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Data-driven model discovery with Kolmogorov-Arnold networks
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Data-driven model discovery of complex dynamical systems can be done using sparse optimization, but
it has a fundamental limitation: sparsity in that the underlying governing equations of the system contain
only a small number of elementary mathematical functions. Examples where sparse optimization fails abound,
including the classic Ikeda or optical-cavity map in nonlinear dynamics, as well as a wide variety of ecosystems.
Another approach is based on machine learning, e.g., deep neural networks, which excels at capturing system
behavior from data but functions as black boxes, offering little insight into how inputs influence the outputs.
We propose a general model-discovery framework based on the Kolmogorov-Arnold networks (KANs) that
are not constrained by the sparsity condition. The KAN framework with a simple structure is capable of
accurately capturing the complex behavior of dynamical systems that do not meet the sparsity requirement
while offering greater interpretability compared to conventional neural networks. This interpretability provides
insights into the dynamics generating the data, which are typically inaccessible in traditional black-box function
approximation methods. We demonstrate nonuniqueness in that a large number of approximate models of the
system can be found that generate the same invariant set with the true statistics such as the Lyapunov exponents
and Kullback–Leibler divergence. An analogy to shadowing of numerical trajectories in chaotic systems is
pointed out.
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I. INTRODUCTION

Uncovering the underlying model of dynamical systems
from observational or measurement data is a central pursuit in
science. While it is desirable to obtain explicit mathematical
equations governing the system, developing a fully data-
driven approach is challenging, particularly when the physical
mechanisms underlying the observed dynamics are unknown
or incomplete. Finding the governing equations from data can
be useful for tasks such as better understanding the system,
predicting the future state, and designing control strategies
[1]. In nonlinear dynamics and complex networks, modeling
systems from data has been an active area of research [2–16].
In recent years, two main approaches have been extensively
studied: machine learning and sparse optimization.

Machine learning techniques have been applied to mod-
eling dynamical systems [17–20]. Techniques such as deep
neural networks are adept at predicting the system behavior
from data [21]. For example, convolutional neural networks,
recurrent neural networks [22–24], transformers [25], and
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reservoir computing [26–28] have been used for tasks such
as predicting chaotic systems [29–32], parameter tracking
[33], control of complex trajectories [34], and digital twins
of nonlinear dynamical systems [20,35], anticipating critical
transitions and tipping points [18,36]. While these methods
excel in predictive accuracy, they often function as black
boxes, lacking interpretability and making it difficult to ex-
tract explicit governing equations.

In nonlinear dynamics, the problem of constructing ex-
plainable mathematical models from data was investigated
quite early, where a method based on calculating the in-
formation contained in sequential observations to deduce
the deterministic equations was proposed [1]. Other ap-
proaches include approximating a nonlinear system by a
large collection of linear equations [37–39], fitting differ-
ential equations to chaotic data [40], exploiting chaotic
synchronization [41] or genetic algorithms [9,42], an inverse
Frobenius-Perron approach to designing a dynamical system
“near” the original system [4], and finding the least-squares
best approximation for modeling [8]. In recent years, an
approach that has gained considerable interest is sparse op-
timization, where the system functions are assumed to have
a sparse structure in that they can be represented by a small
number of elementary mathematical functions, e.g., a few
power- and/or Fourier-series terms. What is needed then is
estimating the coefficients associated with these terms. In
a high-order series expansion, the coefficients with the vast
majority of the terms are zero, except for a few. The problem
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of finding these nontrivial coefficients can then be formulated
[10,43] as a compressive-sensing problem [44–48]. Under the
same idea, a method known as SINDy (sparse identification
of nonlinear dynamics) was later developed, which has gained
popularity [49,50].

The sparse-optimization approach is effective for systems
whose governing equations are sufficiently simple in the sense
of sparsity, such as the chaotic Lorenz [51] and Rössler [52]
oscillators whose velocity fields contain a small number of
low-order power-series terms. However, sparsity can be self-
sabotage because, while it is the reason that the approach is
powerful, it also presents a fundamental limitation: it works
only if the system equations do in fact have a sparse structure.
Dynamical systems violating the sparsity condition arise in
physical and biological situations. A known example is the
Ikeda map that describes the propagation of an optical pulse
in a cavity with a nonlinear medium [53,54], whose func-
tions contain an infinite number of series expansion terms.
Many ecological systems and gene-regulatory circuits whose
governing equations have a Holling-type of structure [55,56]
also violate the sparsity condition [57]. For these systems, the
sparse-optimization approach to model discovery completely
fails.

In this paper, we articulate a general approach to uncov-
ering the models of dynamical systems, including those that
do not satisfy the sparsity condition - a common limitation
of the existing sparse optimization methods. We consider a
dynamical system described by

dx/dt = F(x) or

xn+1 = F(xn), (1)

including where F(x) does not possess a sparse structure. The
goal is to find an approximation of F(x), denoted as G(x),
such that the system

dx/dt = G(x), or

xn+1 = G(xn) (2)

produces the identical dynamical behaviors as the original
system (e.g., the same attractor with the same statistical
and dynamical invariants to within certain numerical preci-
sion). Our method leverages Kolmogorov-Arnold networks
(KANs), a recent computational framework for represent-
ing complex mathematical functions [58,59], rooted in the
classical Kolmogorov-Arnold theorem [60–62] that any mul-
tivariate mathematical function can be decomposed as a sum
of single-variate functions. KANs lie between the traditional
sparse identification methods such as SINDy that fail for
systems lacking a sparse structure and neural network-based
approaches such as reservoir computing that can model com-
plex dynamics but provide little insight into the underlying
system. By decomposing high-dimensional problems into
simpler, interpretable univariate functions, KANs address the
shortcomings of both types of methods.

To demonstrate the effectiveness of KANs, we apply our
framework to benchmark systems (Ikeda map and a chaotic
ecosystem) where the SINDy-based approach fails to recover
the governing equations. We show that some function G(x) in
Eq. (2) in an implicit form can indeed be found by the KANs.
Additionally, we illustrate the robustness of KANs against
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FIG. 1. Basics of KAN. (a) Kolmogorov-Arnold theorem and
neural network. (b) Schematic illustration of two different structures
(blue and green) leading to two different functions M(x) and L(x)
that generate the same dynamics as xn+1 = F(xn) in the relevant
phase-space domain.

noise and its ability to enhance interpretability by analyzing
synthetic data from the Atlantic Meridional Overturning Cir-
culation (AMOC) model. Our results show that, by leveraging
limited domain knowledge, KANs provide a bridge between
purely data-driven techniques and the traditional model-based
approaches, expanding the frontier of research on dynamical-
system discovery.

II. METHOD

A. Kolmogorov-Arnold networks

KANs are based on the Kolmogorov-Arnold representa-
tion theorem, which states that any continuous multivariate
function can be decomposed into a finite set of univariate
functions and their combinations [58,59] as illustrated in
Fig. 1(a). Conventional neural networks have limitations such
as their “black-box” nature and high computational costs, but
KANs can potentially alleviate these limitations as a promis-
ing alternative in machine learning. Furthermore, in some
applications a conventional deep neural network may have a
large number nodes with an equally large number of weights
and biases, even though the nodes all have the same activation
functions. A KAN, however, may be dramatically smaller
with dozens of nodes, all empirically fitted with different
threshold functions that give meaning and interpretability to
the results.
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1. Activation functions

In the KAN’s numeric training phase, each one-
dimensional (1D) function is parametrized as a B-spline
curve, where B-splines, or basis splines, are piecewise-defined
polynomials that offer a flexible and efficient way to represent
functions. The B-spline is defined by its degree, a set of con-
trol points, and a knot vector that determines where and how
the polynomial pieces connect. In a KAN, the 1D function
fi(x) can be expressed as a linear combination of B-spline
basis functions Bj (x):

fi(x) =
∑

j

c jB j (x), (3)

where c js are the learnable coefficients and one of the hy-
perparameters (see Appendix A for a detailed description of
these hyperparameters) that are optimized during the training
process to best fit the data. However, the activation functions
in KANs are not limited just to B-splines; they can incorporate
a combination of a basis function b(x) (often a residual func-
tion) and the B-spline function. Each final activation function
can then be written as

φi(x) = b(x) + fi(x), (4)

where b(x) = x/(1 + e−x ). They, along with the structure of
the KAN, play a crucial role in determining the number of
model parameters (see Appendix B for more details).

Besides B-splines, various activation functions for KAN
have been proposed, such as wavelets [63], radial basis func-
tions [64], Fourier series [65], finite basis functions [66],
Jacobi basis functions [67], polynomial basis functions [68],
and rational functions [69].

While KANs do not yield the governing equations of the
underlying system, they offer a greater level of interpretability
than conventional machine-learning methods that often oper-
ate as “black boxes”. The interpretability of KAN structure
lies in the accessibility of the internal mechanisms of the
model, such as the activation functions Fi(x), Gi(x), and Ki(x)
shown in Fig. 1(b). This provides a more transparent view
of how inputs are transformed into outputs, which allows for
a better understanding of the underlying dynamics and how
each function influences the system’s behavior. This balance
between performance and interpretability positions KANs as a
promising alternative method for learning and understanding
the dynamics of complex systems.

The accessibility of the activation function in the KAN
structure is illustrated in Fig. 1(b) that presents two different
KAN structures, highlighted in blue and green, respectively.
The blue KAN has two inputs and two outputs without any
hidden nodes, where the functions

M1 = F1(xn) + F3(yn),

M2 = F2(xn) + F4(yn)

are linear combinations of the activation functions Fi for
i = 1, . . . , 4. The green structure has two extra hidden nodes
where

L1 = K1(G1(xn) + G3(yn)) + K3(G2(xn) + G4(yn)),

L2 = K2(G1(xn) + G3(yn)) + K4(G2(xn) + G4(yn)).

Both structures produce the same dynamics in the relevant
phase-space domain (yellow shaded area), where the dynam-
ics outside of this domain can be different.

2. Training and testing

To assess the performance of KANs in discovering dynam-
ical systems, we develop a structured training and evaluation
protocol. Our framework follows a three-stage process, in
which the ground truth data is divided into three distinct
subsets: a training set, a validation set, and a testing set. Each
stage serves a specific purpose in ensuring both short-term
predictive accuracy and long-term dynamical fidelity.

Open-loop training and validation. We employ an open-
loop strategy for training, where KANs are trained to perform
one-step-ahead predictions based on input-output mappings.
The training dataset is used to optimize the network parame-
ters, where KANs learn the underlying system dynamics by
minimizing the error between predicted and actual values.
Subsequently, validation is performed on a separate set of
inputs that the network has never encountered before. This
ensures that KANs generalize beyond the training data and
do not overfit to any specific patterns. For both training and
validation, the primary performance metric is the Root Mean
Square Error (RMSE), which quantifies the deviation of the
predicted from the actual values.

Closed-loop testing for long-term predictions. After es-
tablishing the short-term predictive accuracy, we assess the
ability of KANs to capture the long-term system behavior in a
closed-loop configuration. Here, KANs operate autonomously
by recursively feeding their own predictions back into the sys-
tem to generate multistep forecasts. This assessment verifies
whether KANs have effectively learned the system’s overall
dynamics and can remain bounded within the attractor over
extended time horizons. To validate the long-term perfor-
mance, we compare the predicted trajectories with the ground
truth from the third part of the dataset. This comparison relies
on a statistical analysis to ensure that KANs preserve the
key dynamical properties and accurately replicate the system’s
behavior over time.

B. Dynamical invariants and statistical analysis

A statistical analysis offers quantitative metrics to as-
sess how accurately a KAN model replicates the underlying
behavior of the target system, facilitating performance com-
parison in the testing phase. Quantities commonly used in the
statistical analysis are Lyapunov exponents, power spectra,
correlation dimensions, and statistical distances, allowing us
to assess the accuracy and fidelity of the KAN-produced mod-
els in capturing the complex dynamics of the target system.
Here we provide a brief description of each of these statistical
quantities.

1. Lyapunov exponents

Lyapunov exponents are critical indicators of the dynam-
ical behavior of a system, particularly in identifying chaos.
They measure the average rate at which trajectories in the
system diverge or converge along different local directions in
the phase space. To compare the dynamics of KAN-produced
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models with the ground truth, we calculate the Lyapunov
exponents for both. For the KAN model, we compute the
Lyapunov exponents using the standard numerical approach
that involves the Jacobian matrix and QR decomposition [70].
First, we initialize a set of orthonormal vectors that evolve
according to the dynamics of the system. At each time step,
we numerically calculate the Jacobian matrix J (x) of the KAN
model, which represents the local linearization of the system.
We use the standard finite difference method to evaluate the
derivatives [71,72].

The numerically calculated Jacobian matrix allows us to
update the orthonormal vectors, whose dynamical evolution
is tracked over time and their growth rates are calculated. To
maintain the orthonormality and prevent numerical errors, we
perform QR decomposition on the product of the Jacobian
matrices at each step. The logarithms of the diagonal ele-
ments of the resulting upper triangular matrix R give the local
Lyapunov exponents. By averaging these values over a long
integration time, we obtain the exponent values.

2. Power spectrum

Power spectra provide another way to compare the KAN-
produced model with the ground truth. It is a fundamental tool
for analyzing the frequency components of a time series. It
reveals how the power of a signal is distributed over different
frequencies, thus providing insights into the periodic or aperi-
odic nature of the dynamics. To compare the KAN-produced
model with the ground truth, we compute the power spectra
for both time series. This involves transforming the time series
data into the frequency domain using the Fourier transform.
The resulting power spectrum allows us to identify dominant
frequencies and their corresponding amplitudes.

3. Correlation dimension

The correlation dimension is a measure of the fractal struc-
ture of a system’s attractor in phase space. It quantifies the
complexity of the dynamical system by describing how the
number of points within a given distance scales with the dis-
tance. To compare the KAN-produced model with the ground
truth, we calculate the correlation dimension for both sets of
time series data. This involves reconstructing a phase space
from the time series and then using methods such as the
Grassberger-Procaccia algorithm to estimate the correlation
dimension [73].

4. Statistical distance: Three measures of divergence

Statistical distances are another measure of comparing
the similarities of the two attractors in the phase space.
Commonly used measures include the Kullback-Leibler di-
vergence and Hellinger or Total-Variation divergence [74,75].
The measures characterize the differences between the dis-
tributions on the attractors from different angles. More
specifically, The Kullback-Leibler divergence measures how
one probability distribution Q diverges from a second, refer-
ence probability distribution P:

KL(P||Q) =
∑

i

P(i) log

(
P(i)

Q(i)

)
,

which is asymmetric and indicative of how much information
is lost when Q is used to approximate P. The Hellinger dis-
tance, derived from the Bhattacharyya coefficient, measures
the similarity between two distributions:

H(P, Q) =
√∑

i

(√
P(i) −

√
P(i)

)2
,

which is symmetric and gives the maximum possible dif-
ference between P and Q. The Total-Variation divergence
measures the maximum difference between the probabilities
assigned to the same event by two distributions:

δ(P, Q) = 1

2

∑
i

|P(i) − Q(i)|,

which is symmetric and gives the overall difference between
the two distributions in terms of their probability masses.

For all three divergence measures, a smaller value indicates
greater similarity between the distributions, while a larger
value suggests a more significant difference. To compare the
KAN model with the ground truth, we first estimate the prob-
ability density functions of both attractors using the kernel
density estimation method. We then compute the Kullback-
Leibler, Hellinger, and Total-Variation divergences.

III. RESULTS

A. KAN model discovery of the Ikeda optical-cavity map

From the standpoint of data-driven model discovery, the
Ikeda map represents perhaps one of the most difficult kinds
of systems – far there has been no success with any sparse
optimization method. The two-dimensional map is given by
[53,54]:

xn+1 = 1 + μ(xn cos(φn) − yn sin(φn)), (5)

yn+1 = μ(xn sin(φn) + yn cos(φn)), (6)

where φn = 0.4 − 6(1 + x2
n + y2

n )−1 and μ is a bifurcation
parameter (we fix μ = 0.9, so that the map generates a
chaotic attractor in the phase-space domain (x ∈ [−1, 2], y ∈
[−2.5, 1]). Sparse optimization fails for this system because
in either the power- or the Fourier-series expansions or a
combination of both, an infinite number of terms are required
to represent each map function –see Appendix C for more
details.

We first use a [2,4,2] KAN structure, as shown in Fig. 2(a),
which has 2 input, 4 hidden, and 2 output nodes. The time-
series data contain 104 points, with 80% allocated for training
and the remaining 20% for testing. The training process con-
tains 50 iterations with the following hyperparameter values:
k = 3 (cubic B-splines), grid size G = 10 for the splines,
regularization parameters λ = 0 and λentropy = 10, learning
rate 0.1, and a zero initial random seed (see Appendix A
for a detailed description of these hyperparameters). Train-
ing is administered in a feedforward process in which the
KAN is trained to minimize the difference between the in-
put and output so as to predict the evolution of the Ikeda
map into the future with the input of the dynamical vari-
ables from the past. The training and validation losses as a
function of time are shown as the red and black curve in
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FIG. 2. KANs applied to the Ikeda map. (a) A KAN structure
with 2 input, 4 hidden, and 2 output nodes. (b) Training (red) and
validation (black dashed) loss curves. (c) Chaotic attractor during
the validation phase (blue - ground truth; orange - KAN produced).
(d), (e) Time series during the validation. The blue and orange traces
overlap well, signifying a high training accuracy. (f) Chaotic attractor
during testing (blue - ground truth; orange - KAN produced). (g),
(h) The corresponding time series. While the predicted time series
diverges from the ground truth after a few iterations due to chaos,
the KAN generates the correct attractor in the pertinent phase-space
domain. The true Lyapunov exponents of the chaotic attractor are
[0.5025, −0.7263]. The KAN predicted model gives the values of
the two exponents as [0.5075, −0.7182], agreeing with the ground
truth.

Fig. 2(b), and the KAN-produced attractor and time series
during the validation phase in comparison with the ground
truth are shown in Figs. 2(c)–2(e), respectively. The training
loss decreases rapidly to near zero, indicating high training
accuracy and efficiency with skill. For the testing phase,
we use the same set of parameter values but replace the
original input data point with the output of the KAN at
each iteration, where the KAN structure operates as an au-
tonomous system. The KAN predicted attractor and time
series in the testing phase are shown in Figs. 2(f)–2(h), re-
spectively. While the KAN-predicted time series diverges
from the ground truth after a few iterations due to chaos, the
predicted attractor agrees with the ground truth well, indi-
cating that the KAN has generated the correct model of the
Ikeda map.

To demonstrate that a KAN can be readily modified to
generate a different representation of the Ikeda map but with
the same chaotic attractor, we construct a more sophisti-
cated architecture than the one in Fig. 2(a), as shown in
Fig. 3(a). The validation and prediction results are shown in
Figs. 3(b)–3(h).

(f

(a) (b)

(c) (d)

(e)

(g)

(h)

)

FIG. 3. A KAN configuration generating a different represen-
tation of the Ikeda map but with the same chaotic attractor. The
KAN has 2 input, 10 hidden, and 2 output nodes. Legends are the
same as those in Fig. 2. The two Lyapunov exponents of the KAN
predicted model are [0.5033, −0.7311], which again agrees with the
true exponents.

B. KAN model discovery of a chaotic ecosystem

For generality, we now present results from a continuous-
time system, a chaotic ecosystem [76] of three dynamical
variables:

Ṅ =N

(
1 − N

K

)
− xpyp

NP

N + N0
, (7)

Ṗ =xpP

(
yp

N

N + N0
− 1

)
− xqyq

PQ

P + P0
, (8)

Q̇ =xqQ

(
yq

P

P + P0
− 1

)
, (9)

where N , P, and Q are the populations of the primary pro-
ducer, the herbivore, and the carnivore, respectively, and the
bifurcation parameter K is the carrying capacity. For K =
0.98 and other parameters set as xp = 0.4, yp = 2.009, xq =
0.08, yq = 2.876, N0 = 0.16129, and P0 = 0.5, the system
exhibits a chaotic attractor [76]. A power-series expansion
of the velocity field contains an infinite number of terms,
violating the sparsity condition - see Appendix C for more
details.

Our KAN architecture has a [3,3] structure (3 input and
3 output nodes, no hidden nodes), as illustrated in Fig. 4(a).
The neural network was trained using 10 000 data points
of sampling interval δt = 0.5 (corresponding to about 1155
cycles of oscillation), with 90% of the data allocated for
training and the remaining 10% for testing. The training
process involved 100 iterations for the following hyperparam-
eter values: cubic B-spline (K = 3), grid size G = 3, λ = 0,
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(a)

(c)
(d)

(e)
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FIG. 4. KAN applied to a chaotic ecosystem. (a) KAN struc-
ture with 3 input and 3 output nodes. (b) Validation and testing
loss curves. (c) KAN generated attractor during the validation
phase (orange), which agrees well with the ground truth (blue).
(d)–(f) KAN generated time series (orange) in agreement with
the true time series (blue). (g)–(j) Similar to (c)–(f) but for the
testing phase. Due to chaos, the KAN generated time series di-
verges from the true ones from the same initial condition, but
the KAN attractor agrees with the true one. The true Lyapunov
exponents are [0.0095, −5.8 × 10−6, −0.3932]. The exponents of
the KAN-generated attractor are consistent: [0.0053, 0, −0.2288].
The errors arise from the implicit numerical evaluation of the
Jacobian matrix.

λentropy = 10, learning rate 0.5, and a zero initial random
seed. Figure 4(b) shows the rapid decrease in the training
and testing loss with increasing epochs. The KAN gener-
ated attractor and the corresponding time series during the
training phase are shown in Figs. 4(c)–4(f), where a compar-
ison with the ground truth indicates successful training. The
KAN attractor and the time series generated during the testing
phase are shown in Figs. 4(g)–4(j), demonstrating the KAN’s
forecasting power.

In addition to these results, we demonstrate the perfor-
mance of KAN in discovering dynamical systems for three
chaotic discrete maps: Logistic, Circle, and Henon maps. Re-
sults are presented in Appendix D.

TABLE I. Lyapunov exponents of the Ikeda dynamics.

���������Sys
LEs

L1 L2

Ground Truth 0.502494 −0.726278
Ikeda 1 0.507518 −0.718239
Ikeda 2 0.503313 −0.731115

C. Statistical analysis

The calculated Lyapunov exponents for the KAN-produced
Ikeda and food-chain systems are listed in Tables I and
II. Despite different models, the resulting Lyapunov expo-
nents are essentially the same, revealing the same attractor.
Figure 5 shows that the KAN model power spectra capture
the underlying periodicities and complex oscillations present
in the ground truth dynamics for both the Ikeda optical-cavity
map and the food-chain system. The results listed in Table III
show a close match in the correlation dimensions, indicating
that the KAN model is fully capable of replicating the true
attractor of the target system.

The divergence measures results for both the Ikeda and
Food-Chain systems and is presented in Table IV, where
distribution P corresponds to the ground truth model and dis-
tribution Q is from the KAN-produced model. To ensure the
reliability and fairness of the comparison, we also compare the
probability density function of the ground truth Ikeda attractor
P with that of a random attractor Q with the following re-
sults: KL(P||Q) = 1.0532, H (P, Q) = 0.6024, and δ(P, Q) =
0.5999. These results demonstrate that the KAN-produced
attractors are essentially statistically identical to the ground
truth (within numerical errors), highlighting the effectiveness
of the KAN model in capturing the true system’s behavior.

D. Robustness of KAN model discovery against noise

The Atlantic Meridional Overturning Circulation (AMOC)
plays a critical role in regulating global climate patterns but is
challenging to monitor directly due to the difficulty to obtain
long-term observational data. As a result, researchers have
utilized fingerprint analysis techniques, such as sea surface
temperature (SST), as proxies to assess the AMOC strength
and anticipate potential tipping [77–81]. SST has proven to be
a reliable fingerprint due to its sensitivity to changes in ocean
circulation and heat transport in the North Atlantic [82–84].

Ditlevsen and Ditlevsen [85] introduced a one-dimensional
(1D) stochastic model to capture the tipping dynamics of
the AMOC using a slowly evolving control parameter λ.
This parameter represents a driver of the AMOC dynamics,
evolving towards a critical value λc = 0, where a saddle-node

TABLE II. Lyapunov exponents of the food-chain dynamics.

�������Sys
LEs

L1 L2 L3

Ground Truth 0.009495 −0.00058 −0.393213
Food Chain 0.005354 −0.000005 −0.228759
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(a)

(c)

(b)

FIG. 5. Power spectrum comparison. Shown are the power spec-
tra of the KAN-produced dynamics (orange) compared with the
ground truth (blue): (a), (b) the two KAN models generating the
same Ikeda dynamics as described in the text, and (c) the food-chain
dynamics.

bifurcation occurs. The model dynamics are governed by the
stochastic differential equation:

Ẋt = −(A(Xt − m)2 + λ) + σdBt , (10)

λ =
{
λ0, for t < t0,
λ0

(
1 − t−t0

tc−t0

)
, for t � t0,

(11)

where Xt represents the stochastic AMOC fingerprint, A is a
timescale parameter, m = μ − √|λ|/A with μ as the stable
fixed point, Bt represents a Brownian motion, and σ is the
noise amplitude. Initially, the system is stable with λ = λ0, but
starting from t0, λ changes linearly, driving the system toward
tipping. Although the theoretical tipping time corresponds to
tc, noise can induce an earlier transition.

TABLE III. Comparison of correlation dimension between the
KAN model and ground truth.

�����������System
Model

Ground Truth KAN

Ikeda 1 1.6296 1.7062
Ikeda 2 1.62968 1.6134
Food chain 2.5732 8 2.3649

TABLE IV. Attractor distribution comparison between ground
truth and KAN-produced models. The small divergence values in-
dicate that the model and the true systems produce essentially the
same attractor.

Kullback- Total-���������System
Method

Leibler Hellinger variation

Ikeda 1 0.0124 0.0556 0.0595
Ikeda 2 0.0180 0.0652 0.0669
Food chain 0.0002 0.0034 0.0063

Figure 6(a) illustrates 10 realizations of the model with
parameter values A = 0.95, m = −1.3, λ0 = −2.7, σ = 0.3,
t0 = 1924, and λc = 0. The green and red curves depict
the stable and unstable equilibria, respectively, showing the
system’s progression toward collapse as λ approaches its crit-
ical value. The KAN architecture used to model the noisy
AMOC finger print data has a simple [2,2] structure (2 in-
put and 2 output nodes, no hidden nodes), as illustrated in
Fig. 6(b). The neural network was trained using 1500 data
points from 10 different model realizations with the sam-
pling interval δt = 1, with 80% of the data allocated for
training and the remaining 20% for testing. The training
process involved 150 iterations for the following hyperparam-
eter values: cubic B-spline (K = 3), grid size G = 3, λ = 0,
λentropy = 10, learning rate 0.1, and a zero initial random
seed. Figure 6(c) shows the rapid decrease in the validation
and testing loss with increasing epochs. The KAN gener-
ated time series during the training and testing phase are
shown in Figs. 6(d) and 6(e), respectively, where a com-
parison with the ground truth indicates successful training
and testing.

E. Physics-informed KANs and explainability
in real systems and applications

It is important to demonstrate how KAN enhances ex-
plainability in real systems. As outlined in Refs. [58,59],
a fundamental advantage of KANs lies in their greater in-
terpretability in comparison with the conventional neural
networks, and the goal of KANs is to facilitate “mechanistic
interpretability,” enabling the discovery of physical laws from
data. Previous applications of KANs have already illustrated
its potential to uncover physical concepts such as conserved
quantities, Lagrangian, hidden symmetries, and constitutive
laws [58,59].

An essential feature of KANs lies in its ability to ac-
complish some of complex tasks with a remarkably simple
structure, requiring fewer nodes and layers than conven-
tional neural networks. This simplicity not only reduces
computational complexity but also enhances interpretability.
For example, the univariate learnable activation functions in
KANs are inherently more understandable than the dense
weight matrices typical of conventional neural networks.
However, scalability remains a challenge. When the scale of
a KAN model grows, interpretability may diminish due to the
increasing difficulty of analyzing the combined output of the
1D functions. Thus, the current implementation of KANs is
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(c)

(d)

(a)

(e)

(b)

FIG. 6. KANs applied to the AMOC 1D model. (a) Ten different realizations of the 1D stochastic AMOC fingerprint variable for A = 0.95,
m = −1.3, λ0 = −2.7, σ = 0.3, t0 = 1924, and λc = 0. The parameter values are from Ref. [85], which are the best estimates obtained from
the AMOC fingerprint data. The green and red curves correspond to the stable and unstable equilibria of the model, respectively. (b) KAN
structure with 2 input and 2 output nodes. (c) Validation and testing loss curves. (d) KAN generated time series (orange) in agreement with the
true time series (blue). (e) Similar to (d) but for the testing phase.

most effective in scenarios where small-scale, interpretable
networks suffice.

In Sec. III D, we applied the KAN framework directly to
the noisy data without any prior knowledge of its origin. The
results, illustrated in Fig. 6, demonstrate the robustness of
KAN in learning the dynamics of the AMOC, even when
subjected to high levels of noise. This highlights the capacity
and robust performance of KANs in scenarios where the data
are limited or noisy.

However, in real-world applications, prior knowledge
about the system being studied is often quite limited. In
such cases, leveraging the partial and limited information
can significantly improve both the model structure and in-
terpretability. To demonstrate this, we integrated domain
knowledge into the KAN framework. Specifically, we inferred
from the physics of the AMOC system that the driver of cli-
mate change (the control parameter λ), such as the freshwater
flux or the logarithm of atmospheric CO2 concentration, af-
fects the AMOC fingerprint. However, the AMOC fingerprint
does not exert an immediate effect on the control parameter
itself.

Incorporating this causal knowledge, we modified the
KAN structure by removing the link from the first input
(representing x) to the second input (representing λ), as
shown in Fig. 7(a). This adjustment not only aligns the
model with the underlying physical reality but also enhances
the explainability of the learned dynamics. Furthermore,
we exploited a unique advantage of KAN-direct access to
its activation functions. Examining these activation func-
tions closely, as illustrated in Figs. 7(b)–7(d), we obtained
additional insights into the system. For instance, the first

activation function exhibits a quadratic (or square) shape,
while the remaining two activation functions are approxi-
mately linear. Remarkably, this observation agrees perfectly
with the mathematical structure of the original AMOC
model, confirming the interpretability and reliability of the
KAN framework.

By leveraging limited domain knowledge, the KAN frame-
work becomes a powerful tool for bridging the gap between
purely data-driven and SINDy-type of approaches. Its abil-
ity to incorporate prior information not only enhances its
interpretability but also helps one get closer to finding the
physical principles governing the system. This combination
of data-driven learning and physics-informed modeling posi-
tions KAN as a compelling alternative for studying real-world
systems, particularly those characterized by noisy and limited
data.

IV. MATHEMATICAL INSIGHTS

To gain insights into the meaning of the interpretability
of the KAN-discovered models, we offer some mathematical
insights by interpreting the machine-learning modeling errors
as representing the true underlying system. The issue of con-
sidering models that produce realistic data, even with orbital
errors, is general. In our case, the KAN model G is said to
produce identical behavior as the true system F if numerically
computed orbits of G shadow some true orbits of F, at least
for the observed finite time of the data set. For maps, if a true
orbit of F is a sequence

OrbitF(x0) = {x0, F(x0), F2(x0)...} ≡ {x0, x1, x2, ...},
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(a)

(d)

(c)

(e) (f)

FIG. 7. Physics-informed KAN applied to AMOC fingerprint data. (a) Physics-informed KAN structure. (b), (c) Validation and testing
KAN generated time series (orange) in agreement with the true time series (blue). (d)–(f) KAN activation functions.

it is unreasonable to expect that a good but imperfect model
G will produce an orbit, denoted as

OrbitG(x0) = {x0, G(x0), G2(x0)...} ≡ {x0, x̃1, x̃2, ...},
that stays close to OrbitF (x0). If the model is good in the sense
that a pointwise error e(x) = |G(x) − F(x)| on the domain x ∈
D satisfies in terms of the sup-norm,

‖e‖∞ := sup
x∈D

|e(x)| < ε

for some small ε > 0, then at each step of the model the error
is small:

x̃i+1 = G(x̃i ) = F (x̃i ) + εi

and with each step error, 0 � |εi| < ε. Nonetheless, a small
normalized error of the function difference between the sys-
tem and model alone does not prevent the model from
producing an unrealistic orbit OrbitG(ix0) that behaves quite
differently from any orbit of F, e.g., a model orbit that di-
verges to infinity even if the true orbit produces a bounded
attractor. Furthermore, it is even more difficult to consider a
model orbit that has statistical properties such as the invariant
measure of a chaotic attractor analogous to the attractor of the
true system.

The KAN was represented as an efficient way to replace a
standard multilayer perceptron (MLP) [58] and, in so doing,
the weights of edges are in principle eliminated, but in prac-
tice they are absorbed into representing the various activation
functions at the vertices of the network. That is, in stating the
basic form of a KAN as

G(x) =
2n+1∑
q=1

�q ◦
n∑

p=1

φq,p(xp),

in practice each activation function φq,p was represented as a
cubic spline numerically [58], and therefore each has many
internal fitted parameters of the scalar piecewise cubic. Col-
lecting all these as the set of parameters �q,p for each φq,p,

and �q for each �q, we can state the complete collection of

parameters

� = ∪q(�q) ∪ (∪qp�q,p)

and rewrite the function to emphasize the internal parameters:

G�(x) =
2n+1∑
q=1

�q,�q ◦
n∑

p=1

φq,p,�+q,p(xp), (12)

and for a multivariate argument x = (x1, x2, ..., xd ) ∈ Rd . It is
shown [58] that a regularized fit to the data by a loss function
L(D; �) (over a data set D with respect to the fitting param-
eters �), with an objective of data fidelity as least squares fit
across the data set balanced against L2 norm on the parameters
to prevent overfitting.

While excellent fit when optimizing L(D; �) was ob-
served, it is possible to emphasize sparsification. That is, one
or some of the activation functions may be set to zero, a proce-
dure that was called “pruning” [58]. This procedure is possible
when the representation of the activation functions by splines
is sufficiently fine so that there are more parameters than data
points. In such case, L(D; �) will generally have nontrivial
level sets. The sparsification concept speaks to one of the
many reasons to exploit these level sets, generally in terms
of machine-learning interpretability, where the fitted KAN
model is pushed toward just a few physics-recognizable ac-
tivation functions, and the residual in a few terms is collected.
The mathematical reason this kind of procedure is possible
hinges on the implicit function theorem [86]. In brief, the
KAN model function G�(x) can be varied smoothly with re-
spect to the fitting parameters so that L(D; �) = c is constant
for a given parameter c. Therefore, even following numerical
optimization to a small value c, there will generally be smooth
level sets with respect to the � parameters to emphasize other
goals of explainability. A smooth implicit function � = h(s)
exists under the conditions of a nonsingular Jacobian deriva-
tive D�L that continues a c-level set, and in principle this level
of constancy L(D; h(s)) = c set may intersect the other useful
or desirable interpretable states, including sparsification.
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V. DISCUSSION

Model discovery has been a central topic of interest
for many years, with efforts generally falling into two
main categories: machine learning methods and nonlinear-
dynamics/sparse-optimization approaches, each with its own
limitations. Machine learning techniques achieve high per-
formance but function as black boxes, often offering little
insight into the underlying system dynamics. In contrast,
the sparse-optimization method provides interpretable math-
ematical equations but is only applicable to systems with an
inherently sparse representation. In this paper, we leveraged
KANs as a bridge between these two paradigms. KANs not
only demonstrate predictive performance but also enhance
interpretability by revealing how inputs influence outputs
through their activation functions. We also investigated the ro-
bustness of our proposed method against noise by employing
noisy synthetic data generated from the AMOC model. Our
analysis revealed that the KAN framework remains effective
even under noise, highlighting its potential for practical appli-
cations where data imperfections are inevitable. Furthermore,
by integrating domain knowledge into the KAN framework,
we demonstrated that our approach can enhance the inter-
pretability of dynamical systems in the real-world AMOC
system.

Overall, we exploited KANs as a data-driven model dis-
covery method for any dynamical systems, including those for
which the popular sparsity-optimization approach to finding
the governing equations fails. Our result may be understood as
realizing shadowing in the functional space where KANs find
certain functions that produce the same dynamics. These func-
tions may or may not have the same mathematical forms as the
governing equations of the system and may even be implicit
with a numerical representation. In the space of all functions,
an infinite number of such “shadowing” functions may ex-
ist. We demonstrated that KAN-based machine learning can
indeed find many of them, depending on the neural-network
architecture.
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APPENDIX A: KAN HYPERPARAMETERS

Hyperparameter tuning in KANs plays a crucial role not
only in optimizing the machine-learning performance but
also in enhancing its interpretability by promoting a sparser
structure. A primary hyperparameter is the overall penalty
strength λ that controls the overall regularization magnitude.
The penalty strength of entropy, denoted as λent, is specifi-
cally designed to control sparsity and reduce the number of
active activation functions. A larger λent value encourages the

TABLE V. Number of trainable parameters in KAN.

���������System
Parameters

Structure G K Na

Ikeda 1 [2,4,2] 10 3 208
Ikeda 2 [2,10,2] 10 3 520
Food-Chain [3,3] 3 3 54

machine-learning model to utilize fewer functions, potentially
leading to a simpler and more interpretable model.

Another important set of hyperparameters is those associ-
ated with the B-spline activation functions, such as the order
K and the number G of control points of such a spline. More
specifically, in a B-spline, each control point corresponds to a
basis function, a polynomial of order K . These control points
play a role in the interpretability of the model: a smaller num-
ber G of control points can make the model more challenging
to interpret as it restricts the complexity of the basis functions.
In addition, the structure of KANs, which includes the number
of hidden nodes and hidden layers, provides another set of key
hyperparameters impacting the model capacity and accuracy.
The learning rate, the number of iterations, and the batch size
are also crucial, as they can affect the convergence speed and
stability of the training process.

APPENDIX B: NUMBER OF KAN PARAMETERS

In a KAN, the total number of trainable parameters is deter-
mined by the number of activation functions in close relation
to the architecture of the network defined by the numbers of
the input nodes (Ni), of the hidden nodes in each hidden layer
(Nh1, Nh2, ..., Nh j), and of the output nodes (No). The structural
complexity of the KAN is then determined by the number of
activation functions (Na), expressed as

Na = (Ni × Nh1) + (Nh1 × Nh2) + · · · + (Nh j × No). (B1)

Consider the numeric training phase of KAN. Each activation
function within the KAN is parametrized by a B-spline curve
represented as a linear combination of the basis functions, as
outlined in Eq. (3). Each B-spline curve is characterized by
(G + K ) trainable coefficients. The total number of trainable
parameters in a KAN is then given by

(G + K ) × Na, (B2)

which gives a direct relationship between the network’s ar-
chitecture and its trainable parameters. Increasing the number
of hidden layers or nodes can significantly impact the total
number of parameters, influencing the network’s capacity and
complexity of the learned representations. Table V presents
the number of trainable parameters for the KAN structures
used to generate the Ikeda and food-chain dynamics.

APPENDIX C: SPECTACULAR FAILURES OF SPARSE
OPTIMIZATION APPROACH TO FINDING EQUATIONS

FOR THE IKEDA OPTICAL-CAVITY MAP AND CHAOTIC
FOOD-CHAIN SYSTEM

The sparse-optimization approach to finding the governing
equations of nonlinear dynamical systems from data was first
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Ikeda

Food-Chain

(a)

(b)

FIG. 8. Comparison of time series from the equations found by sparse optimization and the ground truth. Shown are two sets of time series
(orange: equations from sparse optimization; blue: ground truth) for (a) Ikeda map and (b) chaotic food-chain system described in the main
text. The sparse-optimization method fails to find the correct equations.

introduced in 2011 [10]. The idea is that power-series or
Fourier-series expansions can be used to approximate smooth
but nonlinear dynamical functions, converting the problem
to that of estimating the coefficients of the series-expansion
terms. If the series contain many high-order terms, the number
of coefficients to be estimated is large, making the problem
unsolvable. However, the equations of many classical dynam-
ical systems are relatively simple in terms of series expansion
in the sense that a vast majority of the coefficients are zero,
resulting in a sparse coefficient vector. The sparsity allows
the use of sparse optimization methods such as compressive
sensing to solve the coefficients. An advantage of sparse
optimization methods is that they require only limited obser-
vational data.

In the main text, it is emphasized that the Ikeda system
violates the sparsity condition as the map functions contain
an infinite number of power-series or Fourier-series terms.
When applying sparse optimization to such a system, every
term, no matter how many are initially assumed, exists. As
a result, any such algorithm would fail. Here we present an
example of such a failure when attempting to estimate the
dynamical equation of the Ikeda map using a commonly used
sparse-optimization algorithm [49] that employs library of
base functions including polynomials, inverse functions, prod-
ucts, exponential, and sinusoidal functions, etc. The estimated
map functions are

x+ = 14.413ex + 21.543ey − 10.137x − 18.639y

+ 5.308 sin(x) + 15.552 sin(y) − 41.853 cos(x)

+ 6.222 cos(y) − 0.218 sin(x + y) − 10.137x

− 18.638y − 28.135x2 − 8.364y2 + 0.152xy,

y+ = − 3.604ex + 0.170ey + 5.990x − 0.282y

− 9.407 sin(x) + 3.029 cos(x) + 0.903 cos(y)

+ 0.246 sin(x + y) + 5.990x − 0.283y

+ 2.439x2 + 0.493y2 + 0.552xy. (C1)

The Food-Chain system described in the main text is another
example where sparse optimization fails. The estimated gov-
erning equations are

x+ = 3.445ex + 6.290 sin(x) + 0.869 sin(y)

− 3.424 cos(x) + −0.391 sin(x + y) − 8.528x

− 0.710y + −3.967x2 + −1.363
xy

1 + x
,

y+ = 0.572y2 + 2.050xy − 3.879
xy

1 + x

z+ = 0. (C2)

The time series produced by these equations (orange) versus
the ground truth (blue) are shown in Figs. 8(a) and 8(b)
for the Ikeda map and the food-chain system, respectively. It
can be seen that the discovered equations fail to produce the
true time series from the respective system.

APPENDIX D: KAN MODEL DISCOVERY OF THREE
ADDITIONAL CLASSICAL NONLINEAR DYNAMICAL

SYSTEMS

1. Logistic map

The map is given by [88]

X (n + 1) = rX (n)(1 − X (n)) (D1)
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(a)

(c) (d)

(e) (f)

(b)

FIG. 9. KAN Model applied to the logistic map. (a) KAN model
structure with one input and one output node, without hidden nodes.
(b) Training and testing loss curves over 10 iterations. (c) Attractor
and (d) time series during the training phase (orange) in comparison
with the ground truth (blue), indicating high accuracy in first-step
predictions. (e) Attractor and (f) time series during the testing phase.
The KAN model faithfully replicates the logistic map’s dynamics, in
spite of the inevitable divergence due to the fundamental sensitive
dependence on initial conditions of chaotic systems.

where X (n) represents the population at generation n, and
r is a parameter that controls the growth rate. For values of
r between 0 and 4, the map displays a range of behaviors
from stable fixed points to periodic and chaotic attractors.
For r = 4, the map generates a chaotic attractor in the unit
interval X ∈ [0, 1].

We utilize a simple KAN structure, as depicted in Fig. 9(a),
which consists of a single input and a single output node
without any hidden nodes. We use 104 time-series data points,
where 80% are for training and the remaining 20% for testing.
The training process spans 10 iterations, with the following
hyperparameter values: K = 3 (cubic B-splines), grid size of 5
for the splines, loss-function parameters λ = 0 and λentropy =
10, learning rate 0.1, and a random seed initialized to zero.
Similar to the examples in the main text, training is admin-
istered in a feedforward process, where the KAN is trained
to minimize the difference between the input and output,
predicting the future evolution of the target system based on
the past dynamical variables. The red curve in Fig. 9(b) shows
the validation loss over time, while Figs. 9(c) and 9(d) dis-
play the KAN-produced attractor and time series during the
training phase in comparison with the ground truth. The rapid
decrease in the training loss to zero signifies high training
accuracy and efficiency.

During the testing phase, we maintain the same set of
training parameter values but replace the original input data
point with the output of the KAN at each iteration. The black
dashed curve in Fig. 9(b) represents the validation loss, and

(a)

(c) (d)

(e) (f)

(b)

FIG. 10. KAN applied to the circle Map. (a) Structure of the
KAN, which includes a single input and output node with two
hidden layers. (b) Training and testing loss curves over 200 iter-
ations. (c) Attractor and (d) time series during the training phase
(orange) in comparison with the ground truth (blue), demonstrating
high accuracy of first-step prediction. (e) Attractor and (f) time series
during the testing phase, demonstrating that the KAN model effec-
tively replicates the map dynamics, following the true time series
for more than 700 steps before diverging. Such a long prediction
time is indicative of the null Lyapunov exponent characteristic of
quasiperiodic motion.

Figs. 9(e) and 9(f) show the KAN-predicted attractor and
time series, respectively. While the KAN-predicted time series
diverge from the ground truth after several iterations due to
the fundamental sensitivity to initial conditions, the predicted
attractor closely aligns with the ground truth, demonstrating
that the KAN has successfully learned the chaotic dynamics
of the logistic map.

2. Circle map

The map is given by

X (n + 1) = X (n) + 	 − K

2π
sin(2πX (n)) mod 1, (D2)

where X (n) represents the phase at iteration n, 	 is a fre-
quency parameter, and K is a nonlinearity parameter. The
map’s behavior varies from periodic and quasiperiodic mo-
tions to chaos, depending on the values of K and 	. For
K > 1, chaos can arise. We fix K = 1 and ω = 0.3, for which
the map exhibits quasiperiodic behavior with the trajectories
that do not repeat exactly but densely cover a region of the
phase space without ever closing.

Figure 10(a) illustrates the KAN structure, which consists
of a single input and a single output node, with two hid-
den layers (three nodes in the first and two nodes in the
second layer). The dataset consists of 104 points, with 90%
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(a) (b)

(d)

(f)

(c)

(e)

FIG. 11. KAN applied to the Hénon map. (a) KAN structure: two
input and two output nodes, no hidden layers. (b) Training and testing
loss curves over 50 iterations. (c) Attractor and (d) time series during
the training phase (orange) in comparison with the ground truth. (e)
Attractor and (f) time series during the testing phase, demonstrating
that the KAN model effectively replicates the chaotic dynamics of
the Hénon map.

allocated for training and 10% for testing. Training involves
200 iterations. The hyperparameter values are: K = 3 (cubic
B-splines), grid size of 5 for the splines, loss-function param-
eters λ = 0 and λent = 10, learning rate 0.1, and a random
seed set to zero. The training (validation) is carried out in a
feedforward (recurrent) process. The red (black dashed) curve
in Fig. 10(b) illustrates the training (validation) loss over time.
Figures 10(c), 10(e) and 10(d), 10(f) show the KAN-generated
attractor and time series during the training and testing phases,
respectively, in comparison with the ground truth. The rapid
convergence of the training loss to zero highlights a high
accuracy and efficiency in training. The time series during
the testing phase diverges from the ground truth after more
than 700 iterations, indicating an effectively zero Lyapunov
exponent and good agreement of predicted attractor with the
ground truth. This example then demonstrates that KAN is
a faithful representation of a dynamical system generating
quasiperiodic dynamics.

3. Hénon map

The two-dimensional map is given by [89]

x(n + 1) = 1 − ax(n)2 + y(n),

y(n + 1) = bx(n), (D3)

where x(n) and y(n) are the dynamical variables at the nth

iteration, a and b are parameters. The standard Hénon attractor
is for a = 1.4 and b = 0.3. The KAN has a [2, 2] structure, as
illustrated in Fig. 11(a), with two input and two output nodes.
The dataset comprises 5 × 104 points with 90% for training

(c)

(b)

(d)

(a)

FIG. 12. Comparing KAN with reservoir computing applied to a
chaotic ecosystem that does not possess a sparse structure. (a) KAN
structure with 3 inputs and 3 outputs. (b) KAN-generated attractor
during the testing phase (orange), which agrees with the ground truth
(blue). (c) Testing structure of reservoir computing with 500 nodes.
(d) Reservoir-computing generated attractor during the testing phase.

and the remaining 10% for testing. The training process spans
50 iterations, with the following hyperparameter values: grid
size 10, spline order K = 3, λ set to 0, λentropy set to 10,
learning rate of 0.1, and a random seed initialized to zero. The
results in Figs. 11(b)–11(f) demonstrate that KAN represents
a data-discovered model that faithfully generate the ground-
truth Hénon chaotic dynamics.

APPENDIX E: KANs AND STATE-OF-THE-ART
NEURAL NETWORKS

A direct comparison with existing state-of-the-art neural
networks model is beyond the scope of this paper. Our primary
goal is to demonstrate that complex dynamics can be effec-
tively represented by KANs that feature a simple structure
and offers enhanced interpretability compared to conventional
neural network architectures.

Here we provide a comparison of the trainable parame-
ters in the KAN and reservoir computing to highlight the
computational efficiency of KANs. For instance, we applied
KAN to a chaotic ecosystem governed by Holling-type of
equations (Fig. 4 in the main text), a scenario where traditional
methods such as SINDy fail. The results in Fig. 12 show
that, while this complex system could also be learned using
a reservoir-computing model with 1500 trainable parameters
(using hyperparameters similar to those in Ref. [33]), the
KAN framework achieved comparable accuracy with signif-
icantly lower computational complexity: it requires only nine
activation functions and 54 trainable parameters. In addition,
KAN provides a unique advantage in terms of interpretability,
granting access to all nine learned univariate functions and
54 trainable parameters. This enables a deeper understand-
ing of the system’s underlying dynamics, an insight that is
often inaccessible with conventional black-box models such
as reservoir computing or transformers. This balance between
simplicity, accuracy, and interpretability is the characteristic
strength of KANs.
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