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Controlling nonergodicity in quantum many-body systems by reinforcement learning
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Finding optimal control strategies to suppress quantum thermalization for arbitrarily initial states, the so-called
quantum nonergodicity control, is important for quantum information science and technologies. Previous control
methods relied largely on theoretical model of the target quantum system, but invertible model approximations
and inaccuracies can lead to control failures. We develop a model-free and deep reinforcement-learning (DRL)
framework for quantum nonergodicity control. It is a machine-learning method with the unique focus on
balancing exploration and exploitation strategies to maximize the cumulative rewards so as to preserve the
initial memory in the time-dependent nonergodic metrics over a long stretch of time. We use the paradigmatic
one-dimensional tilted Fermi-Hubbard system to demonstrate that the DRL agent can efficiently learn the
quantum many-body system solely through the interactions with the environment. The optimal policy obtained
by the DRL provides broader control scenarios for managing nonergodicity in the phase diagram as compared
to, e.g., the specific protocol for Wannier-Stark localization. The continuous control protocols and observations
are experimentally feasible. The model-free nature of DRL and its versatile search space for control functions
render promising nonergodicity control in more complex quantum many-body systems.
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I. INTRODUCTION

Quantum nonergodicity has been recognized as a cen-
tral concept in out-of-equilibrium quantum dynamical sys-
tems [1–5]. Relevant physical phenomena include spatial
localization such as Anderson [1] and Wannier-Stark local-
ization [2,6], and Hilbert space localization such as quantum
many-body scars (QMBS) [7] and many-body localization
(MBL) [3]. The unique attribute of quantum nonergodicity in
suppressing thermalization has implications to fields ranging
from statistical mechanics [8] to quantum information science
and technologies [9]. Nonergodicity in quantum many-body
systems can be generated by a number of physical mech-
anisms, each leading to rich and complex quantum phases.
Because of the potential of broad applications, controlled
generation of quantum nonergodicity has attracted a great deal
of recent attention [10–26].

Quantum nonergodicity control aims to find optimal con-
trol protocols to suppress quantum ergodicity for diverse
initial states. For example, in Floquet engineering, controlled
realization of QMBS and MBL through periodic driving is
experimentally feasible, but the space of control functions
is often limited due to its periodic nature, such as sinu-
soidal driving [15–18], periodic pulse control [27,28], square
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wave [29] and binary driving control of two distinct noncom-
muting Hamiltonians applied in sequence [19–26], as well as
Floquet automata circuit control [30]. In Floquet engineer-
ing, the optimization of the periodic control has generally
been based on theoretical models [31], where control is op-
timized by the prior knowledge about the physics of the target
system, such as the intrinsic dynamics of the quantum many-
body system including subharmonic response and discrete
time-cystalline [17,27] as well as conservation and symmetry
properties [21,32,33] of such systems. Alternatively, adia-
batic approaches and their extensions such as counterdiabatic
driving [34–36] and quantum leakage minimization [37,38]
combine analytical and numerical methods to find the optimal
protocol along a trajectory in the parameter space. These
methods provide physical insights and interpretation but in-
evitably suffer from model inaccuracies and approximations.
It is worth noting that traditional optimal control methods
such as gradient-free optimal control (e.g., chopped random
basis [39–41]) and gradient-based optimal control (e.g., gradi-
ent ascent pulse engineering [42–45]) were also model based.
While there were works on controlling quantum systems to
a specific target state [46,47] or in entanglement engineer-
ing [48], to our knowledge, model-free approaches have not
been investigated for nonergodicity control in quantum many-
body systems.

In this paper, we develop a deep reinforcement learning
(DRL) based framework for quantum nonergodicity control.
In machine-learning based control, reinforcement learning
(RL) has emerged as an effective model-free approach with
the capability of finding the optimal strategy in a vast and ver-
satile search space of control functions and the ability to adap-
tively discover control strategies that the traditional methods
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tend to overlook [49,50]. RL employs a trial-and-error learn-
ing process to maximize the cumulative rewards through
exploration and exploitation in search for a globally optimal
policy. DRL further enhances these capabilities by using deep
neural networks to optimize the RL agent. In quantum sys-
tems, model-free RL control is capable of generating policies
or value functions based solely on the interactions with the
quantum environment, without any prior knowledge of the
model of that environment [51], in contrast to model-based
DRL methods [52] that employ a prebuilt model of the envi-
ronment to guide policy decisions. One issue is choosing an
algorithm that is particularly appropriate for quantum noner-
godicity control. We choose the proximal policy optimization
(PPO) algorithm [53,54], which is justified, as follows.

In modern machine learning, a number of DRL algorithms
have been developed, including those incorporating the trust
region proximal optimization (TRPO) algorithm [55], deep-Q
network (DQN) [56], and deep deterministic policy gradi-
ent (DDPG) [57]. Specifically, TRPO provides a common
solution to the local minima challenge in optimal policy
search. By confining policy updates within a trust region,
TRPO ensures that policies do not deviate too far from pre-
vious policies. This mechanism not only enhances stability
during the training of the RL agent but also ensures a mono-
tonic improvement in policy search. Among the DQN and
DDPG algorithms, PPO stands out as a state-of-the-art algo-
rithm [53,54]. As a hybrid actor-critic approach, PPO adeptly
navigates the delicate balance between reducing the variance
of policy gradients and diminishing bias linked to the value
functions. Operating within the framework of deep neural
networks, PPO effectively addresses the curse of dimension-
ality, thereby enhancing its applicability and scalability in
complex environments. PPO achieves data efficiency and reli-
able performance of TRPO but with a first-order optimization
procedure, facilitating implementation with reduced compu-
tational complexity.

To demonstrate model-free DRL to achieve nonergodic-
ity control in quantum many-body systems in a concrete
setting, we employ the one-dimensional (1D) tilted Fermi-
Hubbard model, a paradigm in the study of quantum
many-body systems capable of generating a spectrum of
weak ergodicity-breaking phenomena [11,12,14]. Our PPO
agent relies exclusively on the observables and rewards it
receives at each step to make decisions, without requiring
an explicit physical model for policy decisions. There are
two possible physical observables. The first is spin-resolved
imbalance [14], the normalized differences in the occupation
numbers of spin-up and spin-down particles between odd and
even lattice sites. The sceond is fidelity that measures the
square of the norm of the overlap between the time-evolved
quantum state and the initial quantum state based on the full
chain, partial chain, or even just a single site [58–60]. A
common attribute of quantum nonergodic quantities is their
retention of the initial memory over the long time, so the
reward function at each time step is directly linked to the
observation and can be maximized when the time-evolved
observation is consistent with its initial value. The policy is
optimized by maximizing the accumulated reward. From this
perspective, the DRL agent focuses solely on minimizing the
discrepancy between the accumulated fidelity or imbalance

and its initial value. As a result, the agent discovers the
optimal policy through direct engagement with the quan-
tum environment, a hallmark of model-free DRL, making
it possible for the control algorithm to be implemented in
experiments. Another distinct feature of our work, which fa-
cilitates experimental implementation, is the use of partial
observations or even just a single site observation to control
nonergodicity in many-body quantum systems, in contrast to
previous works [46,47] in this field that required the complete
observations of the current quantum state.

In Sec. II A, we introduce the 1D tilted Fermi-Hubbard
model and outline the experimental setting for the observation
and control space. In Sec. II B, we clarify the basic concept
of PPO agent for quantum nonergodicity control. In Sec. III,
we demonstrate the performance of DRL with partial ob-
servations. Section IV provides a physical interpretation and
understanding of the optimal policy derived from DRL. Con-
clusions and a discussion about the limitations and potential
future research are offered in Sec. V.

II. MODEL AND CONTROL METHOD

A. One-dimensional tilted Fermi-Hubbard model

The Fermi-Hubbard or Bose-Hubbard model with a tilted
potential has garnered a great deal of recent interest due to
the emerging new physics that may arise commonly in many
other quantum many-body systems [10–14,58,61–69]. For ex-
ample, the tilted potential breaks the translational invariance
and integrability, and so can induce subdiffusive transport due
to its coupling to mass transport in mass-imbalanced 1D or
2D tilted Fermi-Hubbard models [61–65]. The subdiffusive
property is related to the nature of nonergodic dynamics [61].
Moreover, the tilted potential can lead to phenomena such
as Hilbert space fragmentation [10,11], QMBS [12,13], and
deconfinement dynamics of fractons [66] and non-Fermi liq-
uids [67]. The tilted potential model finds applications across
diverse systems such as ultracold fermions in tilted opti-
cal lattices [11,14], trapped ions [68], and superconducting
qubits [58]. Motivated by experimental breakthroughs and the
nonergodicity induced by a titled potential, we use the 1D
tilted Fermi-Hubbard model to investigate model-free noner-
godicity control.

The Hamiltonian of the 1D tilted Fermi-Hubbard chain
model is [12]

Ĥ =
∑

j,σ=↑(↓)

(−Jĉ†
j+1,σ ĉ j,σ + h.c.+ � jn̂ j,σ ) +U

∑
j

n̂ j,↑n̂ j,↓,

(1)

where J denotes the nearest-neighbor coupling, � is a uniform
tilted potential distributed in position space, and U is the
on-site Coulomb interaction. The Hamiltonian includes the
fermionic creation (ĉ†

j,σ ) and annihilation (ĉ j,σ ) operators, as

well as the number operator n̂ j,σ = ĉ†
j,σ ĉ j,σ . For simplicity,

we consider a lattice with N sites, where the spin-up and
spin-down fermions are equally distributed, denoted by

N↑ = N↓ = N /2.

This setup implies an electron filling factor of ν = 1, as in
a previous work in the Fock basis [12]. We assume periodic
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boundary conditions, where the spin direction is maintained
when a particle hops crosses the boundary. At any given lattice
site, the occupation by the spin-up or spin-down electrons is
represented as |↑〉 or |↓〉, respectively, while an empty site is
indicated as |0〉. A site simultaneously occupied by both spin
up and down electrons, known as a doublon [12], is denoted
by | �〉.

Experimentally, a number of platforms are available for
controlling the system described by the 1D tilted Fermi-
Hubbard chain model. For example, in an optical lattice, a
tilted potential can be modulated by a magnetic field gradi-
ent [11,14] and the on-site Coulomb interaction U is tunable
via a magnetic Feshbach resonance [14,70]. Specifically, the
tilted Fermi-Hubbard model in an optical lattice can be char-
acterized by the imbalance [14]:

I↑(↓) ≡ N ↑(↓)
o − N ↑(↓)

e

N ↑(↓)
o + N ↑(↓)

e

, (2)

where N ↑(↓)
o and N ↑(↓)

e are the occupation numbers of
the spin-up and spin-down electrons at the odd and even
lattice sites, respectively. There are also experimental tech-
niques [18,70–73] that allow for an independent manipulation
of �(t ) and U (t ) over time, offering precise control over the
system’s dynamics. In addition, superconducting qubits quan-
tum simulators [58–60] with an integrated and programmable
large-scale platform offer flexibility in the control protocols,
where quantum tomography measurements offer direct ex-
perimental access to the components of the reduced density
matrix [58–60]. This capability enables precise measurements
of the fidelity [58,60] for both the subchain and the full
chain, denoted as Fsub and Ffull, respectively. In fact, the
time evolution of Von Neumann entanglement entropy for
the subchain has been observed [60]. The computational ap-
proaches for evaluating the nonergodic metrics are described
in Appendix A.

For convenience and clarity, in the following, we present
our results using the time unit τ ≡ h̄/J with the reduced
Planck constant h̄ and the nearest-neighbor coupling strength
J . The potential terms � and U are expressed in units of J ,
as outlined in Appendix A. The quantum dynamics of the 1D
tilted Fermi-Hubbard chain are governed by the Schrödinger
equation. We employ Trotter decomposition [74,75] with the
discrete time step of size dt = 0.005τ . A detailed accuracy
analysis can be found in Appendix A.

B. Method of DRL based quantum nonergodicity control

Quantum nonergodicity describes out-of-equilibrium phe-
nomenon that arise when a quantum system resists thermal-
ization or equilibration even after long time evolution. It
implies that time-evolved quantum states retain the memory
of their initial conditions, remaining closely aligned with them
over prolonged duration. Training a DRL agent to realize
quantum nonergodicity control thus entails maintaining the
time-evolved quantum states as closely as possible to their
initial, pure, and unentangled states throughout the evolution
process. The scenario of DRL training is illustrated in Fig. 1.

The DRL training contains the following components.

e
o

e
o

e
o

e
o

Reward Magnetic field

Imbalance or Fidelity

FIG. 1. Scenario of quantum nonergodicity control by model-
free DRL. The PPO algorithm coupled with neural networks is
used for control. The task involves training a randomly initialized
agent to discover the optimal control protocol for steering quantum
nonergodicity in the 1D tilted Fermi-Hubbard model. This system is
initialized in a specific quantum state within the Fock space. The
observation space is one of the following: (1) imbalance metrics
[I↑,I↓] representing the normalized differences in the occupation
numbers of spin-up and spin-down particles between the odd and
even lattice sites, (2) partial fidelity Fsub that provides a partial view
of the lattice chain dynamics, and (3) full fidelity Ffull that offers a
complete observation of the entire lattice chain. The agent receives
the corresponding rewards, with the maximum value specifically
designed to incentivize the maintenance of the initial state throughout
the time evolution. Following policy updates aimed at maximizing
the cumulative reward over time, the agent intervenes in the quantum
many-body system by applying a designated tilted potential and an
on-site Hubbard potential, which can be experimentally implemented
via a physical control field, such as a magnetic field. As the accumu-
lated reward converges, the degree of quantum ergodicity gradually
diminishes.

Initialization. The environment for the DRL PPO agent to
learn is the quantum many-body system: the 1D tilted Fermi-
Hubbard chain formulated in Eq. (1). The quantum state is
initialized in the Fock space. For example, for a lattice of size
N = 8, two initial states are

| − + − +〉 = |↓↑↑↓↓↑↑↓〉,
| + − + −〉 = |↑↓↓↑↑↓↓↑〉,

where |−〉 ≡ |↓↑〉 and |+〉 ≡ |↑↓〉. For conciseness, we
denote the two kinds of initial states as | − +〉 and | + −〉,
respectively. In a lattice system with open boundaries,
under the approximation � ≈ U � J these states are
in fact QMBS states in the corresponding effective
Hamiltonian model [12]. Other permutations of spin
configurations in the Fock space tested in our work include
|↑↓↑↓↑↓↑↓〉, |↑↓↑↑↓↓↑↓〉, |↓↑↓↑↓↑↓↑〉, |↑↓↑↓↑↑↓↓〉,
and |↑↑↓↓↑↑↓↓〉.

Observation Space. Three physical quantities are used for
the DRL agent to observe the environment: (1) the imbalance
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vector [I↑(t ), I↓(t )] with I↑(↓)(t ) ∈ [−1, 1], (2) partial-chain
fidelity Fsub(t ) ∈ [0, 1], and (3) full-chain fidelity Ffull(t ) ∈
[0, 1]. It is worth noting that, in experiments, detecting im-
balance or partial fidelity, or even simply observing a single
lattice site, can be more efficient than observing the full-chain
fidelity. However, having only partial information about the
quantum system poses challenges for optimizing control pro-
tocols.

Action Space. The configuration of the observation and ac-
tion spaces determines computational and control complexity.
We adopt continuous observation and action spaces for opti-
mal policy search. Specifically, the action space comprises
the tilted potential �(t ) and the on-site Hubbard potential
U (t ), each ranging from −10 J to 10 J. The limited range of
these global control fields is chosen to avoid trivial solutions,
such as ideal Wannier-Stark localization (� � J and U = 0),
which would lead to nonergodic behavior but are restricted
by experimental feasibility. Despite the discretization of time
evolution, the value at each time step remains continuous
within the range [−10, 10] J and can be parameterized by a
deep neural network. This defines a continuous action space
of infinite dimension.

Reward Design. The design of reward functions is tailored
to the quantity of observation. For the imbalance vector, the
reward function takes the form:

R(t ) = −|I↓(t ) − I↓(0)| − |I↑(t ) − I↑(0)|. (3)

Alternatively, if the observation space involves the sub- or
full-chain fidelity, the reward function becomes

R(t ) = −|
√
F (t ) − 1|. (4)

Under this setup, the agent incurs a negative penalty for
deviations from the initial states, encouraging it to maintain
proximity to the initial configuration.

Training. The training of the DRL agent relies on a delicate
balance of exploration and exploitation strategies, which is
crucial for learning the optimal policy to maintain quantum
nonergodicity. In particular, achieving this balance is essential
for uncovering the effective strategies for sustaining quantum
nonergodicity. The DRL agent must explore diverse actions
to comprehend their impact on the quantum system, while
also exploiting established strategies to maximize the reward.
This iterative process requires that the agent interact with the
quantum system, observe the resulting states, and improve its
policy based on the received rewards, as shown in Fig. 1.
As outlined in Appendix B, both the actor and critic utilize
the independent neural networks with the identical size. For
various tasks, we adopt two alternative neural-network con-
figurations with three hidden layers in a multilayer perceptron:
Config A - NN = [256, 128, 64] with a learning rate of 10−4;
Config B - a smaller neural network NN = [128, 64, 32]
with the learning rate 0.5 × 10−3. The PPO agent is
implemented using the Reinforcement Learning Toolbox
in MATLAB.

III. DRL BASED QUANTUM NONERGODICITY
CONTROL: RESULTS

A. Illustration of control performance

The distinct feature of quantum nonergodicity lies in its
capacity to preserve the memory of the initial unentangled
states. In the ideal Wannier-Stark localization scenario [2,6]
with an infinitely strong tilted potential (� � J) and zero
on-site Coulomb interaction (U = 0), the nonergodic property
can be represented by time-evolved quantities, including the
full-chain fidelity F (t ) = 1, the half-chain entropy S (t ) = 0,
and the imbalance I (t ) = I (0) and I↑(↓)(t ) = I↑(↓)(0) for
arbitrarily long time. (Numerical verification for the near-ideal
Wannier-Stark localization is described in Appendix A 6 for
� = 100J and U = 0J .) As a result, the average quantity
over each episode with the maximum time horizon T should
satisfy

〈F〉T = 1, 〈S〉T = 0, 〈I〉T = I (0), and

〈I↑(↓)〉T = I↑(↓)(0).

These physical quantities serve as nonergodic metrics, delin-
eating the deviation from the truth. Evaluating the perfor-
mance of the trained DRL agent relies on its capability to
maintain quantum nonergodicity over an extended time hori-
zon, which involves measuring deviations in the nonergodic
metrics.

In principle, the full-chain fidelity encapsulates the full
quantum information about the quantum state. However,
partial observation can be more efficient and feasible in ex-
perimental settings. For instance, the 1D tilted Bose-Hubbard
model has been successfully realized in superconducting
processors [58]. Moreover, quantum tomography measure-
ments in superconducting qubits allow for direct acquisition
of the elements of the reduced density matrix [60], en-
abling observations such as the half-chain entropy and
subchain fidelity. In optical lattices, ultracold fermions can
be controlled by a magnetic field to simulate the 1D tilted
Fermi-Hubbard model with spin-resolved imbalance [14].
These developments make nonergodic metrics accessible in
experiments.

The nonergodic metrics are expected to iteratively ap-
proach the nonergodic truths during the training phase and
demonstrate the retention of the initial state memory during
the testing phase. In the training phase with the time hori-
zon T = 5τ , the observation results in two distinct tasks:
the Fsub task with Nsub = 1 or 4 sites and the [I↑, I↓] task.
Figures 2(a) and 2(b) show, respectively, the convergence
of the subchain fidelity 〈F〉T and the spin-resolved average
imbalance 〈I↑(↓)〉T . Figure 2(c) shows that a convergence of
the consequent full-chain fidelity 〈F〉T has been achieved,
agreeing with the behaviors in Figs. 2(a) and 2(b). During the
testing phase for 0 < t � 5τ , the full-chain fidelity F (t ) and
half-chain entropy S (t ), and the imbalances I (t ) and I↑(↓)(t )
exhibit oscillations about their respective nonergodic truths, as
shown in Figs. 2(d), 2(g), and 2(h). The oscillatory behavior
is originated from Bloch oscillations [14,76] and the optimal
control protocol, as shown in Figs. 2(e) and 2(f). The full-
chain fidelity closely approaches the nonergodic truth value
during the training, where quantum many-body thermalization
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Trained Unexplored

(b)(a)

Trained Unexplored

Full-chain

Subchain

(d)(c)

(f)(e)

(h)(g)

FIG. 2. Evaluation of quantum nonergodicity control by DRL agent. The 1D tilted Fermi-Hubbard chain has the size N = 14. The
observations are performed using (1) subchain fidelity Fsub with Nsub = 1 or 4 sites from the left-hand side of the chain, and (2) the imbalance
vector [I↑,I↓] from the entire chain. These options constitute distinct tasks shown with different colors in (a)–(h), with Nsub = 1, 4 by
Fsub, and the [I↑,I↓] tasks in blue, orange, and yellow curves, respectively. The initial state for both tasks is identical: | − + − + − +−〉.
(a),(b) Training phase for the Fsub and [I↑,I↓] tasks, respectively. The learning curves chart the average fidelity 〈F〉T and the average
imbalance 〈I〉T over the time horizon T = 5τ in episodes, reflecting episodic learning with policy updates and quantum state resets after each
episode. (c) Convergence of the resulting 〈F〉T within the full chain, which agrees with that of the subchain task in (a) and the imbalance task
in (b). (d)–(h) Results from the testing phase, where the test time horizon is T = 10τ , encompassing the unexplored capabilities of the DRL
agent. The nonergodic metrics, including F (t ),S(t ), and I(t ), demonstrate the success of nonergodicity control through the optimal action
flow discovered by the DRL agent, as depicted in (e) and (f). The neural network size for the two tasks with Nsub = 1 and I↑(↓) is from Config A,
and that with Nsub = 4 is from Config B (specified in Sec. II B).

is greatly suppressed, as can be seen from evolution of the
half-chain entropy. The spin-resolved imbalances also oscil-
late about the nonzero initial value with a small amplitude.
The three nonergodic metrics, distinguished by three differ-
ent colors, exhibit comparable behaviors, indicating similar
performance for the Fsub and [I↑, I↓] tasks. In the untrained
region 5τ < t � 10τ , the nonergodic metrics oscillate more
wildly with a slightly increased amplitude as compared to the
trained time region in Figs. 2(d), 2(g), and 2(h), implying the
potential role of time prediction and controllability of DRL in
the unexplored region.

B. Scalability and complexity of deep reinforcement learning

In general, RL deals with sequential decision-making prob-
lems, so the complexity of the PPO agent algorithm involves
not only the number of samples but also the quality and variety
of the quantum environment that the agent encounters. For
the tilted Fermi-Hubbard chain, the lattice size determines

the dimension of the Hilbert space in which rich quan-
tum states or phases arise. A longer time horizon increases
the time complexity for the PPO agent. When applied to
a quantum many-body system, a key attribute of the PPO
agent algorithm is the scalability of performance with the
lattice size, training time complexity, and the sample num-
ber. These factors can directly influence the feasibility of
the DRL control in larger systems. To study the scalability,
we define the number of samples as the sample complex-
ity, in which the time complexity can be directly encoded,
and systematically test the performance for various lattice
sizes and training time horizons. The results are shown in
Fig. 3. Specifically, Figs. 3(a)–3(c) present the results for
lattice sizes N = [6, 8, 10, 12, 14], demonstrating stable per-
formance of DRL even in the unexplored time horizons and
suggesting the feasibility of extending DRL nonergodicity
control into a larger Hilbert space. For the worst-case sample
complexity, i.e., the number of observation points at each
time over the whole training process, is about 106 − 107 for
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FIG. 3. Scalability and complexity of DRL performance and training. The observation is full-chain fidelity for lattice sizes N =
[6, 8, 10, 12, 14] with the initial state | − +〉. (a) The training outcomes, denoted by 〈F〉ZT , are assessed through Z = 10 episodes and
calculated from the last ten episodes of the training phase. This metric provides a quantitative measure of the performance of the PPO
agent in multiple training sessions. Two different training time horizons are also used: T = 5τ and 10τ . The average full fidelity 〈F〉ZT
and the standard deviation characterize the scalability and stability of the learning process. (b), (c) Testing results for the time horizon
T = 20τ (including the unexplored horizon), in terms of the full-chain fidelity and half-chain entropy. The PPO agent is trained under
two different time horizons: T = 5τ and 10τ . The error bars denote the standard deviation within a single episode, providing a measure
of the variability and reliability of the agent’s performance across different training duration. (d) Worst-case sample complexity and
the corresponding training episodes across various training time horizons. The worst-case scenarios are represented by the blue curves
and corresponding axes, which is from seven distinct initial states that include | − + − +〉, | + − + −〉, and five other permutations of
spin configurations: |↑↓↑↓↑↓↑↓〉, |↑↓↑↑↓↓↑↓〉, |↓↑↓↑↓↑↓↑〉, |↑↓↑↓↑↑↓↓〉, and |↑↑↓↓↑↑↓↓〉. The training episodes are determined by
assessing the qualitative convergence of the full-chain fidelity 〈F〉T for a chain of size N = 8, as represented by the pink curve and axis.
The neural network configuration is Config A. (e) Sample complexity and the corresponding training episodes versus lattice chain size for the
fixed initial state | − +〉. The full-chain fidelity varies distinctly across two time horizons. For T = 5τ , the DRL employs the neural network
configuration of Config B, shown by dark blue and pink curves. For a longer time horizon of T = 10τ , the training DRL utilizes the Config
A, as illustrated by light blue and pink curves.

the seven tested initial states in Fig. 3(d). Especially, the
sample complexity shows that the performance is largely
independent of the lattice size, as a result of the noner-
godicity control mechanism, i.e., the tendency to gradually
converge to the approximated control in the single-particle
picture.

IV. PHYSICAL INTERPRETATION
AND ROBUSTNESS OF DRL

To understand the mechanism of quantum nonergodicity
control, we recall the phenomenon of Anderson localiza-
tion [1,77,78] in the single-particle picture. It arises from

independent and identical random chemical potentials as-
signed to each lattice site described by the tight-binding
model. The disorders characterized by the magnitude of
the range in the random on-site potential, if sufficiently
strong, will disrupt the quantum ergodicity. Single-particle
localization can also occur without disorders. For example,
substituting the random potential with a uniform electric field
can lead to Wannier-Stark localization [2,6]. This effect has
been observed under a sufficiently strong tilted potential in a
superconducting quantum processor [58].

The picture of single-particle localization provides in-
sights into the phenomenon of MBL [3]: the augmentation of
Anderson localization with constant on-site Coulomb interac-
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tion [73]. It was also found that quasirandom disorders in the
chemical potentials in the Aubry-Andre model [4,5,70] can
lead to MBL. Moreover, a strong random Coulomb interac-
tion at each site has been demonstrated to facilitate the onset
of MBL [73,79,80]. The spatial distribution of the electric
field further facilitates MBL in the presence of many-body
interactions. For instance, Stark many-body localization [81]
emerges under a nonuniform electric field when a harmonic
term is present that breaks the pure linearity of the electric
field. In addition, sufficiently strong random fields superim-
posed on a uniform electric field can trigger MBL [82]. It
is worth noting that MBL resides within the realm of strong
ergodicity breaking, whereas QMBS corresponds to weak er-
godicity breaking, both violating the eigenstate thermalization
hypothesis [83–85], where the quantum dynamics of QMBS
depend on the initial conditions rooted in the disconnected
structure in the Hilbert space.

Deep RL delivers optimal control to induce nonergodic-
ity in a quantum many-body system. Figures 2(e) and 2(f)
show the optimally controlled trajectories for �(t ) and U (t ),
respectively. For the control based on �(t ), it tends to con-
verge to a constant value: either �/J = 10 or −10, where the
sign is due to the different titled directions within the lattice
chain. Alternatively, incorporating random perturbations into
the constant � also represents a potential control protocol by
DRL. For optimal protocol based on U (t ), it oscillates within
the original search range: −10 � U (t )/J � 10. To understand
the quantum phases that DRL learns and why it converges to
some specific values as exemplified in Figs. 2(e) and 2(f), we
simplify the optimal protocol of �(t ) as �(t )/J = �0/J =
10, where �0 is a constant, or incorporates random pertur-
bation as �(t ) = �0 + hw(t ) with the constant h/J ∈ [0, 10]
and random number w(t ) ∈ [−1, 0] at each time step, ensur-
ing it stays within the range �(t )/J ∈ [0, 10] as in Fig. 2(e).
For the optimal protocol of U (t ), we simplify it as U (t ) =
Uw′(t ) with the constant U/J ∈ [0, 10] and random numbers
w′(t ) ∈ [−1, 1] at each time step, limiting U (t )/J between
−10 and 10. For convenience, we use the term “Deep RL-
aligned protocol” to denote the simplified control protocols.
The quantum phase generated by the DRL-aligned protocol
is referred to as the “Deep RL-aligned phase”. Comparing
the DRL-aligned and other quantum phases, especially the
QMBS with the constant � ≈ U � J , entails testing four
pairs of actions: (�,Uw′(t )), (�,U ), (�0 + hw(t ),U ), and
(�0 + hw(t ),Uw′(t )), as illustrated in Fig. 4.

We use the average fidelity 〈F〉T for the whole chain to
interpret DRL and characterize the quantum phases, which
is justified, as follows. In episodic learning, the DRL agent
collects a sequence of observations, rewards, and actions
within each episode, subsequently updating its policy to maxi-
mize the accumulated reward for future training. Observations
could consist of fidelity or imbalance, with the reward func-
tion directly linked to the observation and aimed at converging
to its initial value. As a result, DRL is designed to focus solely
on minimizing the discrepancy between the accumulated fi-
delity or imbalance and its initial value. Plotting the average
fidelity over one episode offers a way to understand the
physical mechanisms of learning with DRL. While imbalance
only provides partial information about the quantum state,
fidelity encompasses the entire chain, making it an appropriate

WS

DRL-aligned

Ergodic

WS

QMBS

Ergodic

Ergodic

WS

QMBS

Ergodic

WS

DRL-aligned

(a) (b)

(c) (d)

FIG. 4. Physical interpretation and robustness of DRL for quan-
tum nonergodicity control in terms of the phase diagrams of the
fidelity. (a)–(d) Control parameter space for the full-chain fidelity
〈F〉T in different parameter planes: (�,Uw′(t )), (�,U ), (�0 +
hw(t ),U ), and (�0 + hw(t ),Uw′(t )), where the random numbers
w(t ) ∈ [−1, 0] and w′(t ) ∈ [−1, 1] are independent, identical, and
uniformly distributed at each time step for a fixed �0 = 10J , and
constants �,U , and h. The fidelity 〈F〉T is calculated using Z =
100 disorder averages, with the system initialized in the state | −
+ − +〉 in a lattice of size N = 8 over the time horizon T = 10τ

that matches the testing time horizon of DRL in Fig. 2.

indicator. We note that the average fidelity was used to char-
acterize the quantum phases in a previous work [82].

To understand why the optimal protocol converges to a
specific region, as demonstrated in Figs. 2(e) and 2(f), we
examine the quantum phase diagram to reveal what the DRL
agent has learned for nonergodicity control tailored to the
quantum many-body system. The testing time horizon T dic-
tates the temporal span for constructing the quantum phase
diagram of 〈F〉T . Despite the short observation time, the
phase diagram highlights the DRL-aligned regime and distinct
quantum phases, as illustrated in Fig. 4 for the full lattice
model, where QMBS, thermalization or ergodic, and Wannier-
Stark phases are displayed. More details are shown by the
related time-dependent nonergodic metrics in Fig. 5.

For � ≈ U � J , the first-order Schrieffer-Wolff trans-
formation [86] is applicable, which can be used to derive
the effective model of the full lattice system [12]. The
QMBS states | − +〉 and | + −〉 associated with weak er-
godic breaking exhibit switching dynamics within a hypergrid
structure characterized by the time-dependent nonergodic
metrics, as described in a previous work [12]. The inherent
tower structure of the overlap between QMBS states and the
eigenstates [12] is indicative of a concentration about some
specific energy levels and violation of eigenstate thermaliza-
tion hypothesis. In our work, we use the full lattice model
with periodic boundary conditions and the approximation
� ≈ U ≈ 10J to find QMBS states with behavior similar to
that of the corresponding states in the effective model, as
shown in Figs. 4(b) and 4(c) and Figs. 5(a)–5(d). The phase
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(a)

(b)

(c)

(d)

(e)

FIG. 5. Comparison of DRL control with other protocols in
terms of the quantum phases by using time-dependent noner-
godic metrics. These metrics include the (a) full-chain fidelity
F (t ), (b) imbalance I(t ), (c) spin-down imbalance I↓(t ), and
(d,e) the half-chain Von Neuman entropy S(t ). The analysis is
conducted over the time horizon of T = 25τ in a lattice of
size N = 8. Beginning with the QMBS state | − +〉 [12], the
QMBS phase is illustrated by the yellow curves for �/J = U/J =
6, 8, 10 (from lighter to darker shades). A random perturbation
yields the QMBS state in purple for (�0 + hw(t ),U ) = (10 +
10w(t ), 5.2)J, (10 + 5.8w(t ), 7.3)J, (10 + 0.5w(t ), 10)J , displayed
in progressively darker curves. Also shown are DRL results and
two other quantum phases, the Wannier-Stark and thermalization
phases. Seven initial states are used, including the typical QMBS,
| − + − +〉, | + − + −〉 and five other permutations of spin configu-
rations: |↑↓↑↓↑↓↑↓〉, |↑↓↑↑↓↓↑↓〉, |↓↑↓↑↓↑↓↑〉, |↑↓↑↓↑↑↓↓〉,
and |↑↑↓↓↑↑↓↓〉 (plotted in identical colors). The Wannier-Stark
phase is characterized by constants �/J = 10 and U/J = 0, while
thermalization features constants �/J = 1,U/J = 2. The three
quantum phases serve as benchmarks for evaluating the performance
of DRL. The blue curves depict the testing outcomes of DRL, av-
eraged over Z = 100 independent testing episodes. The standard
deviations are also shown. Deep RL is trained to learn the quantum
system using the full-chain fidelity observable with the training time
of T = 25τ and neural network size of Config A as described in
Sec. II B.

diagram of 〈F〉T in Fig. 4(b) reveals the presence of the
QMBS phase along the direction indicated by the orange
arrow, with a darker blue area nearby. This finding agrees
with an earlier result [12] on the U − � phase diagram fea-
turing the first peak of the imbalance. Figure 4(c) reveals that
random perturbations to the tilted potential result in a similar
QMBS pattern, suggesting the robustness of the QMBS states.
Additional results supporting the robustness are shown by the
time-dependent nonergodic metrics in Figs. 5(a)–5(d), where
the perturbations lead to a quicker decay of the revival am-
plitude in the full-chain fidelity and imbalance, though with a
slight rise in the entanglement entropy.

Within the time horizon T = 10τ , there is a tendency to-
wards ergodic behavior in the quantum dynamics, as indicated
by the white arrows in the phase diagrams in Figs. 4(a)–
4(c). For �/J = 1 and U/J = 2, the short-time thermalization
process is demonstrated in Figs. 5(a)–5(d). There is a swift
decline and stabilization in the fidelity and imbalance, accom-
panied by a rapid convergence of the entanglement entropy.
The Wannier-Stark phase can usually be characterized by
� � J,U but, due to the limited action range, the action pair
of � = 10J and U = 0J emerges as the closest approximation
to the ideal Wannier-Stark phase, as shown in both Figs. 4
and 5. The regions in the vicinity of the Wannier-Stark point
in the phase diagrams exhibit a tendency towards the Wannier-
Stark phase, as indicated by the black arrows in Figs. 4(a)–4(
d). In terms of the time-dependent nonergodic metrics, the
Wannier-Stark phase serves as an ideal benchmark for initial
memory retention and nonergodicity control. It maintains the
initial values of the fidelity, imbalance, and entropy, in spite of
the Bloch oscillations [76] of the period tB = 2π/�. Within
the search space �/J ∈ [−10, 10] and U/J ∈ [−10, 10], the
Wannier-Stark phase can simply be regarded as a specific
point at �/J = 10 and U/J = 0, which is sensitive to constant
perturbations from the on-site Coulomb interaction U as indi-
cated in Figs. 4(b) and 4(c) but is robust against perturbations
hw(t ) in the tilted potential �0 to some extent, as shown in
Figs. 4(c) and 4(d). The DRL-aligned protocol also reveals
the robustness against perturbations for Uw′(t ), as shown in
Figs. 4(a) and 4(d), highlighting a broad control scheme where
DRL converges to maximize the accumulated fidelity.

While the results in Fig. 4 are from the DRL-aligned
protocol, the real DRL control flow and the corresponding
performance of the nonergodic metrics are demonstrated in
Fig. 5. In particular, Fig. 5(e) reveals a consistency between
the DRL protocol and Wannier-Stark fidelity in the short term,
exhibiting the same period of Bloch oscillations. However,
in the long run, a slight deviation in the nonergodic metrics
emerges, representing the trade-off between robustness and
performance of nonergodicity control in the DRL action pro-
tocol.

The control method can be extended to training over longer
time horizons, where some unexplored characteristics of the
Wannier-Stark phase can be revealed. Over an extended pe-
riod, the Wannier-Stark phase exhibits both short-term Bloch
oscillations, as illustrated in Fig. 5, and envelope oscillations
in the time-dependent series, as shown in Fig. 6(a). The period
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| ↓↑↑↓↓↑↑↓⟩

| ↑↓↑↓↑↓↑↓⟩

(a)

(c)

(b)

FIG. 6. Interpretation of the envelope oscillation of the Wannier-Stark fidelity in a lattice chain with N = 8 sites. (a) Periodic oscillations
in the envelope amplitude of the time-dependent fidelity of the full lattice chain, along with the short-time Bloch oscillation. The grey and
blue curves represent simulations starting from the same initial state | − + − +〉, with different action pairs: (�,U ) = (100, 0)J and (10, 0)J ,
respectively. The yellow curves are initialized with another state |↑↓↑↓↑↓↑↓〉, with the action pair (�,U ) = (10, 0)J . (b) Ideal Wannier-Stark
phase visualized by the probability distribution in the 2D parameter plane spanning space and time. (c) Time slice of the space-time panel for
t ∈ [0, 10]τ, [20, 30]τ, [50, 60]τ , which displays the probability distribution in the basis |0〉, | �〉, |↑〉, and |↓〉 at each site location.

of the envelope oscillations is positively correlated with the
tilted potential, while the period of the Bloch oscillations has
a negative correlation with it. The amplitude of the Bloch
oscillations and the shape of the envelope oscillations are
influenced by the initial state conditions, as illustrated in
Figs. 5(e) and 6(a), respectively. The ideal Wannier-Stark
phase is shown in Fig. 6(b), which can be used as a bench-
mark. Figure 6(c) reveals that the spatial oscillations of a
quantum state contribute to the envelope oscillation. In gen-
eral, simulating quantum many-body systems is challenging
due to the difficulty of exponential growth in the computa-
tional complexity with the system size, but experiments are
possible. With the numerical validation of the feasibility of
DRL for controlling a small system, the training methodol-
ogy can in principle be extended to experiments with larger
systems.

V. DISCUSSION

In complex quantum many-body systems, thermalization
leading to ergodicity is a major source of decoherence.
Developing methods to suppress thermalization to achieve
nonergodicity is essential for applications, e.g., in quantum
information science and technology. AI-based optimal con-
trol provides the possibility of controlling complex quantum
many-body systems to achieve nonergodicity. Utilizing the
1D tilted Fermi-Hubbard model as a paradigm, we developed
a model-free DRL approach to controlling quantum noner-
godicity, where the DRL agent interacts with the quantum
environment stipulated by the quantum many-body system.
During the online training phase, the DRL agent, specifically
a PPO agent, collects time series data in real time within one
episode, which include observations, rewards, and actions. A
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criterion to choose the type of observations is their experimen-
tal accessibility in real time. For the 1D tilted Fermi-Hubbard
chain, both the full or partial chain fidelity [58,60] and the
spin-resolved imbalance [14] satisfy this criterion. The re-
ward values are determined by the observable variable and
a function tailored to meeting the nonergodic objective that
the metrics preserve the initial memory over a long time.
Consequently, the reward function is crafted to maintain the
time-dependent nonergodic metric as close to its initial value
as possible. The stochastic policy dictates subsequent actions,
�(t ) and U (t ) for the tilted Fermi-Hubbard chain, can phys-
ically be implemented through a properly designed magnetic
field [11,14,70] within an episode. This policy is a stochastic
probability distribution over all possible actions conditioned
on the given observable at that time. The policy is updated
after each episode to maximize the accumulated reward over
one episode. The well-trained PPO agent is saved after a
predetermined number of training episodes designed to ensure
the complete convergence of the mean reward training curve.
In the online testing phase during which the optimal policy
determined by training is not updated, the well-trained PPO
agent applies the optimal nonergodic control to the same
quantum system in real time. The optimal policy of the well-
trained PPO agent gives the subsequent actions based on its
observations. The control is completely data driven in the
sense that, in the whole training and testing process, no prior
knowledge about the target quantum many-body system is
required: all needed is model-free DRL with experimentally
available observables. The quantum phases that the DRL
agent has learned can be used to understand the physical
mechanisms underlying the optimal control policy.

Two patterns arising from the DRL control are that, ini-
tially, the absolute value of the titled potential term tends to
reach a constant maximum value, while the on-site Coulomb
interaction appears random within the original search range
(DRL-aligned policy). We explored all possible combina-
tions of these two patterns and discovered a rich array of
quantum phases through various phase diagrams, including
ergodic, QMBS, and Wannier-Stark phases. Both the QMBS
and Wannier-Stark phases are robust against perturbations to
the tilted potential, but the latter is sensitive to the constant
on-site Coulomb potential and tends to thermalize. In contrast,
the DRL-aligned policy offers a broad control scenario for
perturbations to either the tilted term or the on-site Coulomb
interaction. By comparing these phases with the actual DRL
policy over time series, we observed that the DRL policy
closely aligns with the Wannier-Stark phase. A physical anal-
ysis indicates that, under the condition of an infinite tilted
term, the Wannier-Stark phase approaches the ideal state,
which is indicative of single-particle localization. This pro-
vides a simplistic protocol for our control task. In general,
the DRL protocol offers superior control robustness, with per-
formance comparable to the Wannier-Stark phase under the
nonergodicity control objective. Another appealing feature of
DRL nonergodicity control is that the observations from even
just one site suffice for realizing the control goal, facilitating
experimental implementation.

In a recent work [87], the authors employed a model-
based machine learning method, specifically the variational
entanglement-enhancing field, to optimize the magnetic field

in a quantum spin chain system, thereby enabling persistent
ballistic entanglement spreading. By adjusting the local pa-
rameters in the Hamiltonian, this approach accelerates the
saturation of ergodicity beyond that which would typically
occur in a homogeneous, time-independent Hamiltonian. This
result is somewhat distinct from that of our work. In par-
ticular, while the authors of Ref. [87] sought to expedite
ergodicity from an initial product state, the goal of our work
is to prevent its onset. In spite of the different control ob-
jectives, both their work and ours highlight the potential of
using a time-dependent control field to enable a wide range
of physical implementations, whether for accelerating or sup-
pressing ergodicity. The use of machine learning to optimize
control fields in quantum systems provides a powerful and
versatile tool for tackling more complex quantum control
tasks.
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APPENDIX A: 1D TILTED FERMI-HUBBARD MODEL

1. Fock basis

The behavior of interacting fermions, constrained to move
along a 1D lattice and interacting via the on-site Coulomb in-
teraction, is described by the 1D tilted Fermi-Hubbard model
in the presence of an external linear potential. Here, fermions
are represented as spin-1/2 particles with spin up (down),
with the respective numbers N↑ and N↓ among the N lattice
sites. Accordingly, the number of bases for the spin up (down),
denoted by d↑ (d↓), is determined as

d↑(↓) =
[

N
N↑(↓)

]
. (A1)

In the Fock space, the entire basis is constructed by combining
the basis states for spin up and spin down:

ĉ†
i1

ĉ†
i2
...ĉ†

iN↑
ĉ†

j1
ĉ†

j2
...ĉ†

jN↓
|0〉,

which corresponds to one-to-one pairs of tuples:

((i1, i2, ..., iN↑ ), ( j1, j2, ..., jN↓ )) = (α, β ), (A2)

where a symbol, such as iN↑ or jN↓ , records the occupied site
location of the N↑-th spin up or N↓-th spin down particle at
the lattice site.

The total number of possible pairs of tuples is d↑ × d↓,
representing the Hilbert space dimension in the 1D tilted
Fermi-Hubbard model with particle-number conservation.
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The general quantum state over the 1D spin-lattice can be
expanded in the Fock basis as

|ψ〉 =
∑
α,β

|α, β〉〈α, β|ψ〉 ≡
∑
α,β

M (ψ )
αβ |α, β〉. (A3)

Computationally, the quantum state can be denoted by the
matrix M (ψ ) of dimension d↑ × d↓.

The Hamiltonian governing the time evolution of the quan-
tum state is

Ĥ = −J
∑

j

(ĉ†
j+1,↑ĉ j,↑ + h.c.) − J

∑
j

(ĉ†
j+1,↓ĉ j,↓ + h.c.)

+U
∑

j

n̂ j,↑n̂ j,↓ + �
∑

j

jn̂ j,↑ + �
∑

j

jn̂ j,↓,

where ĉ j and ĉ†
j are the fermionic annihilation and creation

operators, respectively, and n̂ j is the particle number operator
distinguished by spin up and down. The parameters J,U , and
� denote the nearest-neighbor hopping strength, the on-site
Coulomb interaction, and the strength of the tilted potential,
respectively. We use periodic boundary conditions so as to
maintain the continuity of the state across the boundary. For
example, the transition of a spin-up fermion from the last
site to the first site is represented as ĉ†

1,↑ĉL,↑. The periodic
boundary conditions ensure that the lattice behaves as if it
were looped, allowing for seamless transitions of particles
across the boundary.

To obtain the time evolution of the Schrödinger system, we
refer to previous works [14] and modify the Hamiltonian as

Ĥ = (Ĥhop
↑ )d↑×d↑ ⊗ Id↓×d↓ + Id↑×d↑ ⊗ (Ĥhop

↓ )d↓×d↓

+ (Ĥdiag)(d↑×d↓ )×(d↑×d↓ ),

where each spin type only hops within its respective subspace
Ĥhop and the diagonal components of Ĥdiag are represented as
V :

Vα,β =
N↑∑

k=1

Vik ,↑ +
N↓∑

k=1

Vjk ,↓

+ U |(i1, i2, ..., iN↑ ) ∩ ( j1, j2, ..., jN↓ )|,
where |(i1, i2, ..., iN↑ ) ∩ ( j1, j2, ..., jN↓ )| denotes the count of
the identical elements between the two sets. Consequently, the
Schrödinger equation in the 1D tilted Fermi-Hubbard model
is simplified to

ih̄|ψ̇〉 = (Ĥhop
↑ ⊗ I↓)|ψ〉 + (I↑ ⊗ Ĥhop

↓ )|ψ〉 + Ĥdiag|ψ〉,
(A4)

where the dot over the quantum state |ψ〉 denotes its time
derivative, specifically:

|ψ̇〉 ≡ ∂|ψ〉/∂t =
∑
α,β

Ṁ (ψ )
αβ |αβ〉.

Normalizing both sides of Eq. (A4) with the hopping strength
J , we obtain a dimensionless equation. The time unit is
defined as τ ≡ h̄/J , and the potential terms � and U are
expressed in units of J .

The Schrödinger equation can be recast in the matrix form,
expanded in the Fock basis |αβ〉, through the following trans-

formation:

(Ĥhop
↑ ⊗ I↓)|ψ〉 =

∑
γ β

M (ψ )
γ β

(∑
α

Hhop
↑,αγ |α〉↑

)
⊗ |β〉↓

=
∑
αβ

(
Hhop

↑ M (ψ )
)

αβ
|αβ〉,

(I↑ ⊗ Ĥhop
↓ )|ψ〉 =

∑
αγ

M (ψ )
αγ |α〉↑ ⊗

⎛
⎝∑

β

Hhop
↓,βγ |β〉↓

⎞
⎠

=
∑
αβ

(
M (ψ )Hhop

↓
)

αβ
|αβ〉,

Ĥdiag|ψ〉 =
∑
α,β

M (ψ )
αβ Ĥdiag|αβ〉

=
∑
α,β

(V ◦ M (ψ ) )αβ |αβ〉.

The matrix form of the Schrödinger equation is given by

ih̄Ṁ (ψ ) = Hhop
↑ M (ψ ) + M (ψ )Hhop

↓ + V ◦ M (ψ ). (A5)

Based on the Lie-Trotter-Suzuki product formula [74,75], we
can represent the quantum dynamics through iterative time
evolution of matrices:

M (ψ )(t + δt ) ≈ e−iδt◦V (t ) ◦ e−iδtHhop
↑ M (ψ )(t )e−iδtHhop

↓ , (A6)

where the symbol “◦” denotes the element-wise multiplication
and the exponential operator in e−iδt◦V (t ) means the element-
wise exponentiation.

2. Full-chain observable

To illuminate the time evolution process of quantum many-
body systems, certain experimentally measurable physical
quantities are utilized. One such quantity is fidelity F (t ),
which quantifies the overlap between the initial quantum state
and its time-evolved counterpart. Mathematically, fidelity is
expressed as

F (t ) = ∣∣〈ψ0|e−iĤt |ψ0〉
∣∣2 = ∣∣∑

α,β M∗(0)
αβ M (t )

αβ

∣∣2
.

When the quantum state extends over the entire chain, the
resulting full-chain fidelity F captures the complete quantum
information embedded in the state.

Another metric is imbalance, which represents the normal-
ized differences in the particle occupation numbers between
odd and even lattice sites:

I = No − Ne

No + Ne
, (A7)

where No and Ne denote the occupation numbers at odd and
even lattice locations, respectively. The expected value of the
imbalance for a specific quantum state is calculated as

〈I〉 =
∑
αβ

|Mαβ |2Iαβ. (A8)

The spin-resolved version of the imbalance is defined as

I↑(↓) = N ↑(↓)
o − N ↑(↓)

e

N ↑(↓)
o + N ↑(↓)

e

, (A9)
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(a) (b) (c)

(d)

(g)
(h)

(e) (f)

FIG. 7. Numerical error analysis of Trotter decomposition for the full-chain fidelity and imbalance over short- and long-time horizons
with various lattice numbers. (a), (d) Benchmark for Trotter decomposition in the short-time regime (T = 20τ ) obtained by the fourth-order
Runge-Kutta method with the time step dt = 10−4τ . This setup discretizes time into n = 104 steps per time unit τ . The L2-norm compares the
Trotter and Runge-Kutta methods in terms of the fidelity and imbalance. The system dynamics are periodically driven by �(t )/J = 10 sin(2πt )
and U (t )/J = 10 cos(2πt ), depicted by the orange curves and axes. (b), (e) L2-norm of the Trotter decomposition errors between n = 200 and
n = 400 steps per unit τ in the short time regime. The driving signals, �(t ) and U (t ), are uniformly and randomly distributed within the
range [−10, 10]J over time, represented by the red curves and axes. (c), (f) Numerical error by the Trotter method over a longer time scale
(T = 100τ ) for constant � = −10J and randomly driven U (t ), uniformly distributed within [−10, 10]J , shown as the purple curves and axes.
(g,h) The time evolution of the full-chain fidelity and imbalance with n = 200 discrete steps per time unit τ in a system of size N = 14.

indicating the occupation imbalance for spin-up and spin-
down particles.

3. Accuracy of Trotter decomposition

To quantify the numerical errors of simulated observ-
ables derived from the Trotter decomposition, we use the
Lp-norm [14,89]:

∣∣FRunge − Fn
Trotter

∣∣
p =

(∫ T
0 |FR(t ) − Fn

T(t )|pdt
)1/p

,

∣∣IRunge − In
Trotter

∣∣
p

=
(∫ T

0 |IR(t ) − In
T(t )|pdt

)1/p
,

with p = 1, 2, . . .. For p = ∞, the norms are defined as

∣∣FRunge − F n
Trotter

∣∣
∞ = max(|FR(t ) − F n

T (t )|),∣∣IRunge

∣∣ − In
Trotter|∞ = max(|IR(t ) − In

T (t )|),

where FRunge and IRunge are obtained by the fourth-order
Runge-Kutta method with the time step dt = 10−4τ , equiv-
alent to n = 104 steps per time unit τ .

4. Quantum dynamics

The Runge-Kutta method, which directly solves the ma-
trix equation (A5), serves as a benchmark for assessing the
Trotter method. Using two different discrete steps n = 200
and n = 400 per time unit τ can yield the numerical error
in the Trotter decomposition. We assess the numerical errors
across three distinct driven protocols: (1) periodic driving:
�(t )/J = 10 sin(2πt ) and U (t )/J = 10 cos(2πt ), (2) random
driving: �(t ) and U (t ) uniformly distributed in ∈ [−10, 10]J ,
and (3) special protocol: constant � = −10J with uniformly
random driving U (t ) in the interval [−10, 10]J . For these
scenarios, the L2-norm metrics of the fidelity and imbalance
reveal certain scaling behaviors across various lattice sizes
N = 6, 8, 10, 12, 14, as shown in Figs. 7(a)–7(f). These met-
rics are consistent with respect to both the number of discrete
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steps n per time unit τ and the scaled time t (τ ). It can be seen
that the protocol combining constant � with random U (t )
outperforms the other two control protocols in retaining the
memory of the quantum state, as illustrated in Fig. 7(g).

5. Subchain observable

To calculate the observables of a quantum state on a sub-
chain, the bases of the Hilbert space need to be reorganized
and divided into two subspaces: l and r. Observables in the
subspace l are obtained by tracing out the opposing subspace
r. The number of lattice sites in the subchain l , denoted as Nl

and counted from the left, defines the scope of this subspace.
Accordingly, the number of bases in the left-hand l and right-
hand r subchains are dl = 4Nl and dr = 4Nr , respectively,
with the relationship Nl + Nr = N . Each lattice site hosts
one of the four possible states: empty |0〉, spin up |↑〉, spin
down |↓〉, and doublon | �〉 (spin up and down simultane-
ously). The total number of bases is given by

dl × dr = 4N , (A10)

reflecting the exponential scaling with the number N of lattice
sites. In this framework, the quantum many-body state can be
expressed as

|ψ〉 =
∑
l,r

ψl,r |l〉 ⊗ |r〉, (A11)

where l and r are tuples with

l ≡ (l1, l2, . . . , lNl ),

r ≡ (r1, r2, . . . , rNr ).

Here, li, r j = 0, 1, 2, 3 corresponds to four possible states for
each site. In the quantum many-body system, particle number
is conserved, so the size of the Hilbert space for the configu-
ration with N /2 spins up and down is described by Eq. (A1).

Mapping the focused quantum state into this subchain sub-
space without particle number conservation, the elements in
the density matrix are sparsely distributed and structured as
follows:

ρ = |ψ〉〈ψ | =
∑

l,l ′,r,r′
ψlrψ

∗
l ′r′ |l〉〈l ′| ⊗ |r〉〈r′|.

After tracing out the right-hand subchain subspace r, the re-
duced density matrix ρl is given by

ρl ≡ Trrρ =
∑

r′′
〈r′′|ψ〉〈ψ |r′′〉

=
∑
l,l ′

∑
r,r′,r′′

ψlrψ
∗
l ′r′δrr′′δr′r′′ |l〉〈l ′| = ψψ†. (A12)

Similarly, the reduced density matrix for subspace r, denoted
as ρr , can be obtained as ρr = (ψ†ψ )T . In Eq. (A11), the
matrix ψ is used to represent the pure quantum many-body
state, with the abstract notations l and r corresponding to the
row and column in state matrices, respectively.

To enable a calculation of the Von Neumann entanglement
entropy in a numerically efficient manner, we carry out a
singular value decomposition of the quantum many-body state
matrix ψ :

ψdl ×dr = U�V †, (A13)

where �dl ×dr is the rectangular diagonal matrix, Udl ×dl and
Vdr×dr are unitary matrices. The nonzero entries along the
main diagonal of � represent the real singular values of the
matrix ψ . Consequently, the reduced density matrices can be
written rewritten as

ρl = U��†U †,

ρT
r = V �†�V †.

To calculate the half-chain entropy, we have dl = dr = d
and ��† = �†� = �2. The diagonal elements �2

i of the

(a)

(c) (d) (h) (i) (j)

(b) (e) (f) (g)

FIG. 8. Near-ideal Wannier-Stark localization. (a)–(d) The probability of observing the quantum many-body state in four distinct states
|↑〉, |↓〉, |0〉, and | �〉, at each lattice site. (e)–(j) Time evolution of the nonergodic metrics, including imbalance, full-chain fidelity, and
half-chain entropy. The initial state is configured as |↑↓↑↓↑↓↑↓〉, with a significantly tilted potential � = 100J and zero on-site Coulomb
interaction, U = 0J , on an N = 8 lattice.
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square matrix �2 correspond exactly to the eigenvalues of the
reduced density matrices ρl and ρr . The Von Neuman entan-
glement entropy within the half chain can then be determined
by

Sl = Sr = −
d∑

i=1

�2
i ln �2

i .

Given that �2
i can also be interpreted as the square of the

singular value �i of the pure quantum many-body state matrix
ψ , calculating the entanglement entropy primarily involves
determining the singular values of this state matrix, which has
the dimensions d × d .

Another key metric for subchains is the fidelity Fsub, de-
fined as the overlap between the reduced density matrices ρl at
the initial time ρl (0) and at a later time ρl (t ). Mathematically,
Fsub is expressed as

Fsub(t ) = (Tr[
√√

ρl (t )ρl (0)
√

ρl (t )])2, (A14)

where the square root of ρl is computed as
√

ρl = U�U †, (A15)

where the following has been used:
√

ρl
√

ρl = U�U †U�U † = U�2U † = ρl .

The fidelity metric Fsub(t ) thus quantifies how much the sub-
chain quantum state at time t retains the characteristics of the
subchain state at time t = 0, according to the evolution of its
reduced density matrix.

6. Near-ideal Wannier-Stark localization

Ideal Wannier-Stark localization is typically characterized
by the freezing and localized patterns of particles within the
spatial lattice space, often due to the influence of a large, tilted
electric potential. Figures 8(a)–8(d) illustrate successful parti-
cle freezing around the initial state over a long time horizon:
T = 100τ , under a significantly tilted potential � = 100J .
The subsequent time-evolved series of nonergodic metrics
closely approximates the ideal Wannier-Stark case: I (t ) =
I (0),F (t ) = F (0) = 1, and S (t ) = S (0) = 0, in spite of the
noticeable decay due to the finite tilt of the potential in
numerical computations. Effectively, Fig. 8 displays near-
ideal Wannier-Stark localization. Note that Bloch oscillations
are still observable in the zoom-in region of Figs. 8(e),
8(h)–8(j).

APPENDIX B: DEEP REINFORCEMENT
LEARNING ALGORITHMS

1. PPO pseudoalgorithm

PPO is a standard, policy-gradient based RL method. It
works by alternating between gathering data through inter-
actions with the environment and optimizing a surrogate
objective function that has been clipped. PPO aims to balance
exploration and exploitation by restricting the magnitude of
policy updates. This feature contributes to PPO’s robustness
and efficiency, making it well-suited for a wide range of
learning tasks. Here we explain the steps and the mathematics
behind of the PPO algorithm.

Pseudoalgorithm: PPO agent
Input: Initial actor π (a|s; θ ), critic V (s; φ), clipping factor ε,
policy learning rate αθ , value function learning rate αφ , number of
episodes Nep, number of epochs K , and number of minibatches M.
Output: Optimized policy parameters θ .
1: for E pisode = 1 to Nep do:

a: Collect trajectory D with policy πθ .
b: Compute advantage estimates Ât with Vφ .
c: Compute return Ĝt .
d: Update policy πθ by stochastic gradient ascent and value

function Vφ by stochastic gradient descent:
for epoch = 1 to K do:

i: Divide D into M mini-batches.
ii: for each miniBatch in D do:

- Compute probability ratio rt (θ ).
- Compute objective LCLIP(θ ).
- Compute square-error loss LV F (φ).
- Update θ ← θ + αθ∇θ LCLIP(θ ).
- Update φ ← φ − αφ∇φLV F (φ).

2: return θ .

Generalized advantage estimation. A trajectory is denoted
by D:

D = (s0, a0, R0, s1, . . . , sT −1, aT −1, RT −1), (B1)

which consists of tuples (state st , action at , reward Rt ). We
employ generalized advantage estimation [90], which lever-
ages a value function estimator to calculate the advantage
estimates, Ât , for each time step within a trajectory. Specifi-
cally, the advantage estimate at time t is given by

Ât = δt + (γ λ)δt+1 + . . . + (γ λ)T −t−1δT −1, (B2)

where the temporal difference error, δt , is defined as

δt = Rt + γV (st+1; φ) − V (st ; φ) (B3)

and δt signifies the immediate advantage of selecting an action
under the policy π (at |st ; θ ). The stochastic policy π (at |st ; θ )
represents the conditional probability distribution over the
action space at given the state st . The value function V (st ; φ)
is employed to evaluate the quality of state st based on the
cumulative reward received. The discount factor γ ∈ (0, 1)
(typical value γ = 0.997) and the hyperparameter λ (com-
monly λ = 0.95) modulate the weighting of future rewards.
In essence, the generalized advantage Ât at time t aggregates
discounted future advantages up to the terminal stage T − 1,
enabling more stable and efficient policy updates.

Return. The return Ĝ(D) is defined as the cumulative
reward collected throughout a trajectory D, represented by
Ĝ(D) = ∑T −1

t=0 Rt with T denoting the time horizon. For ease
of mathematical treatment, a discounted version is often em-
ployed, termed the finite-horizon discounted return:

Ĝ(D) =
T −1∑
t=0

γ t Rt .

This formulation acknowledges the contribution of future re-
wards while assigning them diminishing importance relative
to more immediate rewards. The return at each individual time
step, Ĝt , is calculated as the sum of the rewards from the

013256-14



CONTROLLING NONERGODICITY IN QUANTUM … PHYSICAL REVIEW RESEARCH 7, 013256 (2025)

FIG. 9. A magnified view of the optimized nonergodic control flow from 9τ to 10τ shown in Figs. 2(e) and 2(f). (a) and (b) display the
optimized control flow when the observation is the fidelity with respect to Nsub = 4 and Nsub = 1, respectively. (c) and (d) present the optimized
control flow when the observation is the imbalance [I↑,I↓].

current time step t onwards, discounted by γ to reflect the
time value of the rewards:

Ĝt =
T −1∑
k=t

γ k−t Rk .

Within the proximal policy optimization framework, this re-
turn can be derived from the generalized advantage estimate
by

Ĝt = Ât + V (st ; φ), (B4)

where Ât represents the advantage estimate at time t and
V (st ; φ) is the value function’s estimate of the state’s value.

Square-error loss and clipped surrogate objective function.
The square-error loss, denoted by LV F (φ), measures how far
the value function’s predictions (V̂ (st ; φ)) are from the actual
returns (Ĝt ) received, which is given by

LV F (φ) = Êt [(V̂ (st ; φ) − Ĝt )
2], (B5)

where Êt [ ] is the empirical average over a minibatch of
data. The clipped surrogate objective function in PPO can be
expressed as

LCLIP(θ ) = Êt [min(rt (θ )Ât , clip(rt (θ ), [1 − ε, 1 + ε])Ât )],
(B6)

which ensure that updates to the policy (how the agent decides
to act) are not too drastic. This is accomplished by using a
“clip” mechanism that keeps the ratio of the new policy to the
old policy (rt (θ )) within a certain range, defined as

rt (θ ) = πθ (at |st )

πθold (at |st )
. (B7)

If the new policy is exactly the same as the old one, the ratio
is one; Otherwise the ratio will deviate from one. The clip-
ping keeps this ratio from going beyond the specified range,

[1 − ε, 1 + ε], which helps slow down policy updates and
makes learning more stable.

APPENDIX C: OPTIMIZED NONERGODIC
CONTROL FLOW

The appearance of whether the optimal control flow is
“wild” depends on the time scale. In our study, the time step
size dt is constant, so the control flow is optimized as a piece-
wise constant control signal, as illustrated in Fig. 9. A recent
work [91] and a previous related theoretical study [92] demon-
strated that generating square waves on a 1 ns time scale is
experimentally feasible in superconducting platforms, which
are then viable candidates for simulating the 1D tilted Fermi-
Hubbard model [58–60]. In our work, the time step is set to
dt = 0.005τ , where τ is determined by the nearest-neighbor
coupling J as τ = h̄/J . Consequently, a 1 ns time step corre-
sponds to coupling strength J on the order of 1 MHz, which
is realistically achievable in superconducting qubits [93,94].
A reward function similar to the one used in our work was
previously applied to the single-particle quantum control in
systems with an upside-down potential [95] or the nonlinear
double-well potential [96], demonstrating the versatility and
effectiveness of our optimized reward function. We have also
tested incorporating the control field into the reward function,
but this resulted in significantly worse performance.

A fast Fourier transformation analysis indicates that the
solutions for �(t ) and U (t ) from Figs. 2(e) and 2(f) do not
have any dominant Fourier mode but instead have a broad
spectrum of frequencies. This complex frequency structure
is consistent with the requirement of optimal nonergodic
control, which involves intricate manipulation of the system
dynamics. The DRL-aligned protocol described in Sec. IV for
physical interpretation and insights was developed based on
this observation.
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