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A key to ensuring the security of smart electrical power grids is to devise and deploy effective defense
strategies against cyberattacks. To achieve this goal, an essential task is to simulate and understand the
dynamic interplay between the attacker and defender, for which stochastic game theory and reinforcement
learning stand out as a powerful mathematical and computational framework. Existing works are based
on conventional Q-learning to find the critical sections of a power grid to choose an effective defense
strategy, but the methodology is only applicable to small systems. Additional issues with Q-learning are
the difficulty in considering the timings of cascading failures in the reward function and deterministic
modeling of the game, while attack success depends on various parameters and typically has a stochastic
nature. Our solution for overcoming these difficulties is to develop a deep Q-learning-based stochastic
zero-sum Nash strategy solution. We demonstrate the workings of our deep Q-learning solution using the
benchmark Wood and Wollenberg 6-bus and the IEEE 30-bus systems; the latter is a relatively large-scale
power-grid system that defies the conventional Q-learning approach. Comparison with alternative rein-
forcement learning methods provides further support for the general applicability of our deep Q-learning
framework in ensuring secure operation of modern power-grid systems.
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I. INTRODUCTION

Electric power grids, a critical infrastructure, are vul-
nerable to random failures and, more alarmingly, to hostile
physical and/or cyberattacks that can often trigger large-
scale cascading types of breakdowns. The US-Canadian
blackout in 2003 affected approximately 50 million people
in eight US states and two Canadian provinces. In the same
year, there were two other significant blackouts in Europe
[1]. The gigantic impacted geophysical area of these events
and the economic consequences highlight the need for
developing effective defense strategies against attacks on
the power grids. In the past two decades, research on cyber-
security systems has attracted increasing attention. An
important requirement is to make these systems automated
and “intelligent,” as many power grids are unmanned and
located in isolated, remote, rural, or mountainous areas [2].
In the field of cyberphysical systems and security, the year
2010 was a turning point, when the first ever cyberwarfare
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weapon, known as Stuxnet [3], was created. Documented
significant events of cyberattacks include a synchronized
and coordinated attack in December 2015, which compro-
mised three Ukrainian regional electric power distribution
companies and resulted in power outages affecting approx-
imately 225 000 customers for several hours [4]. Due
to the extraordinarily large scale and complexity of the
power-grid networks, developing effective defense strate-
gies against attacks to prevent breakdown of the networks
has become one of the most challenging problems of inter-
disciplinary research in science and engineering in the
present time. In this regard, a pioneering approach is to
use state estimation to detect the attack modes to power
systems [5,6], assuming that the topology and parameters
are known to both the attacker and defender in the trans-
mission grid. Recently, this approach was extended to the
distribution grid [7,8]. It is also recognized that attacks are
possible, even if the attackers do not know the topology
and parameters of the distribution grid [9].

From a general and mathematical point of view, cyber-
security is determined by the dynamic interplay between
the attacker and the defender, where the former seeks to
maximize, while the latter strives to minimize, damage
to the power grid. Game theory [10], a well-established
branch of mathematics for analyzing strategic interac-
tions among rational players, thus represents a powerful
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tool to probe the dynamics of cybersecurity, where the
attacker-defender interactions can be modeled as a nonco-
operative game. There are two categories of such games:
static and dynamic. In a static game, time and informa-
tion do not affect the action choice of the players, so the
game can be regarded as a one-shot process, in which
the players take their actions only once. In contrast, in a
dynamic game [11], the players have some information
about each other’s choices and can act more than once,
where time plays a central role in the decision-making.
Different game-theoretic techniques have been devised to
study the security of smart grids, such as the network
formation game technique used in smart grid communica-
tions systems, the Nash game and auction game methods
in demand-side management applications, and coalition
games used in microgrid distribution networks [12].

Recently, machine learning has been introduced to study
the security of smart power grids. For example, in Ref.
[13], the most vulnerable areas in a power grid are iden-
tified using unsupervised learning. Several state-of-the-art
machine-learning techniques have been devised to gener-
ate, detect, and mitigate cyberattacks in smart grids [14].
As one of the most developed machine-learning frame-
works, reinforcement learning (RL) has proven to be par-
ticularly useful for cybersecurity systems. Specifically, RL
is employed to derive false data injection attack policies
against automatic voltage control systems in power grids
[15]. In Ref. [16], a RL-based strategy was introduced
that aimed to choose the appropriate detection interval and
the number of CPUs allocated based on the defense pref-
erences through implementation inside the control center
of the power grid. Moreover, Q-learning [17] is used to
analyze the vulnerability of smart grids against sequen-
tial topological attacks, where the attacker can use Q-
learning to worsen the damage of sequential topology
attacks toward system failures with the least effort [18].
A fundamental difficulty with Q-learning is that it can
become extremely inefficient in the case of increasing
numbers of state-action pairs, as in a larger power grid. To
overcome this difficulty, deep RL has been employed in
large-scale power grids for topology attacks [19]; cyber-
attack mitigation [20]; and, more recently, to solve the
latency cyberattack detection problem [21]. In general,
deep Q-learning [22] uses neural networks to approximate
the Q function using only the state as the input and generate
the Q values of all actions as the output. As a result, deep
Q-learning is suited to problems with a large state-action
space, since it leverages the extent of deep neural net-
works to deal with complex cyberphysical systems, such
as the IEEE 30-bus system. Figure 1 provides a schematic
comparison of Q-learning and deep Q-learning.

Here, we develop a deep Q-learning-based defense strat-
egy for smart power-grid systems using transmission line
outages and generation loss as the concrete failure set-
tings. Broadly, we conceive the scenario in which the
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FIG. 1. Q-Learning versus deep Q-learning. Implementation
of the Q table is the main difference between Q-learning and
deep Q-learning. Instead of mapping a state-action pair to a Q
value using the Q table, as is done in Q-learning, deep Q-learning
uses neural networks to map the states to the action-Q value
pairs—the core reason that deep Q-learning can be used to solve
large-scale problems.

defense management of a given large power grid performs
stochastic game playing to simulate the dynamic inter-
play between the attacker and the defender. The goal is
to uncover the “best” attack strategies that can result in
the maximal damage to the grid. Accordingly, protect-
ing the components in the grid that such attack strategies
entail provides the optimal defense tactics. We model the
attacker-defender interaction as a zero-sum game and solve
it by using deep Q-learning, where solving a game entails
finding its Nash equilibria (see Sec. II B for details). We
introduce a customized reward function for achieving the
desired objectives as directly as possible. Importantly, we
demonstrate that our deep Q-learning framework can be
used to address problems of cascading failures and tim-
ing delays, which, to the best of our knowledge, have
not been studied previously in the context of machine-
learning-enhanced or guaranteed security of power grids.
Our defense algorithm leads to the best protection sets
based on the defined objectives, taking into considera-
tion the defender’s policy. To demonstrate the workings
and advantages of our deep Q-learning scheme, we com-
pare its performance not only with the conventional Q-
learning method but also with other state-of-the-art algo-
rithms, such as actor-critic (AC), policy gradient (PG),
and proximal policy optimization (PPO). Overall, our deep
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Q-learning approach opens the door to applying RL to
large-scale smart grid cybersecurity problems to signifi-
cantly enhance the security of the system in an automated
manner.

The rest of this paper is organized as follows. The RL
formulation of the attacker-defender stochastic zero-sum
game, problem description, reward function definition,
and an illustration of why Q-learning is not viable for
large-scale problems are given in Sec. II. In Sec. III, we
formulate our deep Q-learning method and present the
optimal defense strategy. Simulation scenarios and com-
parative results are detailed in Sec. IV. Section V presents
a discussion.

II. REINFORCEMENT-LEARNING-BASED
FORMULATION OF ATTACKER-DEFENDER

GAME

We describe the essential quantities needed for modeling
the attacker-defender interactions using a stochastic zero-
sum game and Q-learning algorithm. We then define the
reward function based on the objectives of the attack sce-
narios. The efficiencies of Q-learning and deep Q-learning
are compared using an illustrative example. In the formu-
lation below, player 1 is the attacker, while player 2 is the
defender.

A. Attacker-defender stochastic zero-sum game and
Nash equilibrium

A game is closely related to a Markov decision process
that can be viewed as a single-player decision problem, so
its extension to two players results in a stochastic game
[23]. Mathematically, a two-player stochastic zero-sum
game is a six-tuple 〈S, A1, A2, r1, r2, p〉, where S is the dis-
crete state space, Ai is the discrete action space of player i
(for i = 1, 2), ri:S × A1 × A2 → R is the payoff function
for player i, whereas r1(s, a1, a2) = −r2(s, a1, a2) for all
s ∈ S, a1 ∈ A1, a2 ∈ A2. For the cases studied in this work,
intuitively, rewards are the game payoffs that are either the
generation loss caused by the attacks or a function of the
transmission line outages [cf., Eq. (10) below]. Moreover,
p : S × A1 × A2 → �(S) is the transition probability map-
ping, with �(S) being the set of probability distributions
over the state space, S. During a game, player 1 aims to
maximize, but player 2 strives to minimize, the sum of the
discounted rewards. Given an initial state s, discount fac-
tor γ , and π1 and π2 (the strategies of players 1 and 2,
respectively), the values of the game for the two players
are

v1(s, π1, π2) =
∞∑

t=0

γ t
E{r1

t |π1, π2, s0 = s}, (1)

v2(s, π1, π2) =
∞∑

t=0

γ t
E{r2

t |π1, π2, s0 = s}, (2)

where π1,2 = (π
1,2
0 , . . . , π1,2

t , . . .), with π
1,2
t denoting the

decision rules of players 1 and 2 at time t and E{.} is the
conditional expectation. For instance, E{ri

t|π1, π2, s0 = s}
is the expectation of the player i’s instant reward at time
t, following the decision rules π1,2 with s as the initial
state. These strategies are “stationary,” in the sense that the
decision rules are fixed over time, in contrast to the “behav-
ior” strategies often used in economics, where the decision
rules depend on the history of states and the actions up
to the present time. Assuming each player has complete
information about the reward function of the other player, a
Nash equilibrium can emerge. Specifically, the Nash equi-
librium for a two-player stochastic zero-sum game is a pair
of strategies, (π1

∗ , π2
∗ ), such that for all s ∈ S, the following

hold:

v1(s, π1
∗ , π2

∗ ) ≥ v1(s, π1, π2
∗ ) ∀π1 ∈ �1, (3)

v2(s, π1
∗ , π2

∗ ) ≥ v2(s, π1
∗ , π2) ∀π2 ∈ �2, (4)

where �i is the set of all possible policies for player i.
Intuitively, a Nash equilibrium means that each player’s
strategy is the best response to the other player’s strategy:
neither one has anything to gain by changing only their
own strategy.

In general, based on the structure of the information that
the players possess, attacker-defender stochastic zero-sum
games can be classified into four categories, depending on
whether the information is complete or incomplete, per-
fect or imperfect. In particular, in a complete information
game, the players know the structure of the game being
played, such as the number of players and their payoff
functions. Any missing information will lead to an incom-
plete information game. In addition, a game is regarded
as being of the perfect information type if all the players
know the historical actions of each other at the time of their
move; otherwise, the game is of the imperfect information
type [24]. For simplicity, in our work, we assume both the
attacker and defender can observe each other’s immedi-
ate reward and have access to their actions throughout the
learning process. This assumption, while ideal and offering
mathematical convenience, is based on the consideration
that the goal of our work is to solve the attacker-defender
stochastic zero-sum game for defensive planning. In fact,
our aim is to find the best scenario for the attacker, so
that the defender can be prepared for the worst, and thus,
assuming the availability of complete information may not
be unreasonable. Possible scenarios to obtain the required
information include the observation of the state of the
transmission lines by the defender, the defender’s access
to the resulting generation loss when an attack happens,
and some insider information about the defender obtained
by the attacker.

033005-3



MORADI, WENG, and LAI PRX ENERGY 1, 033005 (2022)

B. Q-Learning-based solution to attacker-defender
stochastic zero-sum game

Reinforcement learning belongs to the field of decision-
making, where the “agent” explores the “environment,”
interacts with it, and observes its reactions to find an
optimal behavior to maximize a long-term “reward.” Con-
trary to supervised learning, in RL, the agent must act
independently to find an optimal sequence of actions that
maximizes a given reward function in an unknown envi-
ronment.

While RL is capable of directly solving certain cyber-
security problems, it can also serve as a powerful vehicle
to gain insights into the attacker-defender interactions
modeled as a game. In general, solving a game means
finding its Nash equilibria. Especially, an appealing fea-
ture of RL is that it can yield solutions (Nash equilibria) of
both the attacker-defender interplay and cybersecurity in
a knowledge-free manner, i.e., based solely on data. For
example, the Nash equilibrium for the two-player zero-
sum game can be determined online based on RL [25].
RL has also been employed to solve a zero-sum stochastic
game [26]. The min-max solutions of a dynamic Markov
zero-sum game are derived using Q-learning [27], yielding
optimal risk management strategies to meet the perfor-
mance criteria with the parameters of the Markov game
model completely unknown. A distributed RL algorithm
is proposed to solve a non-zero-sum stochastic game in
which each player needs only minimal information about
the other player [28]. RL is also used in a stochastic adver-
sarial game coupled with an expert advice framework to
analyze the optimal attack strategies against predictors
[29]. While game theory has been applied to many prob-
lems that require rational decision-making, there are some
limitations in applying such methods to security games. Q-
Learning was introduced to secure the system by devising
proper actions against the adversarial behavior of a sus-
picious user [30]. Q-Learning has also been employed in
solving security games, as studied in Refs. [31,32].

In Q-learning, the Q function is a mapping of all possi-
ble state-action pairs (where actions refer to action profiles
of each player) to a scalar value and represents the total
discounted reward that a player is expected to obtain, start-
ing from a determined state taking a specified action. For
a two-player stochastic game, the optimal Q function for
each player can be defined as

Q1
∗(s, a1, a2) = r1(s, a1, a2)

+ γ

N∑

s′=1

p(s′|s, a1, a2)v1(s′, π1, π2), (5)

Q2
∗(s, a1, a2) = r2(s, a1, a2)

+ γ

N∑

s′=1

p(s′|s, a1, a2)v2(s′, π1, π2), (6)

where s′ is the next state evolving from state s taking
actions a1 and a2. Equations (5) and (6) define Q∗, the
optimal value of the Q function associated with state
s and action pair (a1, a2). For each player, the optimal
value is equal to the total discounted reward received by
the player, when both the attacker and defender perform
actions (a1, a2) in state s and subsequently follow their
Nash equilibrium strategies (π1, π2). For each player, the
value of Q∗ can be solved [Eq. (8)]. A player then gen-
erates a policy by following the action with the largest Q
value in each state.

We remark that, in the reinforcement learning litera-
ture, the notation r is usually reserved for “instant reward”
or “instant payoff,” whereas v is the “value function.” In
Eq. (5), the term r1(s, a1, a2) means the instant payoff that
player 1 gets when the game is in state s and player 1
chooses action a1 while player 2 selects action a2. The
quantity v1(s′, π1, π2) denotes the total discounted payoff
starting from the next state s′ while the players follow the
policies π1 and π2. Thus, Q1

∗(s, a1, a2) in Eq. (5) represents
the instant reward added to the best possible future rewards
for player 1. Intuitively, this means the best reward player
1 can achieve starting from state s with the two players
taking actions a1 and a2, respectively.

Because of the zero-sum nature of the game,
Q1

∗(s, a1, a2) + Q2
∗(s, a1, a2) = 0, or

Q1
∗(s, a1, a2) = −Q2

∗(s, a1, a2), (7)

the learning agent needs to learn (or approximate) only
one Q function. This should be contrasted with a general
sum game characterized by Q1

∗(s, a1, a2) + Q2
∗(s, a1, a2) �=

0, where two Q functions need to be learned, increasing
substantially the computation complexity. To solve Eqs.
(5) and (6), we use the following algorithm [23]:

Qt+1(s, a1, a2) = (1 − αt)Qt(s, a1, a2)

+ αt

[
rt + γ max

π1(s′)∈σ(A1)

min
π2(s′)∈σ(A2)

π1(s′)Qt(s′)π2(s′)
]

,

(8)

where Qt+1(s, a1, a2) = Q1
t+1(s, a1, a2). Convergence

requires that all state-action pairs be visited infinitely often,
which is practically infeasible. To obtain a reasonable
functional approximation, a sufficiently large state-action
space needs to be explored. This is the main reason that
prevents Q-learning from being applicable to large-scale
smart grids.

C. Transmission line outage, generation loss, and
reward functions

We focus on two representative attack scenarios on
smart power grids [33–35]. The first is the switching line
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problem, where the attacker attempts to cause a predeter-
mined percentage of the transmission lines to go down. In
the second scenario, the attacker attempts to maximize the
generation loss in the power system through a sequence of
attacks. In both cases, the defender strives to mitigate the
attack consequences, regardless of whether they are due to
transmission line outages or are caused by generation loss.
[We use a dc load flow simulator of cascading (separation)
in power systems, named DCSIMSEP [33,34], to calculate
the generation loss.] The state space for both attacks is
the state of transmission lines denoted as a l × 1 binary-
valued vector, where l is the number of transmission lines;
this value for each transmission line is 0 if the respective
line is down and is 1 otherwise. The attacker’s actions for
both attacks are chosen from the set A = {1, 2, 3, . . . , l},
where action i means attacking transmission line i. The
defender’s action for both attacks is considered to be a
set consisting of n transmission lines, denoted as the pro-
tection set. The attacker’s reward for the line switching
attack is given by Eq. (10) and for the generation loss
attack is the average generation loss [Eq. (9)] caused by
the attack. Since the game is considered to be zero sum,
for the defender, the payoff is the negative of the attacker’s
reward for both attacks. The transition probability distri-
bution is represented with power-grid transitions simulated
with the DCSIMSEP tool.

We incorporate the cascading failure timing into the
reward function. We assume that the attacker’s next attack
will be launched at time T = 1.2tcas, where tcas is the
cascading failure length caused by the attacks. The propor-
tional constant 1.2 is chosen somewhat arbitrarily, insofar
as it is greater than 1, so that the system settles into a
steady state after an attack on the transmission lines. The
choice of the value T does not have a significant effect
because the generation loss is relative among different
attacks and our goal is to minimize the total loss. To take
into account the timing delays of the cascading failures, we
use a weighted average of generation loss during a reason-
able time interval. Specifically, the average generation loss

¯Gloss is

¯Gloss = Ginit
loss

tcas

T
+ Gstead

loss
T − tcas

T
, (9)

where Ginit
loss is the generation loss caused initially by the

attack, while Gstead
loss represents the generation loss during

the steady state of the system after a transient phase caused
by the attack. The reason is that, after an attack, the power
grid will enter into a transient state, during which cascad-
ing failures occur. We assume that the defender’s policy
is passive while the attacker’s policy evolves according to
deep Q-learning (as described in Sec. II D). The defender’s
protection set is updated at the end of each run, mean-
ing that the attacker must learn the optimal sequences in
a constantly updated environment. In general, the defender

is not able to protect all lines simultaneously because of
limited resources. This highlights the need for Q-learning
because the defender should wisely select the set of lines
to protect.

For the first attack scenario, the reward function is given
by

r = r1, for IO > AO,

r = r2, if attack is final,

r = IO/AO, otherwise,

(10)

where IO is the instant number of transmission line out-
ages caused by the attack, AO is the attack objective,
and r1 > r2. For example, in the Wood and Wollenberg
(W&W) 6-bus system shown in Fig. 2, when the protec-
tion set consists of lines 1 and 2, attacking line 5 will cause
an instant outage of five lines (IO = 5), which is more than
the attack objective (AO = 4). In this case, the reward of
attacking line 5 is equal to r1. This is the best scenario, and
therefore, r1 is chosen to be large enough to persuade the
agent to learn this action, if possible. This will also lead to
Ginit

loss = 210 MW and Gstead
loss = 83.5 MW, and the cascad-

ing failure length is tcas = 331.61 s. The cascading failure
timing delays caused by attacking line 5 in the W&W 6-
bus system are illustrated in Fig. 3. Equation (9) provides
the average generation loss, taking into account the timing
delay of cascading failures as ¯Gloss = 167.83 MW. Like-
wise, attacking line 3 will cause lines 1, 2, and 3 to go
down, leading to the reward r = 3/4. Eventually, if the
number of currently downed transmission lines is less than
AO, but an attack causes the number of downed lines to be
equal to or larger than AO, the attacker will have achieved
the objective in this specific step, executing the chosen
action. In this case, the attack is called final and the reward
is r2, as the attacking agent is motivated to take the final
blow when an opportunity rises.

D. Necessity of deep Q-learning

A standard way to implement Q-learning is through the
sample base variant called “tabular Q-learning.” In a Q
table, the rows list the states of the underlying system,
and the columns are indexed by the action set. Training
the table is helpful in finding an optimal action for each
state with the goal of maximizing the long-term reward.
This is a straightforward yet powerful approach to the
security of small cyberphysical systems. For example, a
one-shot game with a multiline switching attack between
the attacker and defender in a smart grid was studied
[36]. In another work [37], the dynamics of the electric
power grid were taken into account and the attacks were
modeled as a multistage game, where the percentage of
visited states with respect to the total number of states
was 1.81% for the W&W 6-bus system (37 states out of
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FIG. 2. Wood and Wollenberg 6-bus system. It has 6 buses, 3
generators (denoted by G), 3 loads (denoted by L), and 11 trans-
mission lines. IEEE 30-bus system simulated in this paper has
a similar topological structure but at a much larger scale: it has
6 generators, 30 buses, and 41 transmission lines. Simulation of
the smart power grids (they are “smart” because they support
renewable sources) is performed using the DCSIMSEP package, a
simulator of cascading failures in power systems. DCSIMSEP does
not use any specific stress-mitigating controls under the assump-
tion that the cascades are propagating too fast for the operators
to react, so it is suitable for cyberattack problems.

a possible 211 states) and 1.87 × 10−8% for the IEEE 39-
bus system (13 130 states out of a possible 246 states).
The tabular Q-learning method is thus incapable of suffi-
cient state-space exploration, leading to suboptimal poli-
cies for the given reward functions. In general, for larger
power-grid systems, such as the benchmark IEEE 30-bus
system that has 41 transmission lines, tabular Q-learning is
impractical. This is because each line has two states, opera-
tional or out of service, so there are 241 number of states for
all the transmission lines. If only a single line is attacked,
the total number of actions is 41. Because there are 241

states for each action, the table will have 241 × 41 cells,
rendering infeasible any computation based on the table.

To appreciate the necessity of adopting deep Q-learning
in tackling the cybersecurity problem of smart power-
grid systems in a concrete way, we use the switching line
problem as a prototypical example. For the W&W 6-bus
system, consider the specific formulation in which AO is
4, the protection set is [1, 2], the maximum number of
attacks is 4, and the reward function is given by Eq. (10)
with r1 = 4 and r2 = 1. The optimal attacking sequence
derived using Q-learning after 20 independent runs (each
with 2000 episodes) is to attack line 5, which will lead to
a maximum reward of 4. However, the optimal attacking
sequence derived using deep Q-learning is to attack line
9, then line 8, and finally line 6. In particular, the outage
of line 9 will lead to reward r = 0.25; attacking line 8 will
bring down lines 8 and 4 together, so the reward is r = 0.5;
and disabling line 6 will cause lines 1, 2, 3, 6, 10, and 11 to
go down, leading to the reward r = 4. As a result, the deep
Q-learning strategy will result in a total reward of 4.75. A
detailed comparison of the rewards achieved as a function
of time from executing the optimal attack strategies from
Q-learning and deep Q-learning is shown in Fig. 4. It can
be seen that, while there is a brief time period (between 200
and 500 episodes of the game) in which the reward of Q-
learning is greater than that of deep Q-learning, after 500
episodes, deep Q-learning leads to a persistently higher
reward than Q-learning.

The main reason that the tabular Q-learning results in
lower reward in the long run lies in insufficient state-space
exploration, generating a suboptimal policy for the defined
reward function. In a larger power grid, such as the IEEE
30-bus system that has 41 transmission lines, there are 241

distinct states. Practically, a state space of this large size
cannot be solved using conventional tabular Q-learning
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FIG. 3. Cascading failure timing delays caused by attacking line 5 in the W&W 6-bus system derived using DCSIMSEP package.
Average generation loss ( ¯Gloss) caused by this attack can be calculated using these timings in Eq. (9).
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FIG. 4. Comparison of the performance of deep Q-learning
and conventional tabular Q-learning using a concrete exam-
ple. Setting is the switching line problem in the W&W 6-bus
system. Shown are the values of reward function [Eq. (10)
with r1 = 4 and r2 = 1] from deep Q-learning and conventional
Q-learning with similar simulation parameter values. Deep Q-
learning algorithm manages to find an optimal attack sequence,
which results in the reward of r = 4.75, while conventional Q-
learning is unable to find a sequence with a reward of larger than
r = 4.

[38]. This difficulty with Q-learning is fundamental. As
the system becomes larger, the deficiency of Q-learning
will become more apparent and pronounced. To address
the cyberattack and defense problem for large-scale power
grids, invoking deep Q-learning is necessary.

III. DEEP Q-LEARNING-BASED FORMULATION
OF ATTACKER-DEFENDER GAME

We introduce the deep Q-learning algorithm and exploit
it to formulate and solve the attacker-defender stochastic
zero-sum game problem. We also analyze the proposed
defense strategy for smart power grids against cyberat-
tacks. The zero-sum nature of the game dynamics stip-
ulates that the deep Q-learning agent needs to learn (or
approximate) only one Q function. It should be noted
that, mathematically, convergence to a Nash equilibrium
requires that all state-action pairs be visited infinitely often,
which is practically infeasible. To obtain a reasonable
functional approximation, a sufficiently large state-action
space needs to be explored, which can be accomplished by
deep Q-learning.

A. Deep Q-learning solution to attacker-defender
stochastic zero-sum game

The core of deep Q-learning is an online multilayered
neural network [39] that for any given state s outputs a
vector of action values Q(s, ., .; θ), where θ denotes the
set of parameters of the online network. Two foundations
of the deep Q-learning algorithm are the target network
and the use of experience replay. The target network, with
parameter set θ∗, is the same as the online network, except

that, for every c episodes, its parameters are copied from
the online network, θ∗

t = θt, which are kept fixed during
the c episodes. The target used by deep Q-learning can be
described as

Q∗
t = rt+1 + γ max

a
Qt(st+1, a1, a2; θ∗

t ). (11)

The deep Q-learning agent gets the initial state and com-
putes the Q-function values for all possible actions, which
in our problem is the transmission lines of the power
grid. We use the epsilon greedy method [40] to select
a proper action, where the action with the largest Q-
function value is chosen with the probability of 1 − ε, and
a random action is performed with the probability of ε.
The state, attacker, and defender’s actions; the next state
derived from the stochastic transition function; and the
gained reward are stored for some time. These data are
then sampled uniformly from this memory bank to update
the network, which is called experience replay, as some
random batches of transition are sampled. The difference
between the target Q function and the predicted Q function
is calculated as

error = Q∗
t − Qt(st+1, a1, a2; θt), (12)

where a small error indicates a well-trained algorithm.
Typically, a gradient descent algorithm can be used to opti-
mize the online network parameter values to minimize the
error. The target network’s parameters are updated peri-
odically to match the ones of the online network. Both
the target network and experience replay can dramatically
improve the performance of the algorithm [38]. Using the
Q functions defined in Eqs. (5) and (6) for the stochas-
tic zero-sum game, we determine the optimal attacking
sequence so that the defender can choose the best defense
strategy.

The main difference between Q-learning and deep Q-
learning lies in the implementation of the Q table. In a
problem with a large number of state-action pairs, the Q
table becomes unmanageably large and impractical. This is
because the greater the number of rows and columns, the
more time it requires for the agents to explore the states
and to update their values. In deep Q-learning, the idea is
that, rather than mapping a state-action pair to a Q value
using the Q table, neural networks can be exploited to
map the states to the action–Q-value pairs. That is, instead
of visiting different state-action pairs and filling in the Q
table, a deep neural network is trained to approximate the
Q function.

B. Defensive strategy algorithm using deep Q-learning

Figure 5 presents the proposed algorithm for articulat-
ing a defense strategy to protect a smart power grid from
cyberattacks. The attacker and defender play a stochastic
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FIG. 5. Defensive strategy algorithm based on deep Q-
learning in a stochastic zero-sum game. Attacker and defender
are the two players of this game. Attacker uses the deep Q-
learning algorithm to find an optimal attack sequence to maxi-
mize the generation loss or transmission line outage, while the
defender updates its defense set based on the attacker’s previous
policy. Chosen actions of both players are given to the DCSIM-
SEP power flow simulator and the reward (cost) is then calculated
and returned to the players. Process continues until the defender’s
protection set remains unchanged for a number of cycles.

zero-sum game with the defined objective of disabling a
fixed number of transmission lines or maximizing (mini-
mizing) the generation loss. The attacker attacks the power
system while the defender protects some transmission
lines. The payoff, which is either the generation loss or
the number of downed transmission lines, is determined
using DCSIMSEP based on the players’ actions. Both players
receive the reward for (cost of) their actions. The attacker
uses deep Q-learning to optimize the attack sequence.
Once an optimal attacking strategy is reached, it is trans-
mitted to the defender. The defense decision management
unit will decide whether or not to update the protection set.
More specifically, the decision unit will simply update the
protection set with the sweet targets of the previous learn-
ing process, which are the transmission lines that have the
largest Q-function value for the current state. The defense
decision unit will not update the protection set in the case
of periodic alternation of sweet targets, which is the indi-
cator of convergence of the algorithm. This procedure
continues until a Nash equilibrium (equilibria) is reached.

IV. RESULTS

To demonstrate the workings and power of our deep
Q-learning algorithm in generating optimal defense strate-
gies against attacks, we use the benchmark W&W 6-bus
and IEEE 30-bus systems. Specifically, for the relatively
small W&W 6-bus system, the generation loss problem is
studied in more detail with physical insights. For the larger
IEEE 30-bus system, we focus on both the switching line
(transmission line outage) and the maximum generation

TABLE I. Simulation parameters for W&W 6-bus system
generation loss and IEEE 30-bus system generation loss and
switching line problems.

Parameters W&W6 gen IEEE30 switch IEEE30 gen

Trans. lines 11 41 41
Episodes 2e3 2e3 1e4
Attack length 5 4 5
Epsilon 1 1 1
Eps. decay 0.005 0.0008 0.005
Eps. min 0.01 0.001 0.01
Learn. rate 0.001 0.001 0.001
Disc. factor 0.7 0.7 0.8
Minibatch size 256 1024 256
FF. neurons 100 200 200
Attack succ. prob. 0.8 0.9 0.9

loss problems. All the simulations are carried out using
the MATLAB R2021b reinforcement learning toolbox on a
desktop PC with an Intel Core i7-6850K CPU and 128
GB of RAM. Table I lists the simulation parameter val-
ues for each problem. In our simulations, we assume that
an attack on a specific line is successful with a preassigned
probability that depends on the defender’s protection set,
which is updated after the attacker’s learning process. For
example, in the W&W 6-bus system, suppose the defender
protects line 5. If the attacker attacks any line other than
5, the probability of that line’s outage will be p . How-
ever, if the attacker attacks line 5, it will not go down,
since the defender protects it, but failures can occur with
the same probability p . The value of p may depend on
the available resources allocated to the defender or the
attacker at each time step. During the dynamic interplay
between the attacker and defender, the value of p is treated
as a constant. The reason lies in the tacit assumption that
both sides have equal access to the resources, so assigning
extra resources to any specific transmission line is disal-
lowed. It is worth noting that deep Q-learning generally
runs much faster than the equivalent Q-learning algorithm
on a per episode basis, because the computation complex-
ity of deep Q-learning can be significantly reduced when
neural networks are used instead of a table, as in con-
ventional Q-learning. In all cases, the core of our deep
Q-learning system is a neural network consisting of two
fully connected and two ReLu layers. ReLu is a nonlinear
activation function for multilayer neural networks.

A. Optimal defense strategy for W&W 6-bus system
against generation loss

We study the maximum generation loss problem, a
stochastic zero-sum game in which the attacker aims
to maximize, but the defender aims to minimize, the
generation loss caused by the attacks, with probabilistic
state transitions. The attacker’s reward at each step is equal
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FIG. 6. Effect of choosing an effective protection set in the
worst-case scenario of generation loss in the W&W 6-bus sys-
tem. Attacker uses deep Q-learning to find an optimal attack
sequence, while the defender updates its protection set accord-
ing to the attacker’s policy. Starting from a random protection
set {7, 11}, the defender finds the optimal defense set to be {2, 5},
which causes the worst-case scenario of the generation loss to be
reduced by %13.41.

to ¯Gloss defined in Eq. (9). The zero-sum nature of the
game dynamics stipulates that the defender’s reward must
be − ¯Gloss. To be concrete, we assume that the defender is
able to defend two lines at a time, while the attacker can
attack up to five lines in a sequential manner. The spe-
cific numbers can be chosen arbitrarily. Figure 6 depicts

¯Gloss per episode for different protection sets. First, for a
random protection set {7, 11}, we apply deep Q-learning
to find the attacker’s sweet targets, the transmission lines
that have the largest Q-function value for the initial state.
From the specific random protection set, the sweet targets
are determined to be lines 1 and 2, so the protection set is
updated to lines {1, 2}. We apply deep Q-learning again,
resulting in lines 1 and 5 becoming the updated sweet tar-
gets. For the protection set {1, 5}, the new sweet targets are
lines 2 and 5. Further steps of the game plan will result in
a Nash equilibrium of 159.93 MW generation loss, alter-
nating between the protection sets {1, 5} and {2, 5}, which
represent the solution of the optimal defense sets to this
problem. Intuitively, the derived sequence of the attacker’s
actions and the protection set constituting a Nash equi-
librium can be interpreted as pairs of actions from which
neither the attacker nor the defender is inclined to deviate
unilaterally. As shown in Fig. 6, this optimal choice of the
protection set results in a 13.41% decrease in the worst-
case scenario of generation loss where the attacker plays
the optimal sequence strategy.

B. Optimal defense strategy for IEEE 30-bus system
against attacks on switching lines

In the switching line problem, the attacker has a fixed
objective of disabling a specific set of transmission lines.
Our concrete setting is that the defender is able to defend

up to three lines at a time, while the attacker can attack
up to four lines sequentially with the AO set to five lines.
The reward function is given by Eq. (10) with r1 = 10
and r2 = 1. Starting with a random protection set {1, 2, 3},
we apply our deep Q-learning algorithm and identify the
sweet targets as lines 15 and 16. The protection set is then
updated to {15, 16}, and the worst-case scenario reward is
decreased significantly, as shown in Fig. 7. Further gam-
ing steps result in the protection set {15, 16} as the Nash
equilibrium. The intuitive reason is that, when protecting
lines {15, 16}, the attacker is not able to find a sequence
that will result in a large instantaneous outage. As a result,
the attack receives a much smaller reward compared to the
case when the defender defends a random protection set.
This phenomenon is helpful for the defender in the sce-
nario where the generation loss can be compensated for by
somewhere else for the demand, making the transmission
line outage a priority.

C. Optimal defense strategy for IEEE 30-bus system
against attack-induced generation loss

We demonstrate the power of our deep Q-learning
algorithm to solve the generation loss problem for the
IEEE 30-bus system, which otherwise is not solvable using
conventional tabular Q-learning. Figure 8 shows ¯Gloss per
episode for different protection sets, where the simula-
tion setting is that the defender is able to defend up to
three lines at a time, while the attacker can attack up to
five lines sequentially. Starting from a random protection
set {1, 2, 3}, with the worst-case scenario generation loss
per episode of 74.87 MW, the protection set evolves from

FIG. 7. Evolution of reward function values during the learn-
ing phase in the switching line problem in the IEEE 30-bus
system for a random and an optimal protection set. While the
defender chooses a random protection set {1, 2, 3}, the attacker
finds an optimal sequence to obtain the reward of r = 10.4 [cal-
culated by Eq. (10) with r1 = 10 and r2 = 1]. After a number of
cycles, the defender chooses {15, 16} as its protection set. As a
result, the attacker fails to find a sequence with a reward of more
than r = 2.6.
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FIG. 8. Optimal protection set against the worst-case scenario
of generation loss in the IEEE 30-bus system. Defender chooses
a random protection set {1, 2, 3}, whereas the attacker finds an
optimal policy to maximize the generation loss. After a number
of cycles, the defender chooses {16, 15, 28} as its protection set
and, as a result, the worst-case scenario generation loss caused
by the optimal attack sequence is reduced by 48.28%.

{16, 11, 14} to {16, 11, 15} and finally to the optimal pro-
tection set {16, 15, 28} that results in 50.49 MW generation
loss. Using the optimal protection set can result in 48.28%
mitigation of the worst-case generation loss, even if the
attacker chooses the optimal attacking sequence.

It is worth noting that the IEEE 30-bus system simula-
tion is used to demonstrate that conventional Q-learning
is unable to deal with this system, while our deep Q-
learning can. The system is only regarded as “large” in
a relative sense: it is much larger than the W&W 6-bus
benchmark system. Much larger systems are available,
e.g., the IEEE 300-bus or IEEE 3000-bus systems, which
can be simulated using specific power-grid software, such
as Gridlab-D. Deep RL methods are applicable to these
larger systems, but the required computations are beyond
our current capability.

D. Comparison with alternative RL algorithms

We compare the performance of our deep Q-learning
algorithm with three widely used RL algorithms for dis-
crete state-action space systems: PG, AC, and PPO. The
PG algorithm [41] is a rudimentary policy-based model-
free online on-policy method, while the AC algorithm aims
to optimize the policy (actor) directly and train a critic
to estimate the return or future rewards [42]. PPO [43]
is an actor-critic model-free online on-policy algorithm
that alternates between data sampling by interacting with
the environment and optimization of a clipped objective
function, which leads to improved training stability by lim-
iting the size of the policy change at each step. We set
the learning rate, discount factor, and other applicable key
simulation parameters to the same values as in deep Q-
learning. The actor and critic networks in both the PPO
and AC algorithms have the same structure as the critic

FIG. 9. Comparison with representative existing RL algo-
rithms. Shown is the performance comparison of the deep Q-
learning with PG, AC, and PPO algorithms for the generation
loss problem in the IEEE 30-bus system. Maximum genera-
tion loss caused by the optimal attack sequences derived by
the PPO, AC, and PG agents is 22.24 MW, while our deep
Q-learning agent is able to obtain 50.49 MW. While the deep
Q-learning algorithm takes a longer time to converge, reliability
and efficiency are guaranteed.

network in our deep Q-learning algorithm and the actor
network in the PG algorithm for fair comparison. The pro-
tection set for all algorithms is set to {16, 15, 28}, which
is the Nash equilibrium in Sec. IV C. Figure 9 shows that
the maximum generation loss caused by the attacker in
the PPO, AC, and PG algorithms converges to 22.24 MW,
while that in our deep Q-learning algorithm converges to
50.49 MW. Generally, the deep Q-learning algorithm takes
a long time to converge, but the reliability and efficiency
compensate for the slow convergence since real-time com-
putation is not needed in strategy planning. Moreover, due
to the large size of action and state spaces, asymmetric and
stochastic state transitions, and insufficient exploration of
the state space intrinsic to the other algorithms, our deep
Q-learning algorithm significantly outperforms the PPO,
AC, and PG algorithms.

V. DISCUSSION

The problem of devising optimal defense strategies to
protect smart power grids from cyberattacks is of signifi-
cant current interest. Given a grid system, a general prin-
ciple is to simulate attacks to identify the scenario(s) that
can result in the most severe damage to define the best pos-
sible defense strategies. This attacker-defender interaction
problem can be modeled as a stochastic zero-sum game,
for which machine learning can provide effective solutions.
In recent years, conventional RL, in particular, Q-learning,
has been applied to the attacker-defender game problem,
but a fundamental shortcoming is the exponentially grow-
ing state space as the size of the system increases linearly.
We articulate a general deep Q-learning framework to
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solve the game problem in arbitrarily large power-grid sys-
tems. We demonstrate that our deep Q-learning algorithm
typically leads to a Nash equilibrium, and the correspond-
ing strategy represents the optimal solution. We test the
proposed framework under different attack-defense sce-
narios for the W&W 6-bus system used in the current
Q-learning literature and the relatively large IEEE 30-bus
system that cannot be solved with the conventional Q-
learning algorithm. We also compare the results of our
deep Q-learning algorithm to those from three alterna-
tive but state-of-the-art RL algorithms and demonstrate the
superiority of our method.

Immediate future work is expanding the deployment of
the deep RL algorithms to a general sum problem, in which
both the attacker and defender have limited resources that
they can use for their actions. The reward function would
also be different from the one used in this paper, where the
defender attempts to mitigate the consequences, whereas
the attacker has a set objective. The results in this paper
suggest that deep Q-learning can be effective at address-
ing the general sum game to devise the optimal resource
allocation policy.
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APPENDIX: A DETAILED DESCRIPTION OF THE
DEEP Q-LEARNING METHOD

Deep Q-learning is a model-free framework in which
the agent uses a neural network architecture to train a
critic to estimate the future cumulative rewards charac-
terizing how valuable one action is at each state. While
there are reinforcement learning methods for continuous
action spaces (e.g., deep deterministic policy gradient
[44] and twin-delayed deep deterministic policy gradient
[45]), deep Q-learning is only applicable to discrete action
spaces.

The structure of the deep Q-learning method in our work
is shown Fig. 10, which illustrates what happens inside the
attacker block in Fig. 5. Modeling the attacker-defender
interaction as a zero-sum game has the advantage of learn-
ing a single Q function (in a general sum game, learning
multiple Q functions would be necessary). For each state
input, the deep Q-learning structure returns an approxima-
tion of the Q function for that state and all possible actions.
In our problem, by “state” we mean the state of the trans-
mission lines in the power grid, which is denoted as a
binary-valued vector. The attacker’s action is chosen from
the set A = {1, 2, 3, . . .}, where action i means attacking
transmission line i. The defender’s action is a set consisting

of n transmission lines denoted as the protection set. The
environment block in Fig. 10 represents the power grids
studied in this paper. As described in the main text, we
employ DCSIMSEP, a dc load flow simulator of cascading
(separation) in power systems, to simulate the dynamics
of the power grid. Using our modified DCSIMSEP code, we
generate the observation and rewards for each attack (and
defense) actions and feed them to the algorithm in the next
step.

A deep Q-learning agent is represented by a critic
neural network. During the training phase, this critic is
trained to approximate the expectation of the cumulative
future rewards. The critic neural network is parameterized.
During training, the agent tunes the parameter values to
improve the accuracy of the estimation. The neural net-
work structure consists of two fully connected and two
ReLu layers (as detailed in Table I). In particular, a fully
connected layer multiplies the input by a weight vector
and adds a bias into it, which is similar to a nonlinear
principal component analysis for improving the estima-
tion accuracy. The ReLu layers set the negative values of
the input to zero and perform a threshold operation on the
input; these are nonlinear transformations to expedite the
training process.

Here, we model the attacker and defender interaction as
a zero-sum game, with the goal of disabling a fixed num-
ber of transmission lines or maximizing (minimizing) the
generation loss. Both players receive the reward for (or
cost of) their actions. The attacker uses deep Q-learning to
optimize the attack sequence. During the training process,
the agent explores the state space, i.e., the attacker attacks
different transmission lines to observe the results. This
exploration follows a standard greedy algorithm method,
where sometimes the attacker launches random attacks and
at other times the attack is based on what the attacker
has learned so far. The past experiences are stored using
an experience buffer. The critic neural network is updated
based on a pool of experiences randomly sampled from this
buffer. Once an optimal attacking strategy is reached, it is
transmitted to the defender, and the defender will update its
protection set to be better prepared against future attacks.
This process continues until the Nash equilibrium of the
game is reached.

We perform the simulation using MATLAB’s reinforce-
ment learning toolbox. For the deep Q-learning algorithm,
we use the rlDQNAgent object. The options set for rlDQ-
NAgentOptions are listed in Table I. The state space
is defined using rlNumericSpec, and the action space
type is selected as rlFiniteSetSpec. No external lower
or upper limits are applied to these spaces. The envi-
ronment (env object) is customized using the modified
DCSIMSEP. Eventually, the critic is a rlQValueRepresen-
tation object with the neural network layer depicted in
Fig. 10. The codes and simulation results are available at
Github [46].

033005-11



MORADI, WENG, and LAI PRX ENERGY 1, 033005 (2022)

State

Q func	on 

State

“Critic” Neural Network

Attacker

Environment

(Power Grid)

Policy

Fully Connected Layer Fully Connected Layer

ReLu 
Layer

Relu 
Layer

Ac	on

Observa	on

Reward

Input Output

si

Q (s, ai)

p (s, a)

ai+1

Q Value of
Each Ac	on

FIG. 10. Structure of deep Q-learning algorithm used in this paper. Structure describes the processes inside the attacker block in Fig.
5. Environment block contains the power grids simulated using our modified DCSIMSEP algorithm. DCSIMSEP generates the observation
and rewards for each attack (and defense), which are fed to the algorithm in the next step. Through interacting with the environment,
the critic returns an approximation of the Q function for the input state (the state of transmission lines) and all possible actions (attack
actions or protection sets). This critic neural network is parameterized. During training, the agent tunes the parameter values to make
the estimation more accurate. Critic consists of two fully connected and two ReLu layers, the specifications of which are listed in Table
I. Attacker uses this algorithm to optimize the attack sequence. Once an optimal attacking strategy is reached, the defender will update
its protection set (Fig. 5) to be better prepared against future attacks. This repeats until the optimal protection set has been found.
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