demonstrated
performance of localizing attacks were also investigated.
In these studies, full state observation was required. Our
work relaxes this constraint by demonstrating that accurate
attack detection and localization can be achieved even with
quite limited state observation, i.e., partial state observa-
tion. This brings machine learning–based attack detection
and localization a step closer to real-world implementa-
tions.

We train the LSTM networks on historical power-grid
data so as to learn the underlying dynamical patterns and
trends in the data. This allows us to reconstruct the full
state from partial observations and identify the source of
disturbances. We perform a robustness analysis by eval-
uating the performance under different levels of partial
observations, demonstrating the ability to detect attacks
accurately even when the observed data are quite lim-
ited. This is particularly important as power-grid data
may be incomplete for various reasons, including techni-
cal limitations and deliberate efforts by attackers to hide
their activities. Three benchmark systems of distinct scales
are used in our study: one RTE 14-bus system and two
IEEE 118-bus systems. The results suggest that our LSTM
framework is capable of accurately detecting and locat-
ing attacks, with the potential to enhance the security and
resilience of power grids against attacks.

In Sec. II, we describe in detail our LSTM method for
detecting and locating disturbances. As our benchmark
systems are power grids, a real power grid simulation plat-
form is needed. We use the Grid2Op (“grid to operate”)
platform, which is also described in Sec. II. Section III
presents the simulation scenarios, data preprocessíng, and
detection results. A discussion and future perspectives are
provided in Sec. IV.

II. METHODS

The working principle of our machine learning–based
attack detector is outlined as follows. Consider an attack on
a power grid, as indicated by the dashed black line (line 13)
in Fig. 1. The goal is to ascertain the presence of an attack
and identify the specific line attacked by monitoring the

capacity indicator ρ of a few randomly selected lines, e.g.,
lines 3, 5, 15, and 17, as indicated by the light blue–shaded
line segments, where ρ is defined as the observed current
flow divided by the thermal limit of the line. The input to
the neural-network architecture includes current and his-
torical information from these lines. The goal of training
is for the neural network to produce the attack informa-
tion. In addition to attack detection, the machine can be
trained to perform full state estimation of the power-grid
system based on partial observation by generating, for all
the transmission lines in the power grid, the capacity indi-
cator ρ or the power flow indicator por (the active power
flow at the origin end of each power line).

To illustrate our machine-learning framework, we use
three benchmark power grids: “l2rpn_case14_sandbox,”
“l2rpn_wcci_2022,” and “l2rpn_idf_2023.” The first com-
prises 14 substations and 20 transmission lines [shown in
Fig. 1(a)], while the second and third have 118 substations
and 186 lines (described in Appendix A). We focus our
analysis on the first in the main text, and present the results
for the other two in Appendixes A, D, and E. Figure 1(a)
presents a snapshot of an attack. Partial state observations
consist of the monitoring of the current flows in four spe-
cific lines (lines 3, 5, 15, and 17), which are randomly
selected. Figure 1(b) exemplifies an input configuration for
the machine-learning framework, where each power line
has a sequence length of 5, encompassing the current and
historical observations. The machine-learning framework
combines LSTM with fully connected neural networks, as
shown in Fig. 1(c). Assume that an attack has occurred on
line 13, which is not a line under observation. The task of
attack detection is illustrated in Fig. 1(d). In addition, the
framework can also perform full state estimation, as indi-
cated in Fig. 1(e). It is worth noting that attack detection is
essentially a classification-type task, while state estimation
is a regression-type task. By modification of the activa-
tion function and the number of nodes in the last layer of
the LSTM architecture as well as the use of different loss
functions during training, the framework can perform both
classification and regression tasks.

To provide a comprehensive picture of our articulated
machine-learning framework for detecting attacks on a
power grid, we present detailed descriptions of the fol-
lowing three components: (1) Grid2Op, a tool used for
simulating realistic power-grid dynamics; (2) the proposed
machine-learning architecture, and (3) the data-analysis
method.

A. Power-grid simulation

Figure 1(a) displays a power grid, a complex sys-
tem consisting of various interconnected components,
including power transmission lines, loads (e.g., cities or
industries), and generators (e.g., power plants), which
are represented by lines, yellow triangles, and green
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(a)

(b) (c) (d)

(e)

or

power line

FIG. 1. Working principle of the proposed machine learning-based attack-detection and state-estimation framework. (a) A snapshot
of a benchmark power grid. Partial state observations consist of monitoring the current flows in four specific transmission lines: 3, 5,
15, and 17, as indicated by the light blue–shaded line segments. An attack has occurred on line 13. The objective is to detect the attack
and identify the specific line attacked on the basis solely of the partial state observations. (b) The input configuration of the machine
learning–based attack detector, where the input from each transmission line under observation consists of the current capacity ρ at
the current time step and the previous four time steps. (c) The structure of the machine-learning framework, which combines LSTM
layers and fully connected neural networks. By adjustment of the activation function or the target variables, the framework can be
adapted to the tasks of attack detection and full state estimation, as demonstrated in (d),(e), respectively. (d) An example of attack
detection, where the machine-learning framework accurately detects the occurrence and location of the attack. (e) An example of state
estimation, where the framework outputs the full scope of the current capacity ρ and the power flow indicator of the entire power grid.

pentagons, respectively. Substations serving as the connec-
tion points between these objects are represented by blue
circles. Each substation features several switches (depicted
as red balls) that enable the interconnections.

Grid2Op is a state-of-the-art platform [73] for sim-
ulating the power-grid dynamics. It is an open-source,
PYTHON-based platform designed to simulate and opti-
mize power-grid operations, and offers capabilities such
as simulating attacks on a power grid, modifying gener-
ator set points, performing maintenance operations, and
addressing security issues by modifying the power grid’s

topology. Grid2Op is built upon an object-oriented frame-
work, which encapsulates the underlying dynamics and
constraints of the power grid within distinct modules.
In particular, Grid2Op comprises four primary modules:
Environment, Agent, Runner, and Backend. The Envi-
ronment module encapsulates the state and dynamics
of the power grid, adhering to the OpenAI Gym [74]
interface to ensure compatibility with a wide range of
reinforcement-learning algorithms. It provides extensive
customization options, enabling key parameters such as
the grid topology, load profiles, generation profiles, and
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contingency scenarios to be specified. The Agent mod-
ule includes the decision-making process used by the
reinforcement-learning algorithm. Grid2Op offers several
preimplemented agents, such as DoNothingAgent, Ran-
domAgent, and RecoPowerlineAgent. In our work, we
choose RecoPowerlineAgent, which enables power lines
to be reconnected or disconnected immediately after
an attack. The Runner module manages the interaction
between Agent and Environment, overseeing the execu-
tion of the simulation and collecting performance metrics.
Finally, the Backend module serves as the foundation for
power flow computations, ensuring the accuracy and reli-
ability of the simulation results. It also provides flexibility
to integrate alternative power-system analysis frameworks.

The Grid2Op framework is derived from the “Learning
to run a power network” (L2RPN) challenge—a series of
competitions aimed at modeling and developing realistic
power-network environments [75]. The primary objective
of the L2RPN challenge is to control the power-grid net-
work and ensure a stable electricity supply to consumers,
while avoiding blackouts. In reality, blackouts caused by
cascading failures of overloaded lines can result in power
loss for consumers and potentially lead to secondary dis-
asters in cities. During the L2RPN challenge, participat-
ing agents have access to complete information about
the power network’s state at each step, including power
line flows, electricity consumption and production at each
location, power line status, and other relevant parameters.

The focus of our work is attack detection and state esti-
mation in the realistic scenario where only partial informa-
tion about the power lines’ capacity indicators is available
with the system states including the electricity consump-
tion and production associated with each power line. To
achieve these goals, we simulate the Grid2Op framework
as follows. Each benchmark power grid contains multi-
ple “chronics”—time-series datasets simulating real-world
power-grid conditions, which include active load con-
sumption and generator voltage set points. The chronics
make it feasible to simulate real-world power-grid flows
and introduce disturbances to mimic attack scenarios.
Specifically, each chronic provides data to modify the input
parameters of the power flow over an extended period. The
length of the time-series data differs across different power
grids. In our study, the numbers of chronics for the small
and two large benchmark power grids are 1004, 1662,
and 832, respectively. Before the simulation, we randomly
divide the thousands of chronics into three sets: training,
validation, and testing, with proportions of 60%, 20%, and
20%, respectively. In the simulation, the time resolution is
set to 5 min, and the simulation continues until either the
chronics are run out or a game-over condition is triggered.
The game-over condition is reached if the total electricity
demand cannot be met, indicating that some consumption
is lost at a substation. Within the simulation environment,
both the opponent (RandomLineOpponent) and the agent

(RecoPowerlineAgent) operate. The opponent randomly
receives a budget at each time step, which it can use to
conduct attacks (disconnect power lines) for a certain num-
ber of time steps. After an attack, the opponent enters a
cooldown period, during which it cannot conduct further
attacks. In the meantime, the agent attempts to reconnect
any disconnected power lines immediately after an attack
[76]. To generate power-grid simulation data, we conduct
50 runs of each training chronics for training purposes,
and 20 runs of the validation and testing chronics, respec-
tively. We collect observations during these simulation
runs to obtain comprehensive datasets for training, validat-
ing, and evaluating our proposed machine learning–based
framework.

B. Machine-learning frameworks

We briefly describe the three machine-learning meth-
ods used in our study, while leaving certain details to
Appendix B.

1. Long short-term memory

LSTM is a specialized type of RNN, which is effec-
tive in capturing the long-term dependencies in sequential
data. Initially introduced in 1997 [11], LSTM addresses
the challenges faced by traditional RNNs in capturing
long-range dependencies due to issues such as vanish-
ing or exploding gradients. Since then, LSTMs have
demonstrated remarkable success in time-series forecast-
ing, natural language processing, speech recognition, and
image segmentation, among other applications [77,78]. An
LSTM network consists of interconnected LSTM cells that
process the sequential input data, with each cell designed
to selectively retain or update information on the basis of
the temporal patterns in the input, as shown in Fig. 2(a).

The LSTM component learns to represent the current
and previous information, which is then passed through a
decoder. In our work, the decoder is a feedforward neural
network. Modification of the configuration of the last layer
and selection of appropriate loss functions are necessary
so that the LSTM framework is capable of dealing with
different tasks.

2. Random forest

Random forest is an ensemble learning technique for
classification and regression tasks with robustness, scala-
bility, and high predictive accuracy. It was introduced as
an extension of the decision-tree method to overcome the
limitations associated with individual decision trees, such
as overfitting and sensitivity to minor changes in training
data [79]. The random forest algorithm operates by con-
structing multiple decision trees during the training phase
and aggregating their predictions to produce the final out-
put. As illustrated in Fig. 2(b), the input of random forest
is denoted as xt. During the training phase, a total of N
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FIG. 2. Machine-learning frameworks tested in our study: (a) LSTM, (b) random forest, and (c) a feedforward neural network.

decision trees are constructed, with each tree trained on a
different bootstrap sample obtained by random sampling of
the training data with replacement.

While random forest offers advantages such as feature
importance evaluation, noise resistance, and handling of
missing data [80], it may not be suitable for all types of
problems. In our work, we observe that LSTM outper-
forms random forest in certain scenarios, primarily due to
LSTM’s ability to capture the long-range temporal depen-
dencies in sequential data. Unlike random forest, LSTM
takes into account historical information, making it more
effective in modeling complex, high-dimensional, and non-
linear relationships among the features. Particularly for
high-dimensional datasets, random forest may suffer from
overfitting or failure to converge. Overall, while random
forest is a feasible machine-learning algorithm for attack
detection and state estimate, its suitability depends on the
specific characteristics of the problem and the nature of the
data. Our results (presented below) emphasize the impor-
tance of selecting the most appropriate machine-learning

framework on the basis of the given problem’s character-
istics and data properties.

3. Feedforward neural networks

FNNs are widely used for machine-learning problems
such as classification and regression. An FNN consists of
interconnected layers of nodes, each receiving input from
the previous layer, processing the information, and passing
it forward to the subsequent layer. Figure 2(c) illustrates a
typical FNN architecture: input layers (purple nodes), out-
put layers (orange nodes), and hidden layers (blue nodes)
that learn to extract and represent essential features from
the input data. The input to the FNN is denoted as xt,
and the number of output nodes varies depending on the
specific task. The architecture in Fig. 2(c) applies to both
classification and regression tasks.

We compare the performances of the LSTM and FNN
frameworks. To ensure a fair comparison, we construct
the FNN framework with the same number of nodes and
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(a) (b)

(c) (d)

FIG. 3. Attack detection for the small power grid l2rpn_case14_sandbox. (a),(b) Attack occurrence detection—a binary classifica-
tion problem in which the machine-learning framework determines if there is an attack on the power grid. (c),(d) Attack location
detection—a multiclass classification problem in which the machine determines if an attack has occurred and, if so, identifies the
specific transmission line under attack. The degree of partial state observations (the fraction of the number of transmission lines mon-
itored), denoted as Po, is set to 0.3, so the dimension of the input vector is 20 × 0.3 = 6. The relationship between the output and two
input features ρ1 and ρ2, among the six total inputs, is displayed in (a),(c). The machine needs to find the complex nonlinear relation-
ship in the high-dimensional space to make satisfactory classifications. The confusion matrices in (b),(d) compare the true labels with
the predicted labels obtained.

layers as in the LSTM framework by replacing several
feedforward layers in the FNN with LSTM layers. Despite
the similarities in the architectures and other settings, our
experiments show that the LSTM framework consistently
outperforms the FNN framework. This superiority can
be attributed to the LSTM’s ability to capture temporal
dependencies in sequential data, whereas FNNs lack this
capability as they do not inherently model the temporal
relationships among the data points.

III. RESULTS

A. Experimental setup

Our data are from power-grid simulations on the
Grid2Op platform. In particular, to obtain sufficient
datasets for training, validation, and testing, we divide
the thousands of chronics into the respective datasets and
restart the simulations multiple times, with each simula-
tion randomly selecting a chronic The opponent in the

simulation is RandomLineOpponent, which attempts to
disconnect power lines using its allocated budgets. The
opponent’s initial budget is set to 0 and increases by 0.8 for
each step. A higher budget makes the opponent more likely
to attack. In each simulation, the attack duration and the
cooldown time, which represent the duration of each attack
and the minimum time between two attacks, respectively,
are generated independently and uniformly within the
range [1, 6]. We assume that all power lines in the grid are
susceptible to attacks and, after an attack, the power lines
are reconnected immediately by RecoPowerlineAgent.

We conduct the simulation of the machine-learning
frameworks on three computers equipped with a GeForce
RTX 4090 GPU and a 13th generation Intel Core i9-
13900KS CPU using PYTHON. The simulation param-
eters and data preprocessing are as follows. Within
a “length” (the total length of temporal evolution),
attacks may or may not occur. For the benchmark grid
l2rpn_case14_sandbox, the total lengths of the training,
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(a) (b)

(c) (d)

FIG. 4. State estimation for the small power grid l2rpn_case14_sandbox. (a),(b) Estimation of ρ: the machine-learning method
predicts the ρ values of all the power lines on the basis of partial observation of ρ. (c),(d) State estimation for por, where the machine
predicts the por values of all power lines on the basis of partial observations of ρ. In (a),(c) segment examples of the real and predicted
values are presented, while in (b),d) regression results by comparison of the true and predicted values of a specific transmission line
are shown. The degree of partial state observations Po = 0.3. The dimension of the input vector is 20 × 0.3 = 6.

validation, and testing datasets are 556 208, 76 167, and
78 251 time steps, respectively. Within time steps 311 157,
38 089, and 38 801 for training, validation, and test-
ing, respectively, the power grid is under attack. For
l2rpn_wcci_2022, the total lengths of the respective
datasets are 588 472, 97 201, and 99 660 for training,
validation, and testing, respectively. Within time steps
323 823, 51 745, and 57 366, the power grid is under attack.
For l2rpn_idf_2023, the total lengths of the respective
datasets are 686 530, 145 684, and 138 621 for training,
validation, and testing, respectively. Within time steps
386 568, 84 003, and 86 082, the power grid is under attack.
Each dataset encompasses all the necessary information,
such as whether an attack has occurred, which line was
attacked, and the capacity of each power line. We prepro-
cess the time series using min-max normalization [81] to
ensure that their amplitude falls in the unit interval. Specif-
ically, for the capacity time series xρ of a power line in the

training phase, the data are normalized as

x′
ρ = (xρ − min(xρ))/(max(xρ) − min(xρ)),

providing consistent scaling of all the data.
To demonstrate the performance of the machine-

learning frameworks, we use two widely used evaluation
metrics—the F1 score and the mean squared error (MSE,
denoted as E)—to characterize the performance of attack
detection and state estimation, respectively. The F1 score
is commonly used for classification tasks, particularly for
imbalanced datasets. It combines precision (P) and recall
(R) into a single measure, providing a balanced assess-
ment of the performance of the machine-learning frame-
work. Precision is the fraction of true positive predictions
among all positive predictions, while recall is the frac-
tion of true positive predictions among all actual positive
instances. Mathematically, precision and recall are defined
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(a) (b)

(c) (d)

FIG. 5. Performance of the LSTM-based framework under differing extent of partial state observations. (a),(b) Results from attack-
detection tasks in the small and large power grids, respectively, with the F1 score as the evaluation metric. (c),(d) Results from
state-estimation tasks in the small and large power grids, respectively, with the MSE as the evaluation metric. The box plots are
obtained from 20 experiments conducted for each value of the observation extent Po. Both sets of results indicate that as Po increases,
the performance of the LSTM-based framework improves.

as follows:

P = TP

TP + FP
, (1)

R = TP

TP + FN
, (2)

where TP represents the number of true positives, an
indication that the framework correctly predicts the pos-
itive labels, FP represents the number of false positives,
meaning that the framework incorrectly predicts the pos-
itive labels, and FN represents the number of false neg-
atives, indicating that the framework incorrectly predicts
the negative labels. The F1 score is the harmonic mean of
precision and recall as

F1 = 2 × P × R
P + R

, (3)

whose values lie in the unit interval, with a higher value
indicating better classifier performance. For regression

tasks, the MSE measures the average squared difference
between the predicted and true values, which is indica-
tive of the framework’s accuracy in predicting continu-
ous variables. Specifically, the MSE (E) is calculated as
follows:

E = 1
n

n∑

i=1

(yi − ŷi)
2, (4)

where yi and ŷi represent the true and predicted values,
respectively, and n is the number of data points. A lower
MSE value signifies better performance.

To evaluate the robustness of the machine-learning
frameworks regarding random disturbances, we introduce
Gaussian white noise to the input data during the training
phase. The measurement noise is added as follows:

x̃i = xi + ξn, (5)

where the stochastic process ξn follows a normal distri-
bution with zero mean and standard deviation σn. Unless
otherwise specified, we set σn = 0.02.
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(a) (b)

(c) (d)

FIG. 6. Robustness of the LSTM-based framework regarding noise. (a),(b) Results from attack-detection tasks for the small and
large power grids, respectively, with the F1 score as the evaluation metric. (c),(d) Results from state-estimation tasks for the small
and large power grids, respectively, with the MSE as evaluation metric. Each error bar represents the variability observed across 20
experiments. As the noise level σn increases, the performance of the LSTM framework initially remains relatively stable and then starts
to decline.

Our proposed framework combines an LSTM compo-
nent, which captures the temporal features and depen-
dencies from input sequences, with an FNN decoder that
maps these features to the desired outputs, for attack detec-
tion and state estimation. In particular, the first task aims
to detect the occurrence of an attack and identify the
specific transmission line targeted. The output layer is
adjusted accordingly, with one node and a “sigmoid” acti-
vation function to ascertain whether an attack has occurred
(binary classification), and L + 1 nodes and a “softmax”
activation function to locate the attack (multiclass classifi-
cation), where L is the number of power lines of the grid.
For the binary and multiclass classification tasks, the train-
ing loss functions are binary cross-entropy and categorical
cross-entropy [82], respectively. For the state estimation
task (a regression-type task), the objective is to reconstruct
the complete power-grid state on the basis of partial obser-
vations, where the output layer consists of L nodes with a
“linear” activation function and the training loss function
is the mean squared error. For both attack detection and
state estimation, historical information from the measure-
ments is important. By our incorporating historical data

into our LSTM framework, it can capture the temporal
dependencies and increase the accuracy for both tasks.

B. Demonstration of attack detection and state
estimation

Our machine-learning framework has two LSTM layers
followed by two feedforward layers. To prevent overfitting
and increase generalizability, the operation of Dropout is
applied to all the layers of the network with the dropout
rate 0.2. The number of nodes in the LSTM layers is set
to 128 and 64, respectively. The number of nodes in the
feedforward layers varies depending on the specific task:
16 and 1 for attack occurrence detection, 64 and L + 1 for
attack location detection, and 64 and L for state estimation.
To meet the requirements of the LSTM framework, we
reorganize the input data. In particular, we use a sequence
length of 5 to determine the number of consecutive time
steps included in the input data. This ensures that the
framework captures the temporal dependencies within a
specified time window. More specifically, at each time step
t, the input data consist of the current measurement xt and
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(a) (b)

(c) (d)

FIG. 7. Performance comparison of attack-detection tasks among three machine-learning frameworks. Results for the small [(a),(c)]
and large [(b),(d)] power grids for (a),(b) attack occurrence detection and (c),(d) attack location detection. Yellow, green and blue
lines denote the performance of the random forest, LSTM, and FNN frameworks, respectively. Each error bar is calculated from 20
experiments. The superiority of the LSTM-based framework becomes more pronounced for the large power grid.

the measurements at the previous s − 1 time steps, denoted
as {xi}t

i=t−s. The output corresponds to the target value
at time t. This process is repeated for the entire dataset,
resulting in a reorganized data structure with input-output
pairs suitable for training the LSTM-based framework.
The reorganized dataset can be represented as “[samples,
sequence length, features],” where “samples” is referred to
as the length of the dataset.

We first present representative results of attack detec-
tion for l2rpn_case14_sandbox—a relatively small power
grid. The extent of partial state observations Po denotes
the fraction of the number of transmission lines monitored
among all the lines in the power grid, which is set to 0.3.
That is, of the 20 transmission lines in this power network,
six lines are monitored continuously in time, generating
the input data for the machine-learning framework. For
attack occurrence detection, Fig. 3(a) shows the relation-
ship between the input features and the attack occurrence.
Ascertaining the attack occurrence on the basis of partial
state observations of one or two lines, e.g., ρ1 and ρ2, is dif-
ficult. When six lines are observed, the machine-learning

framework achieves high accuracy, as can be seen from
the confusion matrix in Fig. 3(b) demonstrating that when
there is no attack (label 0), the framework predicts it cor-
rectly with probability 0.99. When there is an attack, the
framework predicts it accurately with probability 0.92. For
attack location detection, overall the framework performs
well, correctly classifying most of the labels. However,
there are a few instances where the framework fails to give
the correct location of the attack. For example, when line
11 is under attack, the framework gives that this line is
not under any attack. Figure 3(c) shows the attack on dif-
ferent lines (via different colors), and the corresponding
confusion matrix is shown in Fig. 3(d).

We next present results from the regression problem
for state estimation. Figure 4 presents an example of state
estimation for the l2rpn_case14_sandbox power grid. For
Po = 0.3, the framework predicts the values of ρ and por of
all the transmission lines. Figures 4(a) and 4(c) show three
examples of the true and predicted values for ρ and por,
respectively, while Figs. 4(b) and 4(d) compare the pre-
dicted and true values for a specific line that is not under
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(a) (b)

(c) (d)

FIG. 8. Performance comparison of state estimation tasks among three machine-learning frameworks. Results for the small [(a),(c)]
and large [(b),(d)] power grids for (a),(b) state estimation for ρ and (c),(d) state estimation for por. Each error bar is from 20
experiments. Overall, the LSTM-based method outperforms the FNN and random forest frameworks.

observation, where the deviations are illustrated with dif-
ferent colors (red indicating larger deviations). The overall
MSE for this line is shown in the lower-right corner in
Figs. 4(b) and 4(d). Overall, the results demonstrate that
the machine-learning method is capable of accurate full
state estimation when 30% or more of the transmission
lines are under observation.

For the small power grid l2rpn_case14_sandbox, addi-
tional state-estimation results can be found in Appendix
C. For the two large power grids l2rpn_wcci_2022 and
l2rpn_idf_2023, the attack-detection and state-estimation
results are presented in Appendixes D and E, respec-
tively. Performances similar to those in Figs. 3 and 4 are
achieved. The performance of the LSTM under different
class weights is demonstrated in Appendix F.

C. Effect of partial state observations

The extent of partial state observations, denoted as Po,
characterizes the scope of of the information input to
the machine-learning framework. A small value of Po
corresponds to a low-dimensional input where the frame-
work can access only quite limited information about the

power grid, while a high value of Po indicates that more
comprehensive information about the power grid is input
to the machine-learning framework at each time step.
The three power grid networks l2rpn_case14_sandbox,
l2rpn_wcci_2022, and l2rpn_idf_2023 have 20, 186, and
186 power lines, respectively. If the observation is from
a single transmission line, the values of Po for the three
power grids are 0.05, 0.007, and 0.007, respectively.

To investigate the impact of the Po value on machine-
learning performance, we conducted a systematic analysis
by varying this parameter across its entire range and eval-
uating the performance for each configuration. It is useful
to note that the model needs to be retrained for different
configurations of partial observations Po. To reduce the
computational complexity and the inherent fluctuations in
the training process, we use half of the available training,
validation, and testing data segments. To obtain reliable
results, we train the framework 20 times for each value
of Po and analyze the results to assess how the value of
Po influences the overall performance of the framework.
Figure 5 shows the results from the attack-detection and
state-estimation tasks, where Figs. 5(a) and 5(c) are for
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l2rpn_case14_sandbox, and Figs. 5(b) and 5(d) are for
l2rpn_wcci_2022. The results are visualized by box plots,
which provide a compact and intuitive representation of
the data distribution. In a box plot, the rectangular box
represents the interquartile range, which contains the cen-
tral 50% of the data, with the lower and upper quartiles
forming the boundaries of the box. The median value is
indicated by a horizontal line inside the box. Whiskers
extend from the box to the minimum and maximum data
points within 1.5 times the interquartile range. Data points
outside this range are considered outliers and are plotted
individually.

Figure 5(a) presents the performance for the attack
occurrence and attack location detection tasks on the small
power grid. For both tasks, when Po is larger than approx-
imately 0.2, reasonable performance can be achieved. For
Po > 0.4, the classification scores approach 1.0. The corre-
sponding results for the large power grid are shown in Fig.
5(b). Due to the significantly high complexity of this power
grid as compared with the small one, achieving accept-
able performance requires the observation of more than
half of the transmission lines. Even for Po = 1.0 so that
the capacities ρ of all power lines are observed, the classi-
fication results are still not significantly better. The reason
is attributed to the assumption in our work that noise is
always present. Specifically, in a large network, certain
power lines may be in a low-burden or a high-burden state
even under normal operation, which can resemble scenar-
ios of complete disconnection or an attack. When noise is
added to the observations, the attack and normal cases may
become mixed, leading to a degradation in the machine-
learning performance. Our experiment with Po = 1 in a
noise-free scenario shows that the F1 score exceeds 0.99.
The corresponding results for state estimation are pre-
sented in Figs. 5(c) and 5(d) for the small and large power
grids, respectively. As Po increases, the MSE decreases
rapidly, so we use a semilogarithmic scale to illustrate the
performance. The results for both power grids exhibit a
similar trend: as Po increases, the performance in estimat-
ing the full scope of ρ and por improves. However, for the
large power grid, achieving good performance requires rel-
atively smaller values of Po, as more power lines are under
observation with the same value of Po.

D. Robustness regarding noise

Evaluation of the robustness of machine-learning frame-
works regarding noise [25] is necessary for applications.
We add Gaussian noise of varied amplitude to the normal-
ized training data. The simulation results are presented in
Fig. 6, where Figs. 6(a) and 6(c) and Figs. 6(b) and 6(d)
show the performance for the small and large power grids,
respectively, for four tasks: attack occurrence detection,
attack location detection, ρ state estimation, and por state

estimation. Overall, the results indicate that the perfor-
mance of the LSTM framework remains relatively stable
as the noise level σn increases initially, suggesting that
the framework is robust regarding moderate noise levels.
However, as the noise level increases further, the perfor-
mance deteriorates rapidly. Such behavior appears to be
common in applications of machine learning in nonlinear
and complex dynamical systems [25]. The robustness of
random forest and the FNN regarding noise is also tested,
and they show similar performance to the LSTM-based
framework, i.e., the models remain robust under small
amounts of noise but as the noise level becomes relatively
large, the performance decreases.

E. Comparison among different machine-learning
methods

To justify our choice of the LSTM framework for
attack detection and state estimation, we compare the
performances of three machine-learning methods: LSTM,
random forest, and an FNN.

Figure 7 presents the results of performance compari-
son for the attack-detection tasks, where Figs. 7(a) and 7(c)
and Figs. 7(b) and 7(d) are for the small and large power
grids, respectively, and Figs. 7(a) and 7(b) and Figs. 7(c)
and 7(d) display the results for attack occurrence detection
and attack location detection, respectively, based on par-
tial observations of ρ, where the error bars are calculated
from 20 independent simulation runs. While Figs. 7(a) and
7(c) show that the three machine-learning frameworks all
exhibit reasonably good performance, with no apparent
significant differences, Figs. 7(b) and 7(d) demonstrate the
advantage and superiority of the LSTM-based framework
over the FNN and random forest for the large power grid.
Figure 8 shows a performance comparison for the state-
estimation tasks, where Figs. 8(a) and 8(c) and Figs. 8(b)
and 8(d) are for the small and large power grids, respec-
tively, and Figs. 8(a) and 8(b) and Figs. 8(c) and 8(d) are
for estimating ρ and por, respectively, for all the transmis-
sion lines. A behavior similar to that of the attack-detection
tasks emerges: the LSTM-based framework consistently
outperforms the FNN and random forest. These results
of performance comparison thus highlight the inherent
advantage of LSTM in capturing temporal dependencies
and handling complex feature relationships required for
attack detection and state estimation of complex dynamical
systems such as power grids.

IV. DISCUSSION

In complex cyber-physical networked systems of inter-
connected components, a challenging problem is to detect
and locate an attack on some component on the basis of
observing the dynamical behaviors of some other com-
ponents in the system that may not be adjacent to the
component under attack. This is the problem of attack
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FIG. 9. A snapshot of the large power grid l2rpn_wcci_2022 used in our study. The other large power grid, l2rpn_idf_2023, shares
the same structure but differs in the number of loads and chronics.

detection based on partial state observations. A related
problem is to estimate the state of the whole system on
the basis of the partial observations. The two problems are
extremely challenging, but modern machine learning can
be exploited to provide a solution. The main result of this
work is a demonstration that this is indeed the case. In par-
ticular, by using the machine-learning framework LSTM,
we have demonstrated its capability of reconstructing the
state and attack information for complex power grids using
only observation of the current flows through a limited
subset of all the transmission lines. The justification for
choosing LSTM lies in its superior capability to capture
the long-term dependencies in the network data, which are
essential for learning the dynamical patterns of the sys-
tem in the absence of any attack and distinguishing it from
those when an attack has occurred. Simulation results on
the effects of the extent of partial state observations, robust-
ness regarding noise, and performance comparison with
two alternative machine-learning frameworks reinforce the
choice of LSTM. Taken together, our results highlight the
inherent strengths of the LSTM-based framework in cap-
turing temporal dependencies and handling complex fea-
ture relationships, which are essential for attack detection
and state estimation. A related recent work is reconstruct-
ing complex networks from partial nodal state observations
[10], where link existence is inferred from the data. Our

work is different in that we focused on using partial link
states, i.e., the currents in a small number of random
transmission lines in a power grid, to determine whether
the network is under attack and to identify its location.
In our work, partial observations were also used to recon-
struct the network dynamics, i.e., to estimate the full scope
of the link states and other critical indicators for the entire
power grid.

Possibilities for future research are as follows. First,
the LSTM framework can be extended to complex cyber-
physical systems beyond power grids. For example, it can
be applied in the contexts of synchronization [83], infor-
mation spreading [84], and symmetry detection [85] in
complex networks. Next, while the LSTM-based frame-
work outperforms the FNN and random forest in detecting

TABLE I. Parameters of the power grids l2rpn_wcci_2022 and
l2rpn_idf_2023 for comparison.

Property l2rpn_wcci_2022 l2rpn_idf_2023

Substations 118 118
Power lines 186 186
Loads 91 99
Generators 62 62
Data length 32 years 16 years
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FIG. 10. Additional examples of estimating all the state vari-
ables ρ for the small power grid l2rpn_case14_sandbox. The
partial state observation parameter Po = 0.3.

attacks, future research could explore alternative machine-
learning frameworks such as graph neural networks [86],
transformers [87], and diffusion models [88] for multitask
learning in a single neural-network architecture. Moreover,
the attack-detection and state-estimation results reported
here can be used to develop reinforcement-learning control
to enable real-time protection of cyber-physical systems
[89,90]. Finally, for large and complex cyber-physical
systems, the LSTM-based framework can be ineffective
when the state observations are severely limited, especially
for the task of locating an attack. For systems that are
more complex than the three power-grid networks studied
here, additional input features and more observations are
required to achieve reliable performance.
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FIG. 11. Additional examples of estimating all the state vari-
ables por for the small power grid l2rpn_case14_sandbox. The
partial state observations are from ρ with Po = 0.3.

(a)

(b)

FIG. 12. Attack-detection performance for the large power
grid l2rpn_wcci_2022. Confusion matrices for (a) attack occur-
rence detection and (b) attack location detection are shown. The
extent of partial state observations Po = 0.5 and the dimension
of the input vector is 186 × 0.5 = 93.
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(a) (b)
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FIG. 13. State-estimation performance for the power grid l2rpn_wcci_2022. (a),(b) Examples of state estimation in which the LSTM
machine aims to predict ρ of all the transmission lines from partial state observations. (c),(d) Examples of state estimation of por for
all the lines. In (a),(c), several segment examples are shown that compare the true and predicted values of ρ and por, respectively. In
(b),(d), the regression results by comparison of the true and predicted values of an example line are shown. The extent of partial state
observations Po = 0.3 and the dimension of the input vector is 186 × 0.3 = 56.

APPENDIX A: DESCRIPTION OF THE LARGE
POWER GRID AND AN ATTACK SCENARIO

Three power-grid networks of different sizes—l2rpn
_case14_sandbox, l2rpn_wcci_2022, and l2rpn_idf_2023
—were used to test the capabilities of three machine-
learning frameworks for attack detection and state esti-
mation. The simulation results from the small power grid
l2rpn_case14_sandbox with 14 substations and 20 power
lines are described in the main text. The results from the
large power grids l2rpn_wcci_2022 and l2rpn_idf_2023
are presented here.

Both power grids l2rpn_wcci_2022 and l2rpn_idf_2023
comprise 118 substations and 186 power lines, as shown
in Fig. 9, where the line numbers and power line capaci-
ties ρ for each power line cannot be visualized from Fig.
9 due to the large size. The difference lies in the number
of loads and the chronics, as listed in Table I. Similarly
to the case of the small power grid, the blue power lines

between substations are healthy, while the orange power
lines indicate relatively high current flows with a poten-
tial risk of overload. A red power line means that the
current flow it carries is overloaded. Without appropriate
control measures, a red line may lead to a blackout of the
power grid. Additionally, a dotted power line represents
one under an attack, which may last for a certain period or
result in physical disconnection if it becomes excessively
overloaded. As shown in Fig. 9, the power line between
substation 102 and substation 103 is under attack. Before
this time step, the power grid network operated normally
for approximately 2 h, even when under attack. However,
at the current time step, several power lines in the grid
are overloaded, as indicated by the red power lines in the
lower-right corner in Fig. 9. Notably, due to excessive
overload, the power line between substation 76 and sub-
station 81 is physically disconnected (not under attack).
Consequently, a blackout is imminent in the power grid
within 15 min, at which point the entire power grid will
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(a)

(b)

FIG. 14. Attack-detection performance for the large power
grid l2rpn_idf_2023. Confusion matrices for (a) attack occur-
rence detection and (b) attack location detection are shown. The
extent of partial state observations Po = 0.5 and the dimension
of the input vector is 186 × 0.5 = 93.

cease to function and the simulation terminates. Note that
we have deliberately selected a scenario where a blackout
occurs within 15 min (three time steps in the simulation)
to illustrate the state of the grid before a blackout after a
prolonged attack.

APPENDIX B: DETAILS OF THE
MACHINE-LEARNING METHODS USED IN THIS

STUDY

1. LSTM

The core components of an LSTM cell include the input
gate, forget gate, and output gate, which collaboratively

regulate the flow of information throughout the network.
These gates act as neural-network layers with sigmoid
activation functions, σ(x) = 1/(1 + e−x), generating val-
ues between 0 and 1 that determine the extent to which
information is discarded or preserved.

The input gate governs the integration of new input
data into the cell state, while the forget gate controls the
retention of the existing cell state. At each time step t,
these decisions are made with the use of separate sigmoid
functions:

ft = σ(Wf × [ht−1, xt] + bf ), (B1)

it = σ(Wi × [ht−1, xt] + bi), (B2)

where σ denotes the sigmoid activation function. The
weight matrices and bias terms for the input and forget
gates are represented by Wi, bi, Wf , and bf , respectively.
Additionally, a hyperbolic tangent–activated layer is used
to obtain the candidate cell state:

C̃t = tanh(WC × [ht−1, xt] + bC), (B3)

with WC and bC denoting the weight matrix and the bias
term, respectively. The cell state is then updated according
to

Ct = ft � Ct−1 + it � C̃t, (B4)

where � represents elementwise multiplication. The cell
determines the output, which is a filtered version of the
cell state, through the output gate:

ot = σ(Wo × [ht−1, xt] + bo), (B5)

with Wo and bo representing the weight matrix and the bias
term of the output gate, respectively. Subsequently, the cell
state is processed through a hyperbolic tangent layer and
multiplied by the output gate ot to update the hidden state
ht:

ht = ot � tanh(Ct). (B6)

2. Random forest

In a classification task, the final prediction of random
forest is determined through majority voting among the
individual trees, while in a regression task, the average
of the individual tree predictions is used. This ensem-
ble approach enables random forest to capture complex
feature interactions, reduce overfitting, and improve gen-
eralization to unseen data. Further, the technique known as
“bagging” or “bootstrap aggregating” used in random for-
est introduces variation among the trees and reduces the
risk of overfitting. Additionally, at each decision-tree split,
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(a) (b)

(c) (d)

FIG. 15. State-estimation performance for the large power grid l2rpn_idf_2023. (a),(b) Examples of state estimation in which the
LSTM machine aims to predict ρ of all the transmission lines from partial state observations. (c),(d) Examples of state estimation of por
for all the lines. In (a),(c), several segment examples are shown that compare the true and predicted values of ρ and por, respectively.
In (b),(d), the regression results by comparison of the true and predicted values of an example line are shown. The extent of partial
state observations Po = 0.3 and the dimension of the input vector is 186 × 0.3 = 56.

a random selection of features is used instead of all avail-
able features. The feature randomness further increases
the diversity among the trees, making the ensemble more
resilient to noise and data outliers. Numerous hyperparam-
eters, such as the number of trees in the ensemble and their
maximum depth, influence the performance of random for-
est. Choosing appropriate hyperparameter values is crucial
for achieving optimal prediction performance. In our work,
we use a random search to identify the best combinations
of hyperparameters for the given power-grid datasets.

APPENDIX C: ADDITIONAL EXAMPLES OF
STATE ESTIMATION FOR THE SMALL POWER

GRID l2rpn_case14_sandbox

In the main text, a few examples of state estimation are
presented for the small power grid. Here we present addi-
tional examples, as shown in Figs. 10 and 11 for Po = 0.3.
These examples further demonstrate that the LSTM-based

framework is effective for predicting the full state of the
power grid in terms of ρ and por when it is provided with
partial observations of ρ.

APPENDIX D: ATTACK DETECTION AND STATE
ESTIMATION FOR THE LARGE POWER GRID

l2rpn_wcci_2022

For attack detection on the power grid l2rpn_wcci_2022,
we set Po = 0.5, so the input is a vector of capacity ρ

values of 93 power lines. Figure 12 shows the results for
attack occurrence detection [Fig. 12(a)] and attack location
detection [Fig. 12(b)]. In Fig. 12(a), the LSTM frame-
work has high accuracy, correctly predicting the absence
or presence of an attack with probabilities of 0.84 and 0.82,
respectively. Due to the large size of the power grid, iden-
tification of the location of the attack is more challenging.
Figure 12(b) demonstrates that the LSTM framework can
still achieve a high success rate for this task. While there
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are a few incorrect predictions of the attack on different
lines, most failures occur when the framework incorrectly
predicts an under-attack scenario as a no-attack scenario,
which is consistent with the results of attack occurrence
detection in Fig. 12(a).

For state estimation on the power grid l2rpn_wcci_2022,
we set Po = 0.3, so 56 transmission lines are observed.
Figures 13(a) and 13(c) present three segment examples
comparing the true and predicted values for estimating ρ

and por, respectively, with the corresponding comparison
results shown in Figs. 13(b) and 13(d). Different colors
represent the values of the deviation, with red indicating
relatively large deviations. The overall MSE is indicated
in the lower-right corner in Figs. 13(b) and 13(d). Here,
the lines that can be directly observed are excluded. These
results suggest the LSTM framework is effective for state
estimation.

APPENDIX E: ATTACK DETECTION AND STATE
ESTIMATION FOR THE LARGE POWER GRID

l2rpn_idf_2023

For attack detection on l2rpn_idf_2023, we set Po =
0.5, i.e., the input is a vector of the values of the capacity ρ

associated with 93 power lines. Figure 14 shows the results
for attack occurrence detection [Fig. 14(a)] and attack
location detection [Fig. 14(b)]. In Fig. 14(a), the LSTM
framework correctly predicts the absence or presence of
an attack with probabilities of 0.85 and 0.72, respectively.
Due to the large size of this power grid, identification of
the location of the attack is more challenging. Figure 14(b)
demonstrates that the LSTM framework can still achieve
a high success rate for this task. While there are a few
incorrect predictions of the attack on different lines, most
failures occur when the framework incorrectly predicts an
under-attack scenario as a no-attack scenario, which is con-
sistent with the results of attack occurrence detection in
Fig. 14(a).

For state estimation on l2rpn_idf_2023, we set Po = 0.3,
so 56 transmission lines are observed. Figures 15(a) and
15(c) present three segment examples comparing the true
and predicted values of the estimates of ρ and por, respec-
tively, with the corresponding comparison results shown
in Figs. 15(b) and 15(d). Different colors represent the val-
ues of the deviation, with red indicating relatively large
deviations. The overall MSE is indicated in the lower-right
corner in Figs. 15(b) and 15(d). Here, the lines that can be
directly observed are excluded. These results suggest that
the LSTM framework is effective for state estimation.

APPENDIX F: PERFORMANCE OF LSTM UNDER
DIFFERENT CLASS WEIGHTS

The attack occurrence detection task reported in the
main text was performed under the 1:1 weighting sce-
nario, where the no-attack and under-attack data are given

(a)

(b)

FIG. 16. Performance of LSTM under different class weights.
Results are shown for (a) the small power grid with Po = 0.3
and (b) the large power grid with Po = 0.5. The blue and orange
histograms are the results from LSTM trained under the class
weights 1:1 and 1:2 separately. “TN” and “TP” indicate the prob-
abilities of correctly predicting the no-attack and under-attack
labels, respectively.

equal significance during the training. However, it may
be desired to prioritize the detection of attacks in order
to increase the sensitivity of the machine-learning frame-
work to attack occurrence. To address this issue, we set the
class weights to 1:2, giving higher importance to the under-
attack label. This alternative weighting strategy can be
advantageous in application scenarios where the machine
needs to be more sensitive to attacks. Figure 16 presents
a comparison between the 1:1 and 1:2 weighting cases for
the small [Fig. 16(a)] and large [Fig. 16(b)] power grids.
As shown in Fig. 16(a), the 1:2 weight ratio results in an
improvement in correctly predicting the no-attack and the
under-attack labels, generating a high classification accu-
racy. The corresponding results for the large power grid
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are shown in Fig. 16(b), where an improvement in detect-
ing the under-attack labels is achieved but at the expense of
a reduced probability for correctly detecting the no-attack
labels, suggesting that the trade-off between label accu-
racy and preference can be an important consideration in
applications.
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