
PHYSICAL REVIEW RESEARCH 7, 013241 (2025)

Special relativity effects on chaos and periodic orbits - a semianalytic approach
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In the study of nonlinear dynamics and chaos, analytically solvable physical models are rare. We investigate
the classical motion of a trapped relativistic particle, subject to an electric and a magnetic field. When the
directions of the electric and magnetic fields coincide, the dynamics are integrable. As the magnetic field
rotates away from the direction of the electric field, a transition to chaos occurs. Based on the approach in a
previous work in the nonrelativistic regime [Narimanov et al., Phys. Rev. B 57, 9807 (1998)], we introduce a
particular Lorentz transformation to extend the framework to the relativistic regime, which enables us to derive
the Poincaré map and obtain semianalytic formulas for periodic orbits of low periods. The transformation also
makes it possible to assess, semianalytically, the role of the degree of the relativistic motion of the particle in its
dynamics, revealing that the special relativity effects can enhance chaos. As numerical simulations have played
a dominant role in investigating nonlinear physical systems exhibiting chaos and in many cases are the only
feasible tool to probe into the system dynamics, our semianalytic approach is unique and leads to additional
insights into the interplay between special relativity and chaos.
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I. INTRODUCTION

The quest for an analytic understanding of chaos in nonlin-
ear physical systems through exactly solvable models has fas-
cinated physicists for decades, as such an understanding could
give the most definitive and satisfactory evidence for various
chaos properties of the system under investigation. However,
this is challenging as analytically solvable models of non-
linear physical systems are extremely rare even in the non-
relativistic regime. Examples of such models in dissipative
dynamical systems include one-dimensional maps [1], the
two-dimensional baker’s map [2], a system of driven diode
resonator [3] comprised of an oscillator, resistor, inductor,
and diode in series, which can be reduced exactly to a one-
dimensional, noninvertible map. More recently, a statistically
solvable quantum model describing memory loss across the
integrability–chaos transition under a perturbation obeying no
selection rules was articulated [4]. Another class of solvable
models of chaos is hybrid systems that typically consist of
a linear dynamical system with switchings [5–11]. The solv-
able models served to provide significant insights into various
properties of dissipative chaotic systems. To our knowledge,
so far there has been no exactly solvable model for chaos in
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continuous-time, Hamiltonian systems in the nonrelativistic
regime, let alone physical systems in which the special rela-
tivity effects cannot be neglected. The purpose of this paper
is to present a solvable model of relativistic particle motion
in an electric and a magnetic field. A particular phenomenon
that we aim to understand semianalytically is the enhanced
likelihood of chaos by the special relativity effects.

The effects of relativistic mechanics on classical chaos has
been a subject of study in physics [12–25] due to the relevance
of this problem to fields such as high-energy and accelerator
physics. In an early work [12], it was shown that even a
weak relativistic mass effect can lead to enhanced nonlinear
effects in systems with a free-electron cyclotron resonance. In
a study of the relativistic dynamics of time-driven oscillators
[16], it was found that relativistic effects can induce reso-
nances that were absent in the corresponding nonrelativistic
system. As resonance overlap can lead to chaos [26], where
the emergence of new resonances implies a higher probability
of observing chaos in the system. Indeed, subsequently, chaos
in special relativistic dynamics was uncovered [18]. In a study
of the phase-space structure of the relativistic Sitnikov prob-
lem in the first post-Newtonian approximation [21], it was
found that transient chaos [27] can emerge. The three-body
self-gravitating system was also studied [19,20], revealing
the occurrence of chaos. In a relatively recent study of the
relativistic anisotropic, two-dimensional harmonic oscillator
[23], numerical evidence was presented to support the striking
conclusion that chaos must appear in most integrable classical
systems once relativistic corrections are introduced to the
dynamics. Chaos due to the relativistic effect was also found in
the motion of high-energy electrons [24]. Quite recently, the
Hamilton equations of motion in the limit of weak external
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field were studied, revealing stronger conditions for integra-
bility when special relativity effects are taken into account
[25]. The general consensus from these existing studies is that
the special relativity effects tend to increase the likelihood for
chaos to arise. To our knowledge, the evidence supporting this
proposition has been numerical, with limited or little analytic
insights especially in the regime of chaos.

The system of our study is the relativistic motion of a
charged particle trapped in a potential, subject to an electric
and a magnetic field [28]. The directions of the electric and
magnetic fields can be different, and the angle between them
is a bifurcation parameter, where zero angle leads to integrable
dynamics. As the angle increases from zero, a transition to
chaos can occur. While the subject of our study is classical
dynamics, it is worth noting that the quantum dynamics of this
system were previously studied both theoretically and experi-
mentally [28–41], and a semiclassical theory was developed to
understand the experimentally observed spectra [28,30]. The
classical dynamics including chaos and periodic orbits of this
system were also studied [28,29,40]. All these previous stud-
ies concerning this model are for nonrelativistic cases. The
key to our success of obtaining a solvable model for this sys-
tem is a type of Lorentz transform that we articulated, which
allows us to derive the Poincaré map and obtain analytic
formulas for periodic orbits of low periods. The transform
also enables the effects of special relativity on the dynamics to
be elucidated, providing semianalytic evidence that relativity
enhances chaos.

In Sec. II, we present a physical model of relativistic
particle motion in a double potential-well system, subject to
an electric and a magnetic field. Two types of motions are
introduced: those involving collisions with a single barrier
or both barriers [28]. In Sec. III, empowered by a Lorentz
boost transform to simplify the particle motion in the electro-
magnetic fields, we analytically derive the Poincaré maps for
both single-barrier and double-barrier dynamics. In particular,
the Lorentz transform makes the magnetic field parallel to
the electric field so that the periodic orbits can be exactly
calculated and their physical origin can be understood. In
Sec. IV, we analyze the limit to integrable dynamics. In
Sec. V, we carry out a detailed analytic study of periodic orbits
of period-1 from single-barrier dynamics in terms of their
physical origin, characteristics, stability, bifurcations, and the
relativity effects. A brief discussion is presented in Sec. VI.

Additional supporting materials are presented in Appen-
dices. In particular, Appendices A and B give the monodromy
matrix for period-1 orbits from single-barrier dynamics and
the matrix for period-n orbits from double-barrier dynamics,
respectively. Calculation and analysis of period-2 orbits for
single-barrier dynamics are presented in Appendix C. A par-
allel analysis for the periodic orbits from the double-barrier
dynamics is detailed in Appendix D.

II. PHYSICAL MODEL: RELATIVISTIC PARTICLE
MOTION IN AN ELECTRIC AND A MAGNETIC FIELD

Note that the motion of a relativistic particle in tilted elec-
tromagnetic fields is relevant to particle accelerators [42,43],
beam transport systems [44], and high-speed particle confine-
ment devices [45]. The field configuration will impact how

FIG. 1. Schematic illustration of the physical model: a confined
relativistic particle subject to an electric and a magnetic field. (a) Sys-
tem setting and coordinates: a relativistic charged particle trapped
in a rectangular, double-barrier potential well. The electric field is
normal to the potential barriers and the magnetic field is tilted with
respect to the electric field with the angle θ . (b) The system in the
coordinate frame O′ under the Lorentz boost �(̃v) along the negative
x axis, where B′ is parallel to E′ with the tilted angle θ ′ to the z′

axis. The particle motion in the transformed electromagnetic field
can be decomposed into two components: a longitudinal motion and
a cyclotron motion, where the former is the relativistic motion under
a 1D uniform and static electric field and the latter has the angular
frequency ω′

c(t ′) = eB′/mγ ′(t ′).

charged particles are guided, especially when the beam inter-
acts with specific components such as electrodes, plates, or
other confinement devices. In addition, the model studied rep-
resents the classical correspondence of a quantum well system
based on Dirac materials such as HgTe quantum wells [46].

A. Relativistic particle equations of motion,
Hamiltonian, and Poincaré maps

We consider a charged relativistic particle trapped in a
rectangular potential well, as shown in Fig. 1(a), where there
is a static electric field and a static magnetic field, and a
potential well can be formed involving a single barrier or
both barriers. The coordinate conventions are as follows. The
potential barrier(s) is (are) located in the (x, y) plane, the
electric field E = E ẑ is in the z direction, and the magnetic
field is tilted in the plane (y, z): B = B(sin θ ŷ + cos θ ẑ). The
relativistic equation of motion of the particle in the slanting
crossed electromagnetic fields is [47]

d(mγvv)/dt = q(v × B + E), (1)

where m is the rest mass, q is the charge, and γv = (1 −
|v|2/c2)−1/2. Choosing the mechanical momentum p = mγvv
as the dynamical variables, we obtain the following equa-
tions of motion for the particle in the free space:

dpx

dt
= qB(py cos θ − pz sin θ )√

m2 + p2/c2
,

dpy

dt
= − qBpx cos θ√

m2 + p2/c2
,

dpz

dt
= q(Bpx sin θ + E )√

m2 + p2/c2
. (2)
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Without the potential barriers, these equations are integrable.
The dynamical motion of the particle in the potential well thus
has two components: a free-space, integrable motion in the
electromagnetic fields and elastic collisions with the barriers.
The Hamiltonian of the system is

H =
√

(P − qA)2c2 + m2c4 + qϕ + U (−z) + U (z − d ),

(3)

where P is the mechanical momentum, the function U is
defined as U (z < 0) = 0 and U (z > 0) = ∞, the vector po-
tential is A = (−By cos θ + Bz sin θ, 0, 0), and ϕ = −Ez. For
electron q = −e. For the double barrier well, the left and right
barrier walls are located at z = 0 and z = d , respectively, as
described by the function U .

Hamiltonian (3) is independent of the coordinate x, so px

is conserved and the particle dynamics have two degrees of
freedom. Using the canonical transformation [28,29]

η = yγ0

cαω−1
0

− Px

mcα cos θ
, ζ = zγ0

cαω−1
0

,

(4)

pη = Py

mcα
, pζ = Pz

mcα
,

we arrive at the following dimensionless, effective, two-
degrees-of-freedom Hamiltonian:

Heff =
√

1 + α2
[
p2

η + p2
ζ + (η cos θ − ζ sin θ )2

]
+ α2ζ + U (−ζ ) + U

(
ζ − d

cαω−1
0

)
= γ0, (5)

with ω0 = eB/mγ0, incident energy ε0 = mc2γ0 at z = 0, α =
E/cB, and γ0 = (1 − v2

0/c2)−1/2. To analyze the Hamiltonian
dynamics in the canonical coordinates (η, pη; ζ , pζ ), we use
the Poincaré surface of section method. For ζ = 0 (i.e., z =
0), the canonical variable pζ can be expressed by η and pη

in terms of the energy conservation of system, and the plane
(η, pη ) can be selected as the Poincaré surface of section:

vx = ∂H

∂Px

∣∣∣∣
z=0

= −cα

γ0
· η,

vy = ∂H

∂Py

∣∣∣∣
z=0

= cα

γ0
· pη,

where the plane (η, pη ) hosting the Poincaré map is equivalent
to the plane (̃vx, ṽy) ≡ (vx/c, vy/c). Furthermore, the velocity
of the particle can be scaled by the modulus of the incident
velocity, leading to a scaled Poincaré plane (̃vx /̃v0, ṽy/̃v0).

B. Particle motions involving collisions with
a single barrier or double barriers

There are two types of particle motions: one involving col-
lisions with a single barrier and another with both barriers. For
convenience, we denote the former as single-barrier dynamics
and the latter as double-barrier dynamics. The dimensionless
parameter

� ≡ m(γ0 − 1)c2/eEd,

defined as the rate of the kinetic energy εk0 of the incident
particle to the potential difference between the two barriers,
provides a criterion to determine if the particle can reach the
right barrier. There are two cases. The first is � � 1, where the
particle collides only with the left barrier and the dynamics
are determined completely by the following three parameters:
θ , α, and γ0, leading to single-barrier dynamics. The second
case is � > 1, where the particle can collide with both barri-
ers and an additional parameter d/cαω−1

0 is needed and the
dynamics are determined completely by four parameters: θ ,
α, γ0, and d/cαω−1

0 , giving rise to double-barrier dynamics.
Since

d/cαω−1
0 = (γ0 − 1)/�α2,

� can substitute for the parameter d/cαω−1
0 as an equivalent

parameter for the double-barrier dynamics. For convenience,
we call � the swing parameter.

It is worth noting that the swing parameter � degenerates
into γNR ≡ ε/eEd defined for nonrelativistic (NR) motion
[28] under the limit c → ∞. Previous works [28–30] also
showed that the nonrelativistic dynamics strongly depend on
the parameter βNR ≡ 2v0B/E , leading to the parameter 2̃v0/α

in the relativistic regime. For small ṽ0, we have 2̃v0/α ≈ βNR,
so the weakly relativistic dynamics characterized by 2̃v0/α

degenerate to the nonrelativistic dynamics as characterized by
βNR. Consequently, for fixed 2̃v0/α, ṽ0 effectively character-
izes the relativity degree of the system.

Consider the single-barrier dynamics as an example. In the
nonrelativistic regime, the chaos parameters are θ and βNR =
2v0B/E , where three such parameters arise in the relativistic
regime: ṽ0, θ , and α. To facilitate a comparison between the
dynamics in the two regimes, we use the parameters ṽ0, θ ,
and 2̃v0/α in the relativistic regime, where 2̃v0/α replaces
the parameter α. As a result, we have 2̃v0/α = βNR so that
the weakly relativistic dynamics (small ṽ0) reduce to the non-
relativistic dynamics, making the nonrelativistic dynamics a
special case of relativistic dynamics in the limit ṽ0 → 0. The
relativistic effects thus introduce a new independent “chaos
parameter” ṽ0. The effects of the relativity degree on chaos
can be conveniently studied by varying this parameter, while
keeping the other parameters (θ and 2̃v0/α) unchanged. In
fact, as shown below (Fig. 3), ṽ0 is an independent “chaos
parameter” that governs the dynamics, greatly facilitating the
study of special relativistic effects on chaos. For example,
the greater the initial energy of a particle, the larger ṽ0 be-
comes and the higher its relativity degree is. The parameter
ṽ0 thus effectively characterizes the relativity degree of the
system.

The special relativity factor of the particle at time t depends
on the incident energy and z(t ):

γ (t ) = γ0 − eEz(t )/mc2

=
[
� − z(t )

d

]
eEd/mc2 + 1. (6)

To gain insights, we consider two extreme cases: (i) � � 1 >

z(t )/d . and (ii) α � 1. In the first case, we have γ (t ) ≈ γ0

(a constant), giving rise to double-barrier dynamics in the
nonrelativistic limit with m∗ = mγ0. This case was studied
previously [28,29]. In the second case, the Poincaré map in
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the single-barrier dynamics regime can be written as

(̃vx )n+1 =
[

(̃vx )n − (̃vy)n ln

(
1 + (̃vz )n

1 − (̃vz )n

)
cos θ

α

]
fSF,

(̃vy)n+1 =
[

(̃vy)n + (̃vx )n ln

(
1 + (̃vz )n

1 − (̃vz )n

)
cos θ

α

]
fSF,

(̃vz )n+1 = (̃vz )n, (7)

where n is the discrete time and fSF is the scaling factor. Since
γn+1 = γn, we have ṽ2

n+1 = ṽ2
n . Without fSF, Eq. (7) represents

the Poincaré map approximate to the first order in 1/α. After
the (n + 1)th mapping, the change in the velocity squared is

�ṽ2 = [(̃vx )2
n + (̃vy)2

n

][
ln

(
1 + (̃vz )n

1 − (̃vz )n

)
cos θ

α

]2

to the order (1/α)2. This term will accumulate with time n
until it can no longer be ignored. This gives the scaling factor
fSF as

fSF =
√

(̃vx )2
n + (̃vy)2

n

(̃vx )2
n+1 + (̃vy)2

n+1

, (8)

so as to ensure γn+1 = γn. The distance squared of a point
in the Poincaré surface of section from the origin, i.e., (̃v2

x +
ṽ2

y )/̃v2
0 is given by 1 − ṽ2

z /̃v
2
0 , so each trajectory must lie on a

circle, excluding chaos in this case (α � 1).

III. LORENTZ BOOST AND POINCARÉ MAP

The analytical solutions for the integrable motion of a rela-
tivistic charged particle under uniform electromagnetic fields
in the four-dimensional covariant form and three-dimensional
notation were obtained previously in Refs. [48–51] and
Refs. [52,53], respectively. In the original coordinates O as
shown in Fig. 1(a), the solutions are too complicated to be
analyzed [48–53]. To make it possible to analyze the particle
motion, we apply a Lorentz transformation to obtain the exact
form of the Poincaré map, for both single-barrier and double-
barrier types of particle motions. The Lorentz boost, denoted
as �(̃v), describes the change of the space-time coordinates
from one inertial frame O to another O′ that moves with
respect to O along the negative x axis [47], where B′ is parallel
to E′ in O′, as shown in Fig. 1(b). In particular, for

ṽ± ≡ v/c = κ ±
√

κ2 − 1, (9)

the electric and magnetic fields are parallel to each other:
B′//E′, with

κ = α + α−1

2 sin θ
. (10)

For 0 � θ � π/2, we have κ � 1 so 0 � ṽ− � 1 holds, in-
dicating that a Lorentz boost with ṽ = ṽ− can always be
found to follow B′//E′, for arbitrary tilted angle θ in O. In
the transformed coordinates, the angle θ ′ between the vectors
B′ (or E′) and the z′ axis is given by

θ ′ = arctan

(
tan θ − αṽ

cos θ

)
. (11)

We have −π/2 � θ ′ � π/2, θ ′ < θ , θθ ′ > 0, and

B′ = γṽB cos θ/ cos θ ′, (12a)

E ′ = γṽE (1 − ṽ sin θ/α)/| cos θ ′|, (12b)

α′ = (α − ṽ sin θ )/| cos θ |, (12c)

with γṽ = (1 − ṽ2)−1/2.
In the new coordinates, the dynamics of the relativistic

charged particle are governed by a classic rectangular poten-
tial well, subject to the parallel electromagnetic fields with the
tilted angle θ ′ to the barriers in O′. Consider a periodic orbit
L of period TL, starting from the initial position x0 with the
initial scaled velocity ṽ0 in O. We have

pμ(0) = mγ0c(1, ṽ0)t = pμ(τ1), (13)

xμ(τ1) = (x0, cTL )t = xμ(0) + (0, cTL )t , (14)

with proper time τ and metric gμν = diag(1,−1,−1,−1).
Substituting the relations

pμ = (�−1)μν p′ν andxμ = (�−1)μν x′ν

into Eqs. (13) and (14), we obtain

p′μ(0) = p′μ(τ1), (15)

x′μ(τ1) = x′μ(0) + �(cTL, 0)t

= x′μ(0) + (cT ′
L, 0)t , (16)

with T ′
L = γṽTL. Equations (15) and (16) indicate that the orbit

L′ is also a periodic orbit in O′. This suggests a method to
analytically find the periodic orbits in the original coordinate
system: finding a periodic orbit in O′ first and then use the
inverse Lorentz boost �−1(̃v).

A. Poincaré map for single-barrier motion

We consider another frame of reference O′′, rotated by the
angle θ ′ around the x′ axis, such that the z′′ axis is parallel to
the magnetic field:

x′′ = x′,

y′′ = y′ cos θ ′ − z′ sin θ ′,

z′′ = y′ sin θ ′ + z′ cos θ ′.

In this reference frame, the integrable motion under the new
electromagnetic fields has the following form:

ṽx′′ (ξ ) = (̃vx′′ cos ξ − ṽy′′ sin ξ )γ ′′
0 /γ ′′(ξ ),

ṽy′′ (ξ ) = (̃vy′′ cos ξ + ṽx′′ sin ξ )γ ′′
0 /γ ′′(ξ ), (17)

ṽz′′ (ξ ) = [cosh(α′ξ )̃vz′′ − sinh(α′ξ )]γ ′′
0 /γ ′′(ξ ),

where ṽ′′ = (̃vx′′ , ṽy′′ , ṽz′′ ) is the initial scaled velocity with
ṽz′′ > 0, ξ ≡ eτB′/m is a dimensionless parameter with
proper time τ , and

γ ′′
0 /γ ′′(ξ ) = [cosh(α′ξ ) − sinh(α′ξ )̃vz′′ ]−1. (18)

The integrable dynamics can be decomposed into a longitu-
dinal motion and a cyclotron motion, where the former is the
relativistic motion under a 1D uniform and static electric field
along the z′′ axis governed by the equation d pz′′/dt ′ = −eE ′,
and the latter has the angular frequency ω′

c(t ′) = eB′/mγ ′(t ′).
Note that the cyclotron motion has no effect on the longi-
tudinal motion but the latter affects the angular frequency
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of the former through z′′(t ′) and γ ′(t ′) directly, with z′′(t ′)
determined by the latter completely.

For single-barrier dynamics, the particle collides only with
the left barrier. The condition for a collision is

z′′(ξ0) − y′′(ξ0) tan θ ′ = 0, (19)

where ξ0 is the first positive real root of the transcendental
equation

F (ξ ; ṽ′′) = sinh(α′ξ )̃vz′′ − cosh(α′ξ ) + 1

− α′ tan θ ′ [̃vy′′ sin ξ + (1 − cos ξ )̃vx′′]

= 0, (20)

and the time is

t ′
0 = [sinh(α′ξ0) + ṽz′′ − ṽz′′ cosh(α′ξ0)]/ω′

0α
′

with ω′
0 = eB′/mγ ′

0. The elastic collision can be described
by [29]

ṽ′′(ξ+
0 ) = R̂x′′ (2θ ′)T̂z′′ ṽ′′(ξ−

0 ), (21)

where R̂x′′ (2θ ′) represents the rotation with the angle 2θ ′ about
the x′′ axis, T̂z′′ = diag(1, 1,−1) represents the transformation
that inverts the direction of vz′′ , and the superscripts “+” and
“–” of ξ0 mark the infinitesimal moment after and before ξ0,
respectively.

In O′′, the Poincaré map V ′′ is

V ′′ (̃v′′; ξ0) = R̂x′′ (2θ ′)T̂z′′ ṽ′′(ξ0). (22)

In O, the two-dimensional Poincaré map is explicitly given by

Vx = V ′
x − ṽ

1 − V ′
x ṽ

,

Vy = V ′
y

γṽ (1 − V ′
x ṽ)

, (23)

with

V ′
x = V ′′

x = ṽx′′ (ξ0),

V ′
y = V ′′

y cos θ ′ + V ′′
z sin θ ′

= ṽy′′ (ξ0) cos θ ′ + ṽz′′ (ξ0) sin θ ′. (24)

B. Poincaré map for double-barrier motion

For � > 1, after a collision at the left barrier, the particle
can retain enough energy (εz′′ ) to reach the right barrier, lead-
ing to motion that involves both barriers. In the phase space,
there exists a critical boundary for double-barrier dynamics
that separates initial conditions into the left or the right barrier
region. Each time the particle collides with the left barrier,
we can determine whether the next collision will be with the
left or the right barrier. This separates the Poincaré surface of
section into different regions.

For θ = 0, i.e., ṽ = 0, the particle has the scaled veloc-
ity ṽp at the moment after the p-th collision with the left
barrier. For (̃vz )p > ṽ†

z , the particle undergoing the (p + 1)th
integrable motion will collide with the right barrier first, then
the (p + 1)th collision with the left barrier will take place, as
determined by z(t†, ṽ†

z ) = d with

ṽ†
z =
√

1 − (1 − 1/� + 1/�γ0)2, (25)

and t† = ṽ†
z /ω0α. The critical boundary in the Poincaré sur-

face of section is a circle given by

(̃vx /̃v0)2 + (̃vy/̃v0)2 = (1 − 1/� + 1/�γ0)2 − γ −2
0

1 − γ −2
0

, (26)

where the right barrier region is inside this circle.
For θ 	= 0, the distance between the two barriers is d ′(=d )

in the coordinate system O′′, and the following condition:

z′′ − y′′ tan θ ′ = d ′/ cos θ ′

is satisfied at the moment of the collision with the right barrier,
i.e.,

F (ξ ; ṽ′′) = sinh(α′ξ )̃vz′′ − cosh(α′ξ ) + 1

− α′ tan θ ′[̃vy′′ sin ξ + (1 − cos ξ )̃vx′′]

= (1 − 1/γ ′
0)/�′ cos θ ′, (27)

with

�′ ≡ m(γ ′
0 − 1)c2

eE ′d ′ = α(γ ′
0 − 1) cos θ ′

α′γṽ (γ0 − 1) cos θ
· �. (28)

Denote the scaled velocity at the moment after the pth
collision with the left barrier as

ṽ′′ = (̃vx′′, ṽy′′ , ṽz′′ ).

The conditions for the particle to reach the right barrier before
the next collision with the left battier are: ξr exists and ξr < ξ ,
where ξr and ξ are the first positive real roots of Eqs. (27) and
(20), respectively. For θ 	= 0, the critical boundary depends
on the parameters γ0, θ , α, and �, which can be obtained by
substituting

ṽx′′ = ṽx + ṽ

1 + ṽx ṽ
,

ṽy′′ = ṽy cos θ ′ − ṽz sin θ ′

γṽ (1 + ṽx ṽ)
,

ṽz′′ = ṽy sin θ ′ + ṽz cos θ ′

γṽ (1 + ṽx ṽ)
,

into Eq. (27) to determine whether the particle with ṽ can
collide with the right barrier first.

Two examples of the critical boundary are shown in Fig. 2.
It can be seen that the value of � affects the size of the right
barrier region. In fact, θ affects the position of the critical
boundary through θ ′ directly, where a larger angle θ ′ corre-
sponds to more deviation of the critical boundary from the
origin. Similarly, α affects the position of the critical bound-
ary through θ ′. The size of the right barrier region increases
with � (major effect) but decreases with ṽ0, θ , and α (minor
effect). As the degree of relativity continues to increase, and
the critical boundary tends to reach some certain shape in the
weakly relativistic or ultra-relativistic regime, where the size
of the right barrier region tends to a certain nonzero value, as
shown in Fig. 2(b). In general, the particle trajectory can cross
the critical boundary as the parameters change, especially in
the case of large chaotic seas where nearly all trajectories are
ergodic.

We can now obtain the Poincaré map for double-barrier
dynamics. The particle with the scaled velocity ṽ′′

p leaves the
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FIG. 2. Two examples of the critical boundaries for particle
motion that involves two barriers. In each example, the critical
boundaries for three different cases are displayed: weakly relativistic,
relativistic, and ultrarelativistic. (a) The parameter values are � =
1.2, ṽ0 = 0.8, θ = 0 (black), θ = π/6, α = 1/7.5 (red), θ = π/18,
and α = 1/5 (blue). (b) The parameter values are � = 1.2, θ = π/6,
2̃v0/α = 12, ṽ0 = 0.0008 (black), ṽ0 = 0.8 (red), and ṽ0 = 0.999
(blue). The right barrier region is colored while the left barrier region
is blank.

pth point on the Poincaré surface of section at the moment
after the pth collision with the left barrier. If ṽ′′

p is located in
the left barrier region, the (p + 1)th integrable motion in the
space can be described by V ′′, otherwise the (p + 1)th inte-
grable motion contains two segments: the first is the particle
reaching the right barrier after the pth collision with the left
barrier and then experiencing a collision with the right barrier,
and the second is the particle’s reaching the left barrier after
the collision with the right barrier and then experiencing the
(p + 1)th collision with the left barrier.

For the first segment, the integrable motion is governed by
the motion parameter ξr . Immediately after a collision with

the right barrier, the scaled velocity can be written as

ṽ′′
r = V ′′ (̃v′′; ξr ) = R̂x′′ (2θ ′)T̂z′′ ṽ′′(ξ−

r ),

where ṽ′′(ξ−
r ) is the scaled velocity immediately before the

collision as given by Eq. (20). Moreover, we have

ṽ r
z′′ = −

√
1 −
[

(1 − ṽ r
x′′ ṽ)γṽ�

γ0(� − 1) + 1

]2

− (̃v r
x′′
)2 − (̃v r

y′′
)2

which is obtained by simplifying

γr = [γ0(� − 1) + 1]/� = γ ′′(ξr )γṽ (1 − ṽ r
x′′ ṽ), (29)

where γr is the relativity factor when the particle reaches the
right barrier.

For the second segment, the relativity factor is no longer γ ′
0

but γ ′(ξr ), so the motion parameter ξl is the first positive real
root of

F (ξ ; ṽ′′
r ) + (γ ′

0 − 1)/γ ′(ξr )�′ cos θ ′ = 0, (30)

where

γ ′
0/γ

′(ξr ) = 1/[cosh(α′ξr ) − sinh(α′ξr )̃vz′′ ].

Similar to the first segment, the quantity

ṽ′′
p+1 = V ′′ (̃v′′

r ; ξl )

represents the scaled velocity at the moment after the (p +
1)th collision with the left barrier.

C. Special relativity effects enhance Hamiltonian chaos

Figure 3 presents examples of the system dynamics on the
Poincaré map defined by the scaled and normalized veloci-
ties in the x and y directions, for different relativity degrees:
[(a) and (e)] weakly relativistic, [(b) and (f)] relativistic,
[(c) and (g)] strongly relativistic, and [(d) and (h)] ultrarel-
ativistic. The phase-space plots of the dynamics associated
with single-barrier and double-barrier dynamics are shown in
Figs. 3(a)–3(d) and 3(e)–3(h), respectively. In all cases, we ob-
serve the typical mixed phase-space structure of Hamiltonian
systems: coexistence of Kolmogorov–Arnold–Moser (KAM)
tori and chaotic seas. As the degree of special relativity in-
creases, chaotic layers begin to emerge [Figs. 3(b) and 3(f)]
and the chaotic sea gradually expands until it fills almost the
entire Poincaré surface of section [Figs. 3(d) and 3(h)]. That
is, special relativity effects enhance chaos! It is worth em-
phasizing that chaos originates from the non-head-on elastic
collisions with the barriers. In our system, the nonrelativistic
dynamics are already chaotic for θ 	= 0 but relativistic effects
serve to enhance chaos, as demonstrated in Fig. 3, which is
different from some related works [12–18]. We also note the
nature of our semianalytic approach: the results in Fig. 3 are
obtained numerically directly from the Poincaré maps that are
analytically derived, not from numerically solving the Hamil-
ton’s equations of motion (i.e., a set of nonlinear differential
equations).

For double-barrier dynamics, in the coordinate system O′′,
the Poincaré map is

V ′′
D = V ′′ (̃v′′

r ; ξl ). (31)
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FIG. 3. Chaotic dynamics on the Poincaré surfaces of section for different relativity degrees. [(a)–(d)] Single-barrier and [(e)–(h)] Double-
barrier dynamics for � = 1.2. Other parameters are 2̃v0/α = 12/5 and θ = π/6. For fixed 2̃v0/α, the relativity degree can be conveniently
represented by the incident velocity ṽ: [(a) and (e)] ṽ0 = 0.08 (weakly relativistic), [(b) and (f)] ṽ0 = 0.8 (relativistic), [(c) and (g)] ṽ0 = 0.92
(strongly relativistic), and [(d) and (h)] ṽ0 = 0.99 (ultrarelativistic). The orange solid curves in (e)–(h) mark the boundary for double-barrier
dynamics. All displayed Poincaré maps exhibit typical features of a Hamiltonian phase space: coexistence of KAM tori/islands and chaotic
sea. As the system becomes more relativistic, chaos is enhanced characterized by a continuous increase in the area of the chaotic sea on the
Poincaré map.

In the relativistic regime, on the Poincaré surface of section,
there are regions of “chaotic halo” for small chaos parameter
and small θ , as exemplified in Figs. 3(d)–3(f). The difference
between such a chaotic halo and some distorted KAM tori are
relatively pronounced in Figs. 3(d) and 3(f). Here, the inner-
most KAM torus is determined by V ′′

D only, i.e., there must
be a collision with the right barrier before each collision with
the left barrier. The outermost KAM torus is determined by
(1) the existence of V ′′ and (2) the derivative of the Poincaré
map with respect to ṽ′′ being discontinuous once the trajectory
crosses the critical boundary. Note that chaotic halo regions
similar to those in Figs. 3(d)–3(f) also exist in nonrelativistic
particle dynamics [28].

Overall, chaos originates from non-head-on elastic col-
lisions with the barriers. While the motion of a charged
nonrelativistic particle in electromagnetic fields is integrable,
relativistic effects can make the motion more complicated. In
our system, after applying an appropriate Lorentz transforma-
tion (O → O′), B′ becomes parallel to E′. In this frame, the
motion involves acceleration followed by deceleration along
the direction of E′, accompanied by cyclotron motion in the
plane perpendicular to E′. Due to the relativistic effects, the
cyclotron frequency is no longer constant but varies with
the particle’s position along the E′ direction. More specifi-
cally, the effective Hamiltonian

Heff =
√

1 + α2
[
p2

η + p2
ζ + (η cos θ − ζ sin θ )2

]
+ α2ζ + U (−ζ ) + U

(
ζ − d

cαω−1
0

)
= γ0,

includes a more complex square root structure. For small α,
the Hamiltonian can be reduced to the nonrelativistic one
by ignoring terms of orders higher than α2. The relativistic
Hamiltonian preserves the higher-order effects, leading to en-
hancement of chaos.

IV. ANALYTIC SOLUTION OF INTEGRABLE DYNAMICS

As a prelude to analytically calculating periodic orbits to
gain insights, we analyze the integrable dynamics that arise
when the electric and magnetic fields are in the same direction
(θ = 0). In this case, the particle dynamics in between two
adjacent collisions can be decomposed into two components:
longitudinal motion along the z axis and cyclotron motion in
the plane (x, y). All periodic orbits can be divided into two
groups: a single traversing orbit bouncing perpendicular to
the barrier(s) with v0 = vzẑ (i.e., a pure longitudinal motion)
and infinite families of helical orbits whose radius of the cross
section within the (x, y) plane depends on z(t ).

We first analyze orbits arising from single-barrier dynam-
ics. The fixed point (0,0) of the Poincaré map represents a
traversing orbit with the period

TTO = 2
(
1 − γ −2

0

)1/2

ω0α
. (32)

A helical orbit can be decomposed into a longitudinal and a
cyclotron motion component. For single-barrier dynamics, if
the period of a family of helical orbits is

T = nTCM = nTTOṽz/̃v0, (33)
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the corresponding phase change �θc is given by

�θc = n
∫ TCM

0
ωc(t )dt = neB

m

∫ TCM

0

dt

γ0 − eEz(t )/mc2

= n

α
ln

(
1 + ṽz

1 − ṽz

)
(34)

where ṽz is the component of initial scaled velocity along the
z axis. The phase change can be obtained by using

z(t ) = mγ0c2

eE

[
1 −
√

1 − ṽ2
z + (αω0t − ṽz )2

]
. (35)

The family of helical orbits determines the resonant torus via
the resonance condition �θc = 2kπ with positive integers n
and k. When n and k do not have a common divisor, both the
helical-orbit family and the resonant torus can be conveniently
denoted as {n, k}, stipulating that the orbit returns to the initial
state through n collisions with the left barrier and k whole cy-
clotron rotations (corresponding to a periodic orbit of period-n
in the Poincaré map). Giving the initial energy mγ0c2, this
family of periodic orbits satisfies the following condition:

ṽz = exp(2παk/n) − 1

exp(2παk/n) + 1
(36)

for single-barrier dynamics located at an invariant torus with
R =

√
ṽ2

0 − ṽ2
z denoted as {n, k}. For periodic orbits with the

initial energy mγ0c2 to arise, in addition to the requirement
ṽz � ṽ0, another condition needs to be met:

k

n
� 1

2πα
ln

(
1 + ṽ0

1 − ṽ0

)
. (37)

We next consider orbits from double-barrier dynamics. A
traversing orbit with z(t = TTO/2) = d has the period

TTO = 2
(
1 − γ −2

0

)1/2

ω0α

⎛⎝1 −
√

� − 1

�

[
1 + 1 − γ0

(1 + γ0)�

]⎞⎠.

(38)

In the nonrelativistic case, the period becomes

lim
c→∞ TTO = βNR

ω0

⎛⎝1 −
√

1 − 1

γNR

⎞⎠. (39)

For the family of helical orbits {n, k}, the phase change is
given by

�θc = 2n

α
ln

⎛⎜⎝ 1 + ṽz

γr/γ0 +
√

γ 2
r /γ 2

0 + ṽ2
z − 1

⎞⎟⎠
= 2kπ (40)

for γr/γ0 = 1 − 1/� + 1/�γ0. Giving the initial energy
mγ0c2, we have

ṽz = exp(2παk/n) + 1 − 2γr exp(παk/n)/γ0

exp(2παk/n) − 1
.

We now present examples of the family of periodic orbits
denoted as {n, k}. For single-barrier dynamics, a left barrier

FIG. 4. Scaled cyclotron velocity for the resonant torus {1, 1} as
a function of 2̃v0/α for the integrable dynamics with θ = 0. The
value of the swing parameter is � = 1.2. Shown are the functions of
the scaled cyclotron velocity for three initial-velocity values: ṽ0 =
0.0008 (weakly relativistic, dashed curves), ṽ0 = 0.8 (relativistic,
solid curves), and ṽ0 = 0.999 (ultra-relativistic, dash-dotted curves).
The left and the right barrier tori are denoted by black and red,
respectively. The horizontal dashed line ṽc = 0 corresponds to the
traversing orbit, and the arrows indicate the upper and lower bound-
aries of 2̃v0/α for the case of relativistic motion.

orbit is one which can never reach the right barrier, as stipu-
lated by Eq. (36):

αSBM = n ln [(1 + ṽz )/(1 − ṽz )]
/

2πk.

The smaller 1/α is, the larger longitudinal scaled velocity ṽz,
the larger the longitudinal maximum displacement, and the
closer the orbit is to the right barrier. When 1/α decreases to
the critical value 1/α†, ṽz will increase to the critical value ṽ†

z
so the particle can reach the right barrier with

α† = αSBM(̃v†
z ) = n

πk
ln

⎛⎜⎝1 +
√

1 − γ 2
r /γ 2

0

γr/γ0

⎞⎟⎠, (41)

i.e., the left barrier periodic orbit {n, k} exists in the range
1/α � 1/α†, as illustrated in Fig. 4.

For double-barrier dynamics, the right barrier orbit can be
defined in a similar way. A right barrier torus in the Poincaré
map is determined by the corresponding right-barrier periodic
orbit {n, k} with

αDBM = n

πk
ln

⎛⎜⎝ 1 + ṽz

γr/γ0 +
√

γ 2
r /γ 2

0 + ṽ2
z − 1

⎞⎟⎠. (42)

Since ∂αDBM/∂ ṽz < 0, the smaller 1/α is, the smaller ṽz will
be (contrary to the single-barrier dynamics case). The right
barrier torus {n, k} has its longitudinal scaled velocity limited
in the range ṽ†

z < ṽz � ṽ0, and 1/α is restricted to the range of
1/α† < 1/α � 1/αTO, where αTO = αDBM(̃v0) are associated
with the traversing orbit, as shown in Fig. 4.

When 1/α increases through 1/α†, the left and right barrier
torus simultaneously appear in the adjacency domain of the
critical boundary for double-barrier dynamics with a given
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FIG. 5. Representative periodic orbits in the relativistic dynamical system governed by the Hamiltonian (3). (a) Periodic orbits formed by
the particle’s interacting with a single potential barrier: period-1 orbits (1)±, type-A period-2 orbits (2)+, and type-B period-2 orbits (2)− and
(2)∗. (d) Examples of periodic orbits requiring interaction with both barriers: period-1 orbits (1, 1)±, period-2 orbits (2, 2)+ [deformed from
(2)+], (2, 2)− and (1, 2)± [deformed from (2)−], and (1, 2)±∗ [deformed from (2)∗] in the double-barrier well. The “±” sign indicates initially
stable (+) or unstable (–) periodic orbits.

value of the swing parameter �. The left and right barrier tori
keep expanding and shrinking, respectively, from the critical
boundary until they are close to the unit circle centered at
(0,0). By continuity [54], some pairs of periodic orbits survive
through the destruction process of the tori when the magnetic
field has a infinitesimal tilt, where the formation and evolution
of the left barrier periodic orbits are the same as those with
single-barrier dynamics. Unique to double-barrier dynamics
are thus the right barrier periodic orbits.

The relativistic nature of the motion is controlled by the
parameter ṽ0, so a useful dynamic parameter is 2̃v0/α. As
shown in Fig. 4, as this parameter increases, the parameter
region permitting the right barrier torus reduces, and the upper
and lower bounds of the left and right barrier tori correspond
to a smaller value of 2̃v0/α. It can then be anticipated that
the dynamics in the relativistic and nonrelativistic cases share
similar qualitative features. As will be discussed below, this
result is also supported by a detailed analysis of the periodic
orbits from both single-barrier and double-barrier dynamics in
terms of their types and stability.

V. ANALYTIC SOLUTIONS OF PERIODIC ORBITS
FROM SINGLE-BARRIER DYNAMICS

Now we turn to analyze the nonintegrable dynamics that
arise when the electric and magnetic fields are in different
directions (θ 	= 0). In nonlinear dynamical systems, periodic
orbits are fundamental to the physically observable phe-
nomena, where the system behaviors are determined by the
dynamical invariant sets that can be periodic or chaotic. In dis-
sipative dynamical systems, chaotic attractors are attracting,
dynamically invariant sets contain an infinite set of unstable
periodic orbits [2], while nonattracting chaotic invariant sets
lead to transient chaos [27]. Invariant measures, the funda-
mental characterization of any chaotic set, are supported by
the infinite set of unstable periodic orbits [55–58]. While
there were efficient numerical algorithms for calculating the

unstable periodic orbits in dissipative chaotic systems [59,60],
analytically finding periodic orbits has always been challeng-
ing, especially for Hamiltonian systems.

We have succeeded in analytically calculating the periodic
orbits of low periods in the relativistic dynamical system gov-
erned by the Hamiltonian (3). Some representative periodic
orbits are shown in Fig. 5, for both the single-barrier and
double-barrier dynamical regimes. While the basic method-
ology underlying our analysis is the same for finding the
periodic orbits in the single-barrier and double-barrier dynam-
ical regimes, the details are different. We detail our calculation
and analysis of the period-1 orbits for single-barrier dynam-
ics here, while presenting the results of period-2 orbits in
Appendix C. The corresponding results from the double-
barrier dynamics are described in Appendix D.

A. Solutions of period-1 orbits

Period-1 orbits are typically helical orbits {1, k}, as
the traversing motion with the initial velocity v′

0 =
v′

0(1, sin θ ′, cos θ ′) has the velocities

v′(T −
TO) = −v′

0,

v′(T +
TO) = v′

0(1,− sin θ ′, cos θ ′) 	= v′
0

immediately before and after the elastic collision with the
left barrier, respectively. For the traversing motion to have
a periodic behavior, the condition θ ′ = 0 (i.e., θ = 0,±π/2)
must be met. In this case, the fixed point of the Poincaré map
is (̃v∗

x , ṽ
∗
y ) = (−ṽ, 0), denoted as {1, 0}. For an infinitesimally

tilted magnetic field (θ ′ 	= 0), this periodic orbit is destroyed.
Our analysis will focus on periodic orbits associated with the
helical motion.

We study the family of helical motions in the coordinate
system O′′. For clarity, we denote the fixed point by “∗”
in all the reference frames. Letting T∗ be the period in O′′,
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we have

vx′ (T −
∗ ) = vx′′ (T −

∗ ) = v∗
x′ ,

vy′ (T −
∗ ) = vy′′ (T −

∗ ) cos θ ′ + vz′′ (T −
∗ ) sin θ ′ = v∗

y′ ,

vz′ (T −
∗ ) = −vy′′ (T −

∗ ) sin θ ′ + vz′′ (T −
∗ ) cos θ ′ = −v∗

z′ . (43)

Replacing the expression of initial velocity in O′ with that in
O′′: vz′′ (T −

∗ ) = −v∗
z′′ , we have

vx′′ (T −
∗ ) = v∗

x′′ , vy′′ (T −
∗ ) = −v∗

y′′ , v∗
y′ = 0. (44)

As a result, the initial velocity v′′
0 = (v′′

0 , φ′′, ϕ′′) with v∗
y′′ =

−v∗
z′′ tan θ ′ (due to v∗

y′ = 0) satisfies

sin ϕ′′ = − tan θ ′√
(v′′

0/v∗
z′′ )2 − 1

, (45)

with the phase change

�θc = −2ϕ′′ + 2kπ. (46)

From the analysis in Sec. IV, we have that the period-1 orbits
{1, k}(k ∈ N ) have

ṽ∗
z′′ = exp [2α′(kπ − ϕ′′)] − 1

exp [2α′(kπ − ϕ′′)] + 1
. (47)

Given a value of ϕ′′, the quantity ṽ∗
z′′ is determined, leading to

the initial velocity:

ṽ′
0 = ṽ′′

0 = ṽ∗
z′′

√(
tan θ ′

sin ϕ′′

)2

+ 1. (48)

To ensure ṽ′
0 � 1, we have the following constraint on k:

k � 1

2πα′ ln

(√
tan2 θ ′ + sin2 ϕ′′ + | sin ϕ′′|√
tan2 θ ′ + sin2 ϕ′′ − | sin ϕ′′|

)
+ ϕ′′

π
. (49)

The initial scaled velocity in O′ is given by

ṽ∗
z′ = ṽ∗

z′′/ cos θ ′, ṽ∗
y′ = 0,

ṽ∗
x′ = ṽ∗

x′′ = −ṽ∗
z′′ tan θ ′/ tan ϕ′′.

In the original reference frame O, the initial scaled velocity ṽ∗
0

associated with the period-1 orbit is

ṽ∗
x = ṽ∗

x′ − ṽ

1 − ṽ∗
x′ ṽ

,

ṽ∗
y = 0,

ṽ∗
z = ṽ∗

z′

γṽ (1 − ṽ∗
x′ ṽ)

, (50)

where γ ′
0 ≡ (1 − ṽ′2

0 )−1/2 and

γ0 = γ ′
0γṽ (1 − ṽ∗

x′ ṽ).

The period is given by

T{1,k} = 2̃v∗
z′′/γṽω

′
0α

′ (51)

with ω′
0 = eB′/mγ ′

0. The fixed point is located on the curve
ṽy = 0 on the Poincaré surface of section.

B. Stability of period-1 orbits

The stability of a periodic orbit can be determined by lin-
earizing the Poincaré map about its location [2,26]. linearized
Poincaré map is described by a 2 × 2 monodromy matrix [61],
denoted as M, whose elements represent the variation of Vx(y)

with respect to ṽx(y). The absolute value of the trace Tr[M] of
the matrix M characterizes the stability of the periodic orbit.
In particular, if |Tr[M]| < 2, the roots of M are complex and
of magnitude one, so the periodic orbit is elliptic (stable). In
this case, a nearby orbit remains nearby forever in the linear
approximation. If Tr[M] > 2 or < −2, the roots are real and
positive or negative, and the periodic orbit is hyperbolic or
hyperbolic with refection (unstable), causing nearby orbits to
diverge exponentially from the periodic orbit. For Tr[M] = 2,
a saddle-node bifurcation occurs, where a stable-unstable pair
is created. At the bifurcation, the periodic orbit is marginally
stable. As the parameter increases from the bifurcation point,
one orbit remains stable in a finite parameter interval, while
the other is unstable. For Tr[M] = −2, a period doubling or
inverse period doubling bifurcation occurs.

For period-1 orbits, we analytically calculate the mon-
odromy matrix (Appendix A), whose trace is

Tr[M] = (∂Vx/∂ ṽx + ∂Vy/∂ ṽy )̃v∗
0

(52)

= sin2(2θ ′)
sinh(α′ξ ∗)

2

×
[

α′ sin ξ ∗

cosh(α′ξ ∗) − 1
+ 1

α′ tan(ξ ∗/2)

]
− sin2(2θ ′)

+ 2[cos4 θ ′ cos ξ ∗ + sin4 θ ′ cosh(α′ξ ∗)], (53)

where ξ ∗ is the motion parameter for period-1 orbits. Without
loss of generality, we consider the case θ > 0, so ∂α′/∂α > 0,
∂θ ′/∂θ > 0, ∂α′/∂θ < 0, and ∂θ ′/∂α < 0, indicating α′ has
positive and negative correlations with α and θ , respectively,
in contrast to θ ′. For convenience, we denote the periodic orbit
{n, k} as (n)±(k), where “±” corresponds to an initially stable
or unstable periodic orbit, respectively [28]. Given γ0 and θ , as
α decreases, so does α′, leading to an increase in the motion
time and the cyclotron frequency in the reference frame O′′.
Note that the maximum value of k may increase, i.e., there
can be multiple fixed points with k � 1.

Figure 6(a) shows that, as 1/α increases, the transcendental
equation

γ ′
0(�θc)[1 − ṽ∗

x′ (�θc )̃v] = γ0/γṽ

will have a pair of new positive real roots that correspond
to the paired period-1 orbits (1)+(k) and (1)−(k) (k > 0) with
a saddle-node bifurcation. The (1)−(k) orbit becomes more
unstable as 1/α increases, until Tr[M] → +∞. The other
orbit (1)+(k) is stable over a finite interval of the dynamic
parameter, until Tr[M] crosses −2 and tends to −∞. For
each (1)+(k) orbit, there is a critical angle θ† that depends
on the parameters γ0 and α. For θ < θ†, Tr[M] crosses −2
thrice before approaching asymptotically −∞, as shown in
Fig. 6(a). During the process, the (1)+(k) orbit undergoes a
period doubling bifurcation, an inverse period doubling bi-
furcation, and a period doubling bifurcation, respectively, and
the third intersection with −2 approaches the second one as θ
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FIG. 6. Trace of the monodromy matrix for period-1 orbits.
(a) The trace versus 2̃v0/α for (1)+(0) and (1)±(k) (k = 1, 2), ṽ0 =
0.8, and θ = π/18. The hollow cycles, diamonds, and squares
represent the period doubling bifurcation, inverse period doubling
bifurcation, and saddle-node bifurcation, respectively. (b) The trace
of as a function of 2̃v0/α for (1)+(0) and (1)±(1) at θ = 16◦, in the
relativistic (̃v0 = 0.5, solid lines) and weak relativistic (̃v0 = 0.0005,
chain-dotted lines) regimes, where the black arrow indicates the
truncation of the (1)−(1) orbits.

increases. For θ = θ†, the third intersection with −2 is merged
into the second one, so Tr[M] crosses −2 twice, and (1)+(k)

no longer goes through the process of re-stabilization. For
θ > θ†, Tr[M] only crosses −2 once, as shown in Figs. 6(a)
and 6(b), corresponding to θ = π/8 < θ† and θ = π/6 > θ†,
respectively. Figure 6(b) shows that, for θ < θ† ≈ 4π/29, as
2̃v0/α increases, the (1)+(0) orbit is stable at first, becomes
unstable, and then becomes stable and unstable again for the
given θ value (< θ†).

Figure 6(b) shows that the (1)−(1) orbits are truncated
at the black arrow in both the relativistic and weakly rel-
ativistic regimes. In fact, the (1)−(1) and (1)−(2) orbits are
also truncated for a sufficiently large value of 2̃v0/α [not
shown in Fig. 6(a)], where α−

1,k for (1)−(k) (k > 0) denotes
the truncation threshold. As will be discussed, the physical
reason underlying the truncation is that the elastic collision
occurs before a whole self-retracing process. We note that this
truncation process was not treated in the previous work [28],
which could lead to some spurious periodic orbits when βNR

is relatively large. In fact, the truncation occurs in the single-
barrier dynamics for (n)−(k) in the weakly relativistic regime
that degenerates into the nonrelativistic regime smoothly, as
shown in Fig. 6(b).

What are the possible effects of special relativity on the
period-1 orbits and their stability? In Fig. 6(b), the traces of

FIG. 7. Stability regions of period-1 orbits. Shown are the stable
(green) and unstable (yellow) regions of the (1)+(0) orbit in the plane
(̃v0, 1/α) for (a) θ = π/8 and (b) θ = π/6. (c) The stability regions
in the plane (θ, ṽ0 ) for 1/α = 10.

the monodromy matrix as a function of 2̃v0/α for period-1
orbits have a similar behavior in the relativistic and weakly
relativistic regimes. In fact, the behavior in the weakly rela-
tivistic regime is similar to that in the nonrelativistic regime
with approximately the same trace for the same value of
2̃v0/α. This indicates that special relativity has no significant
effect on the period-1 orbits. It is also worth noting that the
dynamics in the nonrelativistic regime are determined by two
parameters (θ and βNR) while the dynamics in the relativistic
regime are determined by three parameters (θ , ṽ0, and α). For
fixed 2̃v0/α, ṽ0 is a dynamic parameter that represents the
degree of the special relativity effects. In fact, the dynamic pa-
rameter βNR contains two components: ṽ0 and 1/α, where ṽ0

is related to the degree of the relativity effects. The connection
between the relativistic and nonrelativistic regimes in terms
of the stability of the period-1 orbits can be concretely seen
in Fig. 7, where the stable and unstable regions for period-1
orbits in the parameter plane are displayed. For βNR = 2̃v0/α,
the behaviors are similar in the weakly relativistic and non-
relativistic regimes, and the ṽ0 plays a role similar to that
of 1/α.

VI. DISCUSSION

The emergence of chaotic behaviors in nonrelativistic
Hamiltonian systems was a subject of study in nonlinear
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physics [26,62–67], and there has been a continuous interest
in chaos in relativistic systems as well [12–25]. We carried
out a fairly complete analysis of the motion of a relativistic
charged particle in a potential well generated by two potential
barriers in the presence of static electrical and magnetic fields.
Depending on the parameters, two types of distinct motion can
arise: particles experiencing collisions with a single barrier
or both barriers. In both cases, utilizing a specially designed
Lorentz boost transform, we were able to derive the Poincaré
map for both types of particle motion. Examination of the
phase-space structure on the Poincaré surface of section re-
veals that, as the degree of special relativity effects increases,
chaos becomes more extensive, verifying the previously un-
covered, pure numerical phenomenon that relativity enhances
chaos. A key feature of our work lies in its semianalytic
nature: we managed to derive explicit Poincaré maps and the
phase-space dynamics that were obtained simply by iterating
the maps, in contrast to previous works in which the approach
was to numerically solve the Hamilton’s equations of motion.
For both types of particle motion, we were also able to an-
alytically calculate the periodic orbits of short periods. The
analytic approach enables the physical origin of the periodic
orbits to be elucidated. We emphasize that in the field of
nonlinear dynamics and chaos, analytically solvable models
are rare, particularly continuous-time models in Hamiltonian
systems. Our success with such a model in relativistic particle

dynamics leads to unique insights into the physics of the dy-
namical behaviors in terms of the Poincaré map, phase-space
structures, chaos, and periodic orbits.
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APPENDIX A: MONODROMY MATRIX FOR PERIOD-1
ORBITS FOR SINGLE-BARRIER DYNAMICS

We derive the monodromy matrix and its trace period-1 or-
bits from single-barrier dynamics by examining the behavior
of orbits near ṽ∗

0 = (̃v∗
x , ṽ

∗
y , ṽ

∗
z ). The Poincaré map is two-

dimensional with the dynamical variables ṽx and ṽy including
Vx and Vy. Setting

ṽx(ξ ) = ṽ∗
x + δ̃vx(ξ ), ṽy(ξ ) = ṽ∗

y + δ̃vy(ξ ), (A1)

where δ̃vx(ξ ) and δ̃vy(ξ ) are infinitesimal, we expand Vx and
Vy to the first order of δ̃vx(ξ ) and δ̃vy(ξ ):

Vx(y) (̃v
∗
x + δ̃vx, ṽ

∗
y + δ̃vy) = ṽ∗

x(y) + ∂Vx(y)

∂ ṽx
δ̃vx + ∂Vx(y)

∂ ṽy
δ̃vy + O((δ̃vx )2, (δ̃vy)2, δ̃vx δ̃vy), (A2)

and M = (M )i j is the Jacobian matrix of partial derivatives of the Poincaré map,

M =
(

∂Vx/∂ ṽx ∂Vx/∂ ṽy

∂Vy/∂ ṽx ∂Vy/∂ ṽy

)
. (A3)

The trace of M is

Tr[M] = (∂Vx/∂ ṽx + ∂Vy/∂ ṽy )̃v∗
0

= γ 2
ṽ (1 + ṽ∗

x ṽ)2

(
∂ ṽx′′ (ξ )

∂ ṽx

)
ṽ∗

0

+ γṽ (1 + ṽ∗
x ṽ)

[
cos θ ′

(
∂ ṽy′′ (ξ )

∂ ṽy

)
ṽ∗

0

+ sin θ ′
(

∂ ṽz′′ (ξ )

∂ ṽy

)
ṽ∗

0

]
. (A4)

The period-1 orbits are denoted by {1, k} satisfy 2kπ < ξ0 = ξ ∗ = �θc < 2(k + 1)π , where �θc is the positive real root of the
equation

γ ′
0(�θc)[1 − ṽ∗

x′ (�θc )̃v] = γ0/γṽ

with the precondition ṽ′
0 � 1. We get(

∂ ṽz′′ (ξ )

∂ ṽy

)
ṽ∗

0

=
(

∂ ṽz′′

∂ ṽy

)
ṽ∗

0

+
(

∂ξ

∂ ṽy

)
ṽ∗

0

α′(̃v∗2
z′′ − 1

)
,

(
∂ ṽy′′ (ξ )

∂ ṽy

)
ṽ∗

0

=
(

∂ ṽy′′

∂ ṽy

)
ṽ∗

0

cos ξ ∗ −
(

∂ ṽz′′

∂ ṽy

)
ṽ∗

0

ṽ∗
y′′ sinh(α′ξ ∗) +

(
∂ξ

∂ ṽy

)
ṽ∗

0

(̃v∗
x′′ + α ′̃v∗

y′′ ṽ
∗
z′′ ),(

∂ ṽx′′ (ξ )

∂ ṽx

)
ṽ∗

0

=
(

∂ ṽx′′

∂ ṽx

)
ṽ∗

0

cos ξ ∗ −
(

∂ ṽy′′

∂ ṽx

)
ṽ∗

0

sin ξ ∗ +
(

∂ ṽz′′

∂ ṽx

)
ṽ∗

0

ṽ∗
x′′ sinh(α′ξ ∗) +

(
∂ξ

∂ ṽx

)
ṽ∗

0

(̃v∗
y′′ − α ′̃v∗

x′′ ṽ
∗
z′′ ). (A5)
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Let ξ be the root of F (ξ, ṽx, ṽy) = 0. We have(
∂ξ

∂ ṽ j

)
ṽ∗

0

= −
(
∂F/∂ ṽ j

)̃
v∗

0

(∂F/∂ξ )̃v∗
0

= cos2 θ ′

α ′̃v∗
z′′

(
∂F
∂ ṽ j

)
ṽ∗

0

, ( j = x, y),

(
∂F
∂ ṽ j

)
ṽ∗

0

=
(

∂ ṽz′′

∂ ṽ j

)
ṽ∗

0

sinh(α′ξ ∗) − α′ tan θ ′
[(

∂ ṽy′′

∂ ṽ j

)
ṽ∗

0

sin ξ ∗ +
(

∂ ṽx′′

∂ ṽ j

)
ṽ∗

0

(1 − cos ξ ∗)

]
. (A6)

The partial derivatives of the fixed point are(
∂ ṽx′′

∂ ṽx

)
ṽ∗

0

= 1

γ 2
ṽ (1 + ṽ∗

x ṽ)2
,

(
∂ ṽy′′

∂ ṽx

)
ṽ∗

0

=
(̃
v∗

x + ṽ2
0 ṽ
)

sin θ ′

γṽ ṽ∗
z (1 + ṽ∗

x ṽ)2
,

(
∂ ṽz′′

∂ ṽx

)
ṽ∗

0

= −
(̃
v∗

x + ṽ2
0 ṽ
)

cos θ ′

γṽ ṽ∗
z (1 + ṽ∗

x ṽ)2
,(

∂ ṽx′′

∂ ṽy

)
ṽ∗

0

= 0,

(
∂ ṽy′′

∂ ṽy

)
ṽ∗

0

= cos θ ′

γṽ (1 + ṽ∗
x ṽ)

,

(
∂ ṽz′′

∂ ṽy

)
ṽ∗

0

= sin θ ′

γṽ (1 + ṽ∗
x ṽ)

. (A7)

Substituting the expressions (A5) ∼ (A7) into Eq. (A4), we get

Tr[M] = sin2(2θ ′)
sinh(α′ξ ∗)

2

[
α′ sin ξ ∗

cosh(α′ξ ∗) − 1
+ 1

α′ tan(ξ ∗/2)

]
+ 2[cos4 θ ′ cos ξ ∗ + sin4 θ ′ cosh(α′ξ ∗)] − sin2(2θ ′). (A8)

MONODROMY MATRIX FOR PERIOD-N ORBITS FROM DOUBLE-BARRIER DYNAMICS

A period-n orbit with s elastic collisions (including those with the left and right barriers) will experience s encounters with
Poincaré section, where n � s � 2n. Donating Mk as the monodromy matrix of the kth Poincaré mapping, which is deduced in a
similar way as the monodromy matrix for period-1 orbits in the single-barrier dynamics. The only change is to replace the initial
scaled velocity ṽ0 and motion parameter ξ∗ by ṽ′′

k and ξk , respectively, which represent the scaled velocity in O at the moment
after the kth elastic collision and the motion parameter for the kth integrable path. We get

(Mk )1 j = [1 + (̃vx )k+1̃v]2

1 − ṽ2

(
∂ ṽx′′ (ξk+1)

∂ ṽ j

)
ṽk

= γ ′′
0 [1 + (̃vx )k+1̃v]2

γ ′′(ξk+1)(1 − ṽ2)

{(
∂ ṽx′′

∂ ṽ j

)
ṽk

[cos ξk+1( fk + 1) − fk] −
(

∂ ṽy′′

∂ ṽ j

)
ṽk

sin ξk+1( fk + 1) +
(

∂ ṽz′′

∂ ṽ j

)
ṽk

gk

}
, (B1)

where

fk = −[̃vy′′ (ξk+1) − α ′̃vx′′ (ξk+1 )̃vz′′ (ξk+1)]
/

[cot θ ′ (̃vz′′ )k+1 − (̃vy′′ )k+1],

gk = sinh(α′ξk+1)[̃vx′′ (ξk+1) + fk/α
′ tan θ ′],

γ ′′
0 /γ ′′(ξk+1) = [cosh(α′ξk+1) − sinh(α′ξk+1)(̃vz′′ )k]−1. (B2)

We also have

(Mk )2 j = γṽ[1 + (̃vx )k+1̃v]

[
cos θ ′

(
∂ ṽy′′ (ξk+1)

∂ ṽ j

)
ṽk

+ sin θ ′
(

∂ ṽz′′ (ξk+1)

∂ ṽ j

)
ṽk

]
+ (̃vy)k+1̃v

1 + (̃vx )k+1̃v
(Mk )1 j

= (̃vy)k+1̃v

1 + (̃vx )k+1̃v
(Mk )1 j + γṽ[1 + (̃vx )k+1̃v]

γ ′′
0

γ ′′(ξk+1)

{(
∂ ṽx′′

∂ ṽ j

)
ṽk

[cos θ ′ sin ξk+1 + lk (cos ξk+1 − 1)]

+
(

∂ ṽy′′

∂ ṽ j

)
ṽk

(cos θ ′ cos ξk+1 − lk sin ξk+1) +
(

∂ ṽz′′

∂ ṽ j

)
ṽk

[
mk + sin θ ′ γ ′′

0

γ ′′(ξk+1)

]}
, (B3)

where

lk = {[̃vx′′ (ξk+1) + α ′̃vy′′ (ξk+1 )̃vz′′ (ξk+1)] cos θ ′ + α′ sin θ ′[̃v2
z′′ (ξk+1) − 1

]}
/[cot θ ′ (̃vz′′ )k+1 − (̃vy′′ )k+1],

mk = sinh(α′ξk+1)[cos θ ′̃vy′′ (ξk+1) + lk/α
′ tan θ ′]. (B4)
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In terms of the map V ′′, we have

ṽx′′ (ξk+1) = (̃vx′′ )k+1,

ṽy′′ (ξk+1) = cos 2θ ′ (̃vy′′ )k+1 + sin 2θ ′ (̃vz′′ )k+1,

ṽz′′ (ξk+1) = sin 2θ ′ (̃vy′′ )k+1 − cos 2θ ′ (̃vz′′ )k+1, (B5)

with the partial derivatives given by(
∂ ṽx′′

∂ ṽx

)
ṽk

= 1

γ 2
ṽ [1 + (̃vx )k ṽ]2

,

(
∂ ṽx′′

∂ ṽy

)
ṽk

= 0,

(
∂ ṽy′′

∂ ṽx

)
ṽk

=
[
(̃vx )k + ṽ2

0 ṽ
]

sin θ ′ − (̃vy)k ṽ[(̃vy)k sin θ ′ + (̃vz )k cos θ ′]
γṽ (̃vz )k[1 + (̃vx )k ṽ]2

,

(
∂ ṽz′′

∂ ṽx

)
ṽk

= −
[
(̃vx )k + ṽ2

0 ṽ
]

cos θ ′ + (̃vy)k ṽ[(̃vz )k sin θ ′ − (̃vy)k cos θ ′]
γṽ (̃vz )k[1 + (̃vx )k ṽ]2

,(
∂ ṽy′′

∂ ṽy

)
ṽk

= (̃vy)k sin θ ′ + (̃vz )k cos θ ′

γṽ (̃vz )k[1 + (̃vx )k ṽ]
,

(
∂ ṽz′′

∂ ṽy

)
ṽk

= (̃vz )k sin θ ′ − (̃vy)k cos θ ′

γṽ (̃vz )k[1 + (̃vx )k ṽ]
. (B6)

The quantities ṽk and ξk can be numerically calculated ac-
cording to the quantitative description of period-n orbits. The
matrix (Mk )i j can be obtained by using Eqs. (B1) and (B3).

APPENDIX C: PERIOD-2 ORBITS FROM
SINGLE-BARRIER DYNAMICS

In the single-barrier dynamics regime, our analysis reveals
two types of periodic orbits of period-2, with distinct physical
origin and stability, in terms of whether there is “mixing” in
the reference frame O′′. In particular, for a nonmixing orbit,
there is no energy exchange between the longitudinal and
cyclotron motion components after each elastic collision with
the left barrier. In the following, the two types of period-2
orbits are treated separately.

1. Type A: nonmixing period-2 orbits

After an elastic collision, the direction of ṽz′′ of the orbit is
reversed and its magnitude may change as governed by

ṽz′′ (ξ+
1 ) = −ṽz′′ (ξ−

1 ),

which indicates that the component of the velocity in the
(y′′, z′′) plane is perpendicular to the left barrier immediately
before the collision. It also means that the longitudinal motion
is not a whole reentry motion in the process of ṽz′′ → 0 →
−ṽz′′ . As a result, we have

ṽy′′ (ξ−
1 ) = − tan θ ′̃vz′′ (ξ−

1 ),

leading to the following relations for particle motion immedi-
ately before and after the first elastic collision:

ṽx′′ (ξ+
1 ) = ṽx′′ (ξ−

1 ),

ṽy′′ (ξ+
1 ) = −ṽy′′ (ξ−

1 ), (C1)

ṽz′′ (ξ+
1 ) = −ṽz′′ (ξ−

1 ),

where ξ1 is a parameter characterizing the particle motion in
between the collisions.

Since the cyclotron motion has no effect on the longitudinal
motion, but the latter can affect the former, we focus on

the latter. The first criterion for a periodic orbit is returning
to the original position: z′′(ξ1 + ξ2) = 0, which requires that
the longitudinal scaled velocity goes through the following
process:

ṽz′′
1IP−→ ṽz′′ (ξ−

1 )
1EC−→ −ṽz′′ (ξ−

1 )
2IP−→ −ṽz′′ , (C2)

which is equivalent to the motion cutting off a segment
of ṽz′′ (ξ−

1 ) → 0 → −ṽz′′ (ξ−
1 ) on a whole reentry motion

if ṽz′′ (ξ−
1 ) > 0, or the motion with the added segment of

−ṽz′′ (ξ−
1 ) → 0 → ṽz′′ (ξ−

1 ) on a whole reentry motion if
ṽz′′ (ξ−

1 ) < 0. The second criterion is the coincidence of the
velocity:

ṽz′′ (ξ1 + ξ2) = ṽz′′ ,

requiring −ṽz′′
2EC−→ ṽz′′ or ṽy′′ = − tan θ ′̃vz′′ . Type A period-2

orbits thus originate from relevant period-1 orbits, degen-
erating into the (1)+(k) orbits at the first period doubling
bifurcation.

The cyclotron motion associated with type-A period-2 or-
bits can then be analyzed. Since, for longitudinal motion,
we have

ṽz′′
1IP−→ ṽz′′ (ξ−

1 ),

−ṽz′′ (ξ−
1 )

2IP−→ −ṽz′′ ,

ξ2 is equal to ξ1, leading to

ṽy′′ (ξ−
2 ) = [̃vy′′ (ξ+

1 ) cos ξ2 + ṽx′′ (ξ+
1 ) sin ξ2]γ ′′(ξ1)/γ ′′

0

= [−ṽy′′ (ξ−
1 ) cos ξ1 + ṽx′′ (ξ−

1 ) sin ξ1]γ ′′(ξ1)/γ ′′
0

= −(̃vy′′ cos ξ1 + ṽx′′ sin ξ1) cos ξ1

+ (̃vx′′ cos ξ1 − ṽy′′ sin ξ1) sin ξ1

= −ṽy′′
2EC−→ ṽy′′ . (C3)

The equality ṽx′′ (ξ−
2 ) = ṽx′′ can be analyzed in the same way.

In addition, to ensure returning to the original position for a
period-2 orbit, two successive elastic collisions need to satisfy
z′′(ξ1,2) − y′′(ξ1,2) tan θ ′ = 0.
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The condition for type-A period-2 orbits with the initial
scaled velocity ṽ′′ to arise is then

ṽy′′ = − tan θ ′̃vz′′ , ṽy′′ (ξ−
1 ) = − tan θ ′̃vz′′ (ξ−

1 ), (C4)

with ξ1 given by Eq. (20). For given γ0, ṽz′′ can be regarded as
an independent variable, and

ṽx′′ (̃vz′′ ) =
γ 2

ṽ ṽ ± γ0

√
γ 2

0 − ṽ2
z′′ sec2 θ ′(γ 2

0 + γ 2
ṽ − 1

)− 1

γ 2
0 + γ 2

ṽ − 1
(C5)

can be obtained by solving

γ0 = γ ′
0γṽ (1 − ṽx′′ ṽ).

The quantity F±(ξ, ṽz′′ ) as the function of ξ and ṽz′′ can be
obtained by substituting the “±” forms of ṽx′′ into F . Defining
an implicit function S as

S (ξ, ṽz′′ ) ≡ [̃vy′′ (ξ−
1 ) + tan θ ′̃vz′′ (ξ−

1 )]γ ′′(ξ1)/γ ′′
0

= tan θ ′̃vz′′ [cosh(α′ξ ) − cos ξ ]

+ ṽx′′ (̃vz′′ ) sin ξ − tan θ ′ sinh(α′ξ )

= 0, (C6)

we can obtain S±(ξ, ṽz′′ ) = 0 in the same way. The analysis
leads to the following set of equations for finding the type-A
period-2 orbits:{

F+(ξ, ṽz′′ ) = 0
S+(ξ, ṽz′′ ) = 0 and

{
F−(ξ, ṽz′′ ) = 0
S−(ξ, ṽz′′ ) = 0 . (C7)

The root set Rγ0 = {(ξ ∗
1 , ṽ∗

z′′ )} is the union of the solution
sets of Eqs. (C7), where ξ ∗

1 is the first positive real root of
equation F±(ξ, ṽ∗

z′′ ) = 0.
The initial scaled velocity (̃v∗

x , ṽ
∗
y , ṽ

∗
z ) can be obtained from

Rγ0 . We have

ṽ∗
z′ = ṽ∗

z′′/ cos θ ′, ṽ∗
y′ = 0, ṽ∗

x′ = ṽx′′ (̃v∗
z′′ ) (C8)

in the reference frame O′ and

ṽ∗
x = ṽ∗

x′ − ṽ

1 − ṽ∗
x′ ṽ

,

ṽ∗
y = 0,

ṽ∗
z = ṽ∗′

z

γṽ (1 − ṽ∗
x′ ṽ)

(C9)

in the reference frame O, with the period given by

T{2,k} = sinh(α′ξ ∗
1 )

ω′
0γṽα′

(
2 + (1 − ṽ∗2

z′′
)
[1 − cosh(α′ξ ∗

1 )]
)
. (C10)

It can be seen that not all the type-A period-2 orbits are located
on the curve defined by ṽy = 0 in the Poincaré map.

2. Type B period-2 orbits

We consider the situation where the trajectory of the parti-
cle returns to itself in the plane (y′′, z′′) in the reference frame
O′′: y′′(ξ1) = z′′(ξ1) = 0 (not x′′(ξ1) = 0), where x′′ (0) ≡ 0
and ξ1 is the motion parameter given by Eq. (20). For a period-
2 orbit, the trajectory touches the left barrier at two points.
Setting y′′(ξ1) = z′′(ξ1) = 0 and substituting Eqs. (C11) into
Eqs. (17), we obtain

ṽz′′ = exp(α′ξ1) − 1

exp(α′ξ1) + 1
,

(C11)
ṽy′′ = −ṽx′′ tan(ξ1/2),

and

ṽx′′ (ξ−
1 ) = ṽx′′ , ṽy′′ (ξ−

1 ) = −ṽy′′ , ṽz′′ (ξ−
1 ) = −ṽz′′ . (C12)

For such an orbit, there is an energy change or “mixing”
between the longitudinal and cyclotron motions after the first
collision with the left carrier, which is given by

δεL = mγ ′
0c2| sin 2θ ′|

√
ṽ2

y′′ − ṽ2
z′′ − 2̃vy′′ ṽz′′ cot 2θ ′

	= 0. (C13)

The energy exchanging process can be intuitively seen in the
O′ frame. From Eqs. (C12), we have

ṽx′ (ξ−
1 ) = ṽx′ , ṽy′ (ξ−

1 ) = −ṽy′ , ṽz′ (ξ−
1 ) = −ṽz′ , (C14)

after the first collision with the barrier at which ṽz′ is re-
versed. Similar behaviors occur for the second collision. For
the whole orbit, we have

(̃vx′, ṽy′ , ṽz′ )
1IP−→ (̃vx′,−ṽy′ ,−ṽz′ )

1EC−→ (̃vx′,−ṽy′ , ṽz′ )

2IP−→ (̃vx′, ṽy′ ,−ṽz′ )
2EC−→ (̃vx′, ṽy′ , ṽz′ ), (C15)

where the condition ṽ′′(ξ1 + ξ2) = ṽ′′ is met for arbitrary pa-
rameter values of ξ1 and ṽx′′ , and ξ2 is the first positive real
root of

F[ξ ; ṽ′′(ξ+
1 )] = 0.

Such an orbit is then a type-B period-2 orbit insofar as z′′(ξ1 +
ξ2) = y′′(ξ1 + ξ2) = 0, i.e.,

−ṽy′′ sin 2θ ′ + ṽz′′ cos 2θ ′ = exp(α′ξ2) − 1

exp(α′ξ2) + 1
,

(C16)
ṽy′′ cos 2θ ′ + ṽz′′ sin 2θ ′ = ṽx′′ tan(ξ2/2),

which are equivalent to

O = tan

[
1

2α′ ln

(
1 + ṽx′′ tan(ξ1/2) sin 2θ ′ + ṽz′′ cos 2θ ′

1 − ṽx′′ tan(ξ1/2) sin 2θ ′ − ṽz′′ cos 2θ ′

)]
+ tan(ξ1/2) cos 2θ ′ − sin 2θ ′̃vz′′ /̃vx′′ = 0, (C17)

after eliminating the motion parameter ξ2.
When ξ1 is regarded as an independent variable, ṽx′′ is also a variable and ṽz′′ (ξ1) is a function of ξ1, so O is a function of ξ1

and ṽx′′ . Noting the relation

γ ′
0(ξ1, ṽ

′′
x ) = [1 − ṽ′′2

x − ṽ′′2
y (ξ1, ṽ

′′
x ) − ṽ′′2

z (ξ1)
]−1/2

,
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we have that, if γ0 is given in the frame O, the constraint for the system is

γ0 = γ ′
0γṽ (1 − ṽx′′ ṽ). (C18)

In this case, ṽx′′ as a function of ξ1 is no longer an independent variable:

ṽx′′ (ξ1) =
⎛⎝γ 2

ṽ ṽ ± γ0γṽ

γṽz′′

∣∣∣∣sec
ξ1

2

∣∣∣∣
√

ṽ2 cos2 ξ1

2
+ γ 2

0

γ 2
ṽ

− γ 2
ṽz′′

⎞⎠/(γ 2
ṽ ṽ2 + γ 2

0 sec2 ξ1

2

)
, (C19)

with γṽz′′ ≡ (1 − ṽ2
z′′ )−1/2. Substituting Eqs. (C19) into the

transcendental equation O±(ξ1) = 0, we can find its posi-
tive real root set Rγ0 = {ξ ∗

1 } numerically. Sorting them from
the smallest to the largest: Rγ0 = {ξ ∗

11, ξ
∗
12, . . . , ξ

∗
1c}, excludes

the motion parameter associated with the period-1 orbits.
In the reference frames O′ and O, the initial scaled veloci-

ties are

ṽ∗
z′ = −ṽ∗

y′′ sin θ ′ + ṽ∗
z′′ cos θ ′,

ṽ∗
y′ = ṽ∗

y′′ cos θ ′ + ṽ∗
z′′ sin θ ′, (C20)

ṽ∗
x′ = ṽ∗

x′′ ,

and

ṽ∗
x = ṽ∗

x′ − ṽ

1 − ṽ∗
x′ ṽ

,

ṽ∗
y = ṽ∗

y′

γṽ (1 − ṽ∗
x′ ṽ)

,

ṽ∗
z = ṽ∗

z′

γṽ (1 − ṽ∗
x′ ṽ)

, (C21)

respectively, with the period

T{2,k} = 4̃v∗
z′ cos θ ′/ω′

0γṽα
′

= 4̃v∗
z cos θ ′/(1 + ṽ∗

x ṽ)ω′
0γ

2
ṽ α′.

On the Poincaré surface of section, a type-B period-2 orbit has
two points: (̃v∗

x , ṽ
∗
y ) and (̃v∗

x ,−ṽ∗
y ) that are symmetric about

the line ṽy = 0. In fact, due to the time inversion symmetry
of the system, the Poincaré map is symmetric about this line.
In addition, Type B period-2 orbits are self-retracing with
ṽx ∝ η ∝ y. The physical reasoning gives essentially the same
properties of the type-B period-2 orbits as those from mathe-
matical derivation.

3. Physical origin of period-2 orbits

For θ = 0, the period-2 orbits are helical. From the equal-
ity ṽz(ξ+

1 ) = ṽz, we get ξ2 = ξ1 = �θc/2. Immediately after
the first elastic collision with the barrier, the corresponding
point on the Poincaré surface of section does not coincide
with the initial point, so the phase change for the motion
in between the two successive collisions with the barrier is
�θc/2 = ξ1 = (k + 1/2)2π . For the whole period-2 orbit, the
phase change is �θc = (2k + 1)2π . The period-2 orbits are
thus characterized by the parameter k, which are denoted as
{2, k}.

For θ → 0+, all resonant tori {2, k} are destroyed and
replaced by an integer number of pairs of stable-unstable
period-2 orbits, which is similar to the destruction of the tori

{1, k}. These surviving period-2 orbit pairs appear through
the saddle-node bifurcation, with infinitesimal deviations in
the position and period with respect those in the θ = 0 case.
Recall from our stability analysis of the period-1 orbits that
the orbits (1)+(k) go through the first period-doubling bifur-
cation, inverse period doubling bifurcation, and the second
period doubling bifurcation, respectively, due to θ → 0+ <

θ†. During the process of going through these bifurcations,
two stable and one unstable period-2 orbits appear, and a pair
of them, denoted as (2)±(k), survives from the destruction
of the tori {2, k} originating from the fist period-doubling
bifurcation and an inverse period-doubling bifurcation: they
appear within an infinitesimal interval �α−1 → 0, created at
the same “time” as stipulated by the Poincaré-Birkhoff theo-
rem [26]. Since, for θ = 0, the two intersection points of the
resonant torus and the line ṽy = 0 both represent a nonmixing
orbit, they survive from the case of θ → 0+ and deform into
a type-A period-2 orbit (2)+(k) continuously. There is one
nonmixing orbit for a resonant torus {2, k}, so the (2)−(k) orbit
must be mixing. Note that, for type-B period-2 orbits, the two
intersection points of the resonant torus and the line ṽx = 0
survive and deform into a type-B period-2 orbit (2)−(k).

It is worth noting that another type of period-2 orbits exist:
they are not self-tracing and mixing, implying the existence
of two points with different ṽx and ṽy values on the Poincar’e
surface of section, which are denoted as type-C period-2
orbits. These orbits possess a reflection symmetry but in a
more subtle manner: they require two additional fixed points
to restore the symmetry about the line ṽy = 0 in the Poincaré
surface of section 28. Also note that, a type-A period-2 orbit
(2)+(k) leaves two points separated on both sides of the fixed
point {1, k} in the Poincaré surface of section, located on the
line ṽy = 0. As 1/α increases, the two points gradually move
away from the fixed point until they are close to the edge,
with the truncation at the threshold as 1/α+

2,k , as exemplified
in Fig. 8, where the threshold 1/α+

2,0 = 6.268 is shown by red
arrows for the (2)+(0) orbit.

When a (1)+(k) orbit goes through the second period dou-
bling bifurcation, it gives rise to a new stable period-2 orbit
with no analog in the untitled system, denoted as (2)∗(k). The
(2)∗(k) orbit appears at large 1/α values for small θ , where
α ∼ θ . Further, the second period-doubling bifurcation will
merge with the inverse period doubling bifurcation as θ in-
creases to θ†, and the orbit (2)∗(k) will merge with (2)−(k) too.
By continuity, the (2)∗(k) and (2)−(k) orbits are of the same
type: type-B period-2 orbits.

Figure 9(a) shows, for θ < θ†, the (2)−(0) and (2)∗(0) or-
bits appear at points A and B, respectively, corresponding
to the inverse period-doubling bifurcation and the second
period-doubling bifurcation for the (1)+(0) orbit, as shown
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FIG. 8. Bifurcation of type-A period-2 orbits. The orbits are
(2)+(k) (k = 0, 1, 2) and the bifurcations occur in the coordinates
(1/α, ṽx /̃v0 ) for ṽ0 = 0.8 and θ = π/6, where the truncation of the
(2)+(0) orbit is shown by the red arrow at 1/α+

2,0 = 6.268.

in Fig. 6(b). Figure 9(c) shows that, for θ > θ†, the (2)−(0)

and (2)∗(0) orbits are no longer produced by inverse period-
doubling and the second period-doubling bifurcations as they
are no longer possible for the (1)+(0) orbit, as shown in
Fig. 6(a)]. The (2)−(0) and (2)∗(0) orbits in fact result from
a saddle-node bifurcation. When θ is slightly less than θ†,
two processes arise. The first is the deformation of the (2)−(0)

orbit: As 1/α increases, at first this orbit and (2)+(0) appear
with a saddle-node bifurcation at point C, then the (2)+(0) orbit
is absorbed by (1)+(0) in a backward period-doubling bifurca-
tion, which does not affect the (2)∗(0), as shown in Fig. 6(b).
The second process is that the backward period-doubling

FIG. 9. Bifurcation of type-B period-2 orbits. The orbits are
(2)−(0) and (2)∗(0) and the bifurcations occur in the coordinates
(1/α, ṽy/̃v0 ) for ṽ0 = 0.8 and (a) θ = π/18, (b) θ = π/7.7, and
(c) θ = π/6.

TABLE I. ṽ′′
∗ and ξ ∗ with different 1/α for type A orbits.

1/α ṽ∗
x′′ ṽ∗

y′′ ṽ∗
z′′ ξ ∗

4.6 0.5914 −0.2772 0.5032 3.496
5.5 0.6235 −0.2615 0.4681 3.511
6.268 0.6426 −0.2503 0.4447 3.544

bifurcation will merge with the second period-doubling bifur-
cation and then they disappear together when θ gets closer
to θ† until it exceeds θ†, meaning that the appearance of the
(2)−(0) and (2)∗(0) orbits is irrelevant to the (1)+(0) orbit, as
shown in Fig, 9(c).

The origin and the evolution rule with respect to the dy-
namic parameter 1/α for type-B period-2 orbits shown in
Fig. 9 are mostly shared by the dynamics in the nonrelativistic
regime, with two differences. First, the (2)−(0) and (2)∗(0) or-
bits intersect at some particular value of 1/α, at which there is
only one type-B period-2 orbit marked by {2, 0}. This appears
to be similar to a transcritical bifurcation [2] but actually it is
not such a bifurcation as it is not associated with any stability
change. Second, there is a truncation of the (2)−(0) orbit at
threshold 1/α−

2,0, as shown in Figs. 9(b) and 9(c).

4. Issue of truncation

As for type-A period-2 orbits, the reason why orbits are cut
off is that the first positive real root of F (ξ ) = 0 (correspond-
ing to one of the two segments of motion without any elastic
collision) is discontinuous at the threshold. Specifically, one
of the segments has the motion parameter ξ ∗

1 and the other
one has ξ ∗

2 . For 1/α below the threshold, the equality ξ ∗
1 (=ξ ∗

2 )
holds. As 1/α crosses the threshold, ξ ∗

1 is still continuous but
ξ ∗

2 is not: ξ ∗
2 	= ξ ∗

1 , violating the requirement for a type-A
period-2 orbit. Figure 10(a) shows the motion parameter ξ ∗

2
versus 1/α with the threshold 1/α = 6.268. It can be seen
that the function F (ξ ) and the curve F (ξ ) = 0 are tangent to
ξ ∗ at the threshold

For type-B period-2 orbits, the (2)−(0) orbit is truncated at
1/α−

2,0. Suppose 1/α changes in a small interval: (1/α−
2,0)− →

(1/α−
2,0)+, as exemplified in Fig. 10(b) with 1/α : 4.5 → 4.6.

The (2)−(0) orbit can then be divided into two segments, each
containing a motion in the space and an elastic collision,
and each corresponding to a point in the Poincaré surface of
section. For 1/α < 1/α−

2,0, the velocity and ξ ∗ associated with
the two segments change continuously. When 1/α crosses
1/α−

2,0, the velocity is still continuous but ξ ∗ is not, as shown
in Table II and Fig. 10(b), i.e., the process is no longer self-
retracing and the orbit is no longer a period-2 orbit.

We solve the threshold 1/α−
2,0 in terms of the self-retracing

process: z′′(ξA) = y′′(ξA) = 0, where ξA is denoted by the

TABLE II. ṽ′′
∗ and ξ ∗ with different 1/α for type B orbits.

1/α ṽ∗
x′′ ṽ∗

y′′ ṽ∗
z′′ ξ ∗

4.5 0.6297 0.1652 0.5094 2.605
4.6 0.6366 0.1647 0.5006 5.777
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×

×

FIG. 10. Motion parameter ξ ∗ for one of the two motion seg-
ments without collision with the barrier. The two values of the
two relevant parameters are ṽ0 = 0.8 and θ = π/6. (a) For type-A
period-2 orbits, 1/α = 4.6 (blue), 1/α = 5.5 (orange), 1/α = 6.268
(red), ξ ∗ is the first positive real root of the equation F (ξ ; ṽ′′

∗ ) = 0,
with the value of ṽ′′

∗ displayed in Table I. (b) For type-B period-2
orbits, 1/α = 4.5 (blue), 1/α = 4.6 (red), ξ ∗ is the first positive real
root of F (ξ ; ṽ′′

∗ ) = 0, with the values of ṽ′′
∗ listed in Table II.

vertical dashed-dotted line in Fig. 10(b). The quantity ṽ′′ can
be represented by ξA as

ṽ′′ =
(̃

vx′′ ,−ṽx′′ tan
ξA

2
, tanh

α′ξA

2

)
, (C22)

with an arbitrary ṽx′′ representing an arbitrary initial energy
with ṽ0 ∈ (0, 1). For ξ ∈ [0, ξA], the function F (ξ ; ṽ′′) is sym-
metric about the line ξ = ξA/2, as shown in Fig. 10(b). We
have

δ ≡ F
(

ξA

2
+ f ; ṽ′′

)
− F
(

ξA

2
− f ; ṽ′′

)
= 2 sinh(α′ f )

(
tanh

α′ξA

2
cosh

α′ξA

2
− sinh

α′ξA

2

)
− 2α′ tan θ ′̃vx′′ sin f

(
sin

ξA

2
− tan

ξA

2
cos

ξA

2

)
= 0, (C23)

with an arbitrary real f . The largest positive real root of the
equation F (ξA/2; ṽ′′) = 0 is α−

2,0, where ξA(α) is one of the
motion parameters for (2)−(0). The value of α−

2,0 can be nu-
merically solved by substituting ṽx′′ (ξA, α), α′(α), and θ ′(α)
into F (ξA/2; ṽ′′) = 0 with the given ṽ0 and θ values.

FIG. 11. Trace of the monodromy matrix for type-A period-
2 orbits. The orbits are (2)+(k) (k = 0, 1, 2) for θ = π/18. The
solid and chain-dotted traces correspond to the relativistic regime
with ṽ0 = 0.8) and the weakly relativistic regime with ṽ0 = 0.008),
respectively.

5. Stability of period-2 orbits

For an period-n orbit in the single-barrier dynamics, the
monodromy matrix M is given by M =∏n−1

k=0 Mk , where
Mk is the monodromy matrix of the kth Poincaré mapping,
written as

(Mk )i j = ∂Vi

∂ ṽ j

∣∣∣∣̃
v=ṽk

, (i, j = 1, 2), (C24)

with i, j = 1 ≡ x and i, j = 2 ≡ y. The scaled velocity is ṽk

immediately after the kth collision with the barrier in the
frame O (with ṽ0 being the initial scaled velocity). The motion
parameter for the kth segment in between two successive
collisions is ξk . The specific and general forms of (Mk )i j are
shown in Eqs. (B1) and (B3) in Appendix B.

Type-A period-2 orbits satisfy the condition (̃vy)k = 0 with
k = 0, 1, 2 and ξ ∗

1 = ξ ∗
2 . We can then obtain the values of

(̃v j′′ )1 = ṽ j′′ (ξ ∗
1 ) with j = x, y, z. The concrete forms of (̃v j )k

can also be obtained by the inverse Lorentz transformation
�−1(̃v), and

(̃vx′′ )1 = (̃vx′′ )0,

(̃vy′′ )1 = −(̃vy′′ )0 cos 2θ ′ − (̃vz′′ )0 sin 2θ ′,

(̃vz′′ )1 = −(̃vy′′ )0 sin 2θ ′ + (̃vz′′ )0 cos 2θ ′. (C25)

Since ṽk and ṽ′′
k are functions of ξ ∗

1 , the quantity M(ξ ∗
1 ) =

M0(ξ ∗
1 ) · M1(ξ ∗

1 ) can be calculated by substituting them into
each Mk .

Type-B period-2 orbits satisfy the condition

ṽ0 = ṽ2 = (̃v∗
x , ṽ

∗
y , ṽ

∗
z ),

ṽ1 = (̃v∗
x ,−ṽ∗

y , ṽ
∗
z ).

Similar to type-A orbits, we can obtain ṽk and ṽ′′
k as a function

of ξ ∗
1 . In addition, we can substitute

ξ ∗
2 = 1

α′ ln

[
1 + (̃vz′′ )1

1 − (̃vz′′ )1

]
(C26)

into the monodromy matrix to obtain M(ξ ∗
1 ).

Figure 11 shows the behavior of the trace of the mon-
odromy matrix for the (2)+(k), where all the (2)+(k) orbits are
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born stable and go through a period doubling bifurcation to
−∞. The degree of special relativity has a larger effect on
orbits with a larger index k. We note that, for the type-B orbits
(2)−(k) and (2)∗(k), the behavior of the trace of their mon-
odromy matrices is similar to Fig. 15 in Ref. [28]. All (2)−(k)

orbits are still unstable for all dynamic parameters, as the
periodic orbits associated with the superscript “–.” All (2)∗(k)

orbits are born stable and can undergo a period-doubling
and an inverse period-doubling bifurcation depending on the
magnitude of the values of θ and θ†, and eventually become
unstable with a pitchfork bifurcation at Tr[M] = 2.

APPENDIX D: PERIODIC ORBITS
IN DOUBLE-BARRIER DYNAMICS

1. Period-1 orbits

a. Quantitative description

When the particle motion or trajectory involves elastic
collisions with both the left and right barriers, periodic orbits
can still be defined with respect to the left barrier in the
Poincaré surface of section. In particular, a period-n orbit has
n points in the Poincaré surface of section at z = 0. For θ 	= 0,
traversing motion is not sufficient for forming a period-1 orbit.
Period-n orbits associated with helical motion can be denoted
as {n, k}, which can be further refined based on the number of
collisions with the right barrier within one period: (m, n)±(k)

represents the periodic orbit {n, k} colliding with the right
barrier m times within one period for 0 � m � n (m = 0 or n
for θ = 0). The left barrier periodic orbits can then be denoted
as (0, n)±(k) and all the others are the “right-barrier” periodic
orbits. By this convention, period-1 orbits can be divided into
two classes: (0, 1)±(k) and (1, 1)±(k) associated, respectively,
with the left and right barriers.

As 1/α changes through 1/α†, the left- and right-barrier
periodic orbits simultaneously appear via a cusp bifurcation
or mutually switch through a connectivity transition that is
in fact not a bifurcation, as there is no new orbits emerge at
the transition. The left-barrier period-1 orbits (0, 1)±(k) are
the same as (1)±(k) from single-barrier dynamics with the
same system parameters and the right-barrier period-1 orbits
(1, 1)±(k) are quantitatively similar to the period-2 orbits in
single-barrier dynamics. In particular, the first and the second
segments of a (1, 1)±(k) orbit can be regarded as the first
and second segments of a period-2 orbit from single-barrier
dynamics: each containing motion in the space and a collision
with the left barrier. For the (1, 1)±(k) orbits, the two segments
without any collision with a barrier associated with ξr and ξl

must have the same distance (not the displacement) along the
z′′ axis:

z′′ = 0
ξr−→ z′′(ξr )

ξl−→ 0, (D1)

which is an additional constraint for the period-2 orbits in the
single-barrier dynamics. Only type-A period-2 orbits can meet
this constraint, where zero mixing means that (1, 1)±(k) will
have a point on the line ṽy = 0 - the same as (0, 1)±(k).

Qualitatively, a period-1 orbit in the single-barrier dynam-
ics has two parts: one with ṽz′′ � ṽ

†
z′′ that becomes a (0, 1)±(k)

orbit and the other with ṽ
†
z′′ < ṽz′′ < ṽ′′

0 that is cut off and
then transforms into a (1, 1)±(k) orbit due to the right barrier.

FIG. 12. Bifurcation behaviors of period-1 orbits from double-
barrier dynamics in the coordinates (1/α, ṽx /̃v0 ). The parameters are
ṽ0 = 0.8 and θ = π/18, and � = 1.2. The black solid traces repre-
sent the orbits (0, 1)+(0) and (0, 1)±(1), the red solid traces represent
the (1, 1)±(k) orbits with k = 0, 1, the black solid and dashed traces
constitute the (1)+(0) and (1)±(1) orbits together, and the’ pink region
represents the intersecting area between the critical boundary and
ṽy = 0.

Figure 12 shows the (0, 1)±(k) orbits as marked by black solid
traces belonging to one part of the (1)±(k), and (1, 1)±(k) as
marked by red solid traces coming from the transformation of
the other part (marked by black dashed lines) of the (1)±(k).
Overall, the requirement for the (1, 1)±(k) orbits is

ṽy′′ = − tan θ ′̃vz′′ , ṽy′′ (ξ−
r ) = − tan θ ′̃vz′′ (ξ−

r ). (D2)

Similar to the solution procedure for type-A period-2 orbits in
the single-barrier dynamics, F± and S± are functions of ξ and
ṽz′′ . The following equations can be numerically solved{

F±(ξ, ṽz′′ ) = (1 − 1/γ ′
0)/�′ cos θ ′,

S±(ξ, ṽz′′ ) = 0,
, (D3)

whose solution sets constitute the root set {(ξ ∗
r , ṽ∗

z′′ )} together,
where ξ ∗

r is the first positive real root

F±(ξ, ṽ∗
z′′ ) = (1 − 1/γ ′

0)/�′ cos θ ′.

As θ increases, the interval in q/α in which the (1, 1)±(k)

orbits with k > 0 exist becomes narrower, which can be seen,
as follows. The intersecting area (the pink region in Fig. 12)
between the critical boundary and line ṽy = 0 is the region for
(1, 1)±(k) orbits to exist, but the (1)±(k) orbits are cut off in this
region. For a larger value of θ , this region shrinks and even
disappear due to the movement of the critical boundary. Note
that this analysis does not apply to the (1, 1)+(0) orbit, as the
(1, 1)+(0) orbits exist even for small value of 1/α, analogous
to the traversing motion for the untitled system, as the limit
of 1/α → 0 corresponds to the case of a vanishing magnetic
field so that the value of θ has no effect on the orbits that can
always reach the right barrier. In this sense, the (0, 1)+(0) orbit
corresponds to deformed traversing motion for θ = 0, denoted
by the superscript “+,” and it disappears with (1, 1)−(0) by a
backward saddle-node bifurcation at a larger value of 1/α.

For k > 0, the (0, 1)+(k) orbits come form a saddle-node
bifurcation along with the (0, 1)−(k) orbit, and the (0, 1)+(k)
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FIG. 13. Trace of the monodromy matrix for period-1 orbits in
double-barrier dynamics. The parameter values are ṽ0 = 0.8, θ =
π/18, and � = 1.2. The red solid and dot-dashed curves represent
the matrix trace for the (1, 1)±(0) and (0, 1)+(0) orbits and the blue
solid and dot-dashed curves denote the trace of the matrix for the
(1, 1)±(1) and (0, 1)±(1) orbits. The hollow rectangles, diamonds, and
cycles represent the saddle-node bifurcation, connectivity transition,
and cusp bifurcation, respectively. The subfigures are magnifications.

orbits cross the critical boundary at a larger value of 1/α

and become a (1, 1)+(k) orbit with a connectivity transition.
As 1/α increases further, the (0, 1)+(k) and (1, 1)−(k) orbits
simultaneously appear at a cusp bifurcation, and a stable-
unstable periodic orbit pair (1, 1)±(k) disappears through
a backward saddle-node bifurcation, where the junctions
between the (1, 1)±(k) and (0, 1)+(k) orbits represent the dis-
continuity when they cross the critical boundary. Hence, the
right barrier orbits always emerge as the left barrier orbits
cross the critical boundary, as shown in Fig. 12. Indeed,
their evolutionary process is inherited from that for θ = 0,
as shown in Fig. 4): the left- and right-barrier orbits simul-
taneously appear at α = α† and then the right-barrier orbits
disappear at α = αTO. Intuitively, the bifurcation behaviors of
the period-1 orbits from double-barrier dynamics are pieced
together at the discontinuity by two behaviors in a pure single-
barrier mapping V ′′ and a pure double-barrier mapping V ′′

D in
the increasing and decreasing directions of 1/α, respectively.

b. Stability

The stability of period-1 orbits from double-barrier dynam-
ics is determined by the (0, 1)±(k) orbit, which is the same
as that of the (1)±(k) orbits with ṽz′′ � ṽ

†
z′′ . The monodromy

matrix for (1, 1)±(k) is M = M0 · M1, where M0 and M1 are
the monodromy matrices of the mappings V ′′ (̃v′′; ξr ) and
V ′′ (̃v′′

r ; ξl ) in the first and second segments, where ṽ′′ is the ini-
tial scaled velocity and ṽ′′

r is the scaled velocity immediately
after the collision with the right barrier. Note that Tr[M] has
singularities at the critical boundary and is not unique at those
intersections (associated with the cusp bifurcation and the
connectivity transition) of (1, 1)±(k) and (0, 1)+(k), as shown
in Fig. 13. The behavior of Tr[M] for period-1 orbits from

double-barrier dynamics is similar to that of the corresponding
orbits in the nonrelativistic regime.

2. Period-2 orbits

Similar to the origin of period-1 orbits, one part of the
(2)±(k) and (2)∗(k) orbits from single-barrier dynamics will
become (0, 2)±(k) and (0, 2)∗(k), leaving two points outside the
critical boundary. The other part is cut off by the right barrier
and deforms into (1, 2)±(k) or (1, 2)±(k)

∗ or (2, 2)±(k), depend-
ing on the number of collisions with the right barrier in one
period, where the subscript “∗” represents the orbits deformed
from (2)∗(k). As a result, all the right barrier period-2 orbits
emerge through a cusp bifurcation or a connectivity transition.
As Tr[M] for the period-1 orbits crosses −2, the right-barrier
period-2 orbits disappear as the (1, 1)+(k) goes through a
backward period-doubling or inverse period-doubling bifur-
cation, which can be found by examining the corresponding
deformed periodic orbits from the single-barrier dynamics.

To describe the deformation of the (2)±(k) and (2)∗(k)

orbits, we show a special property of the motion without
collision in O′′: if

ṽ′′
0 = (̃v 0

x′′ , ṽ
0
y′′ , ṽ

0
z′′
) ξi−→ ṽ′′

1 = (̃v 1
x′′ , ṽ

1
y′′ , ṽ

1
z′′
)
, (D4)

then another such motion with the initial scaled velocity
(̃v 1

x′′ ,−ṽ 1
y′′ ,−ṽ 1

z′′ ) and the motion parameter ξi will have the
final scaled velocity (FSV) as(̃

v 0
x′′ ,−ṽ 0

y′′ ,−ṽ 0
z′′
)
, (D5)

or (̃
v 1

x′′ ,−ṽ 1
y′′ ,−ṽ 1

z′′
) ξi−→ (̃v 0

x′′ ,−ṽ 0
y′′ , ṽ

0
z′′
)
. (D6)

Proof: Eq. (D6) can be written as

ṽ 1
x′′ = (̃v 0

x′′ cos ξi − ṽ 0
y′′ sin ξi

)
γ ′′

0 /γ ′′
1 ,

ṽ 1
y′′ = (̃v 0

y′′ cos ξi + ṽ 0
x′′ sin ξi

)
γ ′′

0 /γ ′′
1 ,

ṽ 1
z′′ = [ cosh(α′ξi )̃v

0
x′′ − sinh(α′ξi )

]
γ ′′

0 /γ ′′
1 , (D7)

leading to

(FSV)x = (̃v 1
x′′ cos ξi + ṽ 1

y′′ sin ξi
)
γ ′′

1 /γ ′′
0 = ṽ 0

x′′ ,

(FSV)y = (− ṽ 1
y′′ cos ξi + ṽ 1

x′′ sin ξi
)
γ ′′

1 /γ ′′
0 = −ṽ 0

y′′ ,

(FSV)z = −[ cosh(α′ξi )̃v
1
x′′ + sinh(α′ξi )

]
γ ′′

1 /γ ′′
0

= −ṽ 0
z′′ , (D8)

which holds in the reference frame O′ with ′′ replaced by ′.

a. Deformed (2)+(k) orbits

The orbits (2, 2)+(k) deformed from the type-A period-2
orbits (2)+(k) are nonmixing for two collisions with the left
barrier, i.e., the velocity is perpendicular to the left barrier
immediately before such a collision. The scaled velocity in
O′ is

(̃vx′ , 0, ṽz′ )
ξ1r−→ (̃v r

x′ , ṽ
r
y′ ,−ṽ r

z′
) 1REC−−−→ (̃v r

x′ , ṽ
r
y′ , ṽ

r
z′
) ξ1l−→(̃

v l
x′ , 0,−ṽ l

z′
) 1LEC−−→ (̃v l

x′ , 0, ṽ l
z′
) ξ2r=ξ1l−−−→ (̃v r

x′ ,−ṽ r
y′ ,−ṽ r

z′
)

2REC−−−→ (̃v r
x′ ,−ṽ r

y′ , ṽ
r
z′
) ξ2l =ξ1r−−−→ (̃vx′ , 0,−ṽz′ )

2LEC−−→ (̃vx′ , 0, ṽz′ ), (D9)
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where 1REC (2REC) denotes the first (second) elastic colli-
sion with the right barrier. The two points on the Poincaré
surface of section in O′ at z′ = 0 are (̃vx′ , 0) and (̃v l

x′, 0), and
the corresponding points on the Poincaré section at z′ = d ′
are (̃v r

x′, ṽ
r
y′ ) and (̃v r

x′ ,−ṽ r
y′ ). After a Lorentz transformation,

in the frame O there are two points on the line ṽy = 0 at the
left barrier and two points that are symmetrical about this
line at the right barrier, which are characteristic of type-A
orbits.

There are four motion segments without a collision. Apply-
ing Eq. (D8) twice to ensure the same velocity immediately
after the second collision with the left barrier as the initial
velocity leads to the period-2 orbits. A requirement is that the
orbits be nonmixing for the two collisions with the left barrier.
In particular, for the (2, 2)+(k) orbits, we have

ṽy′′ = − tan θ ′̃vz′′ ,

ṽy′′ (ξ1r + ξ−
1l ) = − tan θ ′̃vz′′ (ξ1r + ξ−

1l ). (D10)

The quantities F± and S± as a function of ξ1r and ṽz′′ . The
following equations can be numerically solved:{

F±(ξ1r, ṽz′′ ) = (1 − 1/γ ′
0)/�′ cos θ ′

S±(ξ1l , ṽ′′
r ) = 0 (D11)

with ξ1r and ξ1l from Eqs. (27) and (30), respectively, ṽ′′
r is the

scaled velocity immediately after the first collision with the
right barrier, and ξ1l is also a function of ξ1r and ṽz′′ according
to Eq. (30). The root set {(ξ ∗

1r, ṽ
∗
z′′ )} is the union of the solution

sets.
The (2, 2)+(0) and (0, 2)+(0) orbits simultaneously emerge

through a cusp bifurcation. As 1/α increases, the orbit
(2, 2)+(0) disappears via a backward period-doubling bifurca-
tion when Tr[M] of (1, 1)+(0) crosses −2 (left-bottom corner
in Fig. 13), as shown in Fig. 14.

b. Deformed (2)−(k) and (2)∗(k) orbits

The type-B period-2 orbits (2)−(k) and (2)∗(k) from single-
barrier dynamics are deformed into the (2, 2)−(k), (1, 2)±(k),
and (1, 2)±(k)

∗ orbits in double-barrier dynamics. All these
orbits are nonmixing for the right barrier and self-retracing
for the left barrier. We first consider the (2, 2)−(k) orbits in O′:

(̃vx′, ṽy′ , ṽz′ )
ξ1r−→ (̃v r

x′ , 0,−ṽ r
z′
) 1REC−−−→ (̃v r

x′ , 0, ṽ r
z′
) ξ1l =ξ1r−−−→

(̃vx′,−ṽy′ ,−ṽz′ )
1LEC−−→ (̃vx′,−ṽy′ , ṽz′ )

ξ2r−→ (̃v r2
x′ , 0,−ṽ

r2
z′
)

2REC−−−→ (̃v r2
x′ , 0, ṽ

r2
z′
) ξ2l =ξ2r−−−→ (̃vx′, ṽy′ ,−ṽz′ )

2LEC−−→ (̃vx′, ṽy′ , ṽz′ ), (D12)

The two points at the left barrier are (̃vx′, ṽy′ ) and (̃vx′,−ṽy′ ),
and the corresponding points at the right barrier are (̃v r

x′, 0)
and (̃v r2

x′ , 0). These points are different from those from the
(2, 2)+(k) orbits: at the left barrier the two points are symmet-
rical about the line ṽy = 0r and, at the right barrier, the two
points are on the line ṽy = 0. They constitute type-B orbits on
the Poincaré surface of section at z = 0.

FIG. 14. Bifurcation behavior for the period-2 orbits from
double-barrier dynamics. The orbits are (2, 2)+(0) and (0, 2)+(0). The
parameter values are ṽ0 = 0.8, θ = π/18, and � = 1.2. The black
dash-dotted, black solid, and red curves represent the period-1 or-
bits {1, 0}, (0, 2)+(0), and (2, 2)+(0), respectively. The black solid
and dashed curves constitute the (2)+(0) orbit from single-barrier
dynamics. The hollow rectangles, pentagrams and cycles represent
the saddle-node, backward period-doubling and cusp bifurcations,
respectively.

For the (2, 2)−(k) orbits, the velocity is perpendicular to the
right barrier immediately before each collision with the right
barrier:

ṽy′′ (ξ−
1r ) = − tan θ ′̃vz′′ (ξ−

1r ),

ṽy′′ (2ξ1r + ξ−
2r ) = − tan θ ′̃vz′′ (2ξ1r + ξ−

2r ), (D13)

where ξ1r is obtained by Eq. (27), and ξ2r is the first positive
real root of the equation

F (ξ, ṽ′′
l ) = (1 − 1/γ ′

0)/�′ cos θ ′.

Immediately after the second collision with the left barrier in
O′, the scaled velocity ṽ′

l = (̃vx′,−ṽy′ , ṽz′ ) in O′′ is

ṽ′′
l = (̃vx′′ ,−ṽy′′ cos 2θ ′ − ṽz′′ sin 2θ ′,

− ṽy′′ sin 2θ ′ + ṽz′′ cos 2θ ′). (D14)

For simplicity, we choose ṽ r
z′′ as one of the independent vari-

ables, and equivalently replace the process

(̃vx′, ṽy′ , ṽz′ )
ξ1r−→ (̃v r

x′ , 0,−ṽ r
z′
)

by (̃
v r

x′ , 0, ṽ r
z′
) ξ1l =ξ1r−−−→ (̃vx′,−ṽy′ ,−ṽz′ ).

Similar to the (2, 2)+(k) orbits, ṽ r
z′′ and ξ1l are independent

variables. We can solve{
F±(ξ1l , ṽ

r
z′′ ) = (1 − γ ′

0)/�′ cos θ ′γ ′(ξ1r ),
S±(ξ2r, ṽ′′

l ) = 0,
(D15)
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FIG. 15. Bifurcation behavior of the (2, 2)−(0), (1, 2)+(0),
(0, 2)−(0), and (0, 2)∗(0) orbits from double-barrier dynamics.
(a) ṽy/̃v0 and (b) ṽx /̃v0 vs 1/α. The parameters are ṽ0 = 0.8, θ =
π/18, and � = 1.2. The rectangles, pentagrams, cycles, and di-
amonds represent the saddle-node, period-doubling (or backward
inverse period-doubling), cusp bifurcations, and connectivity tran-
sition, respectively.

where

1/γ ′(ξ1r ) = [cosh(α′ξ1l ) − sinh(α′ξ1l )̃v
r
z′′ ]/γ ′

0.

Moreover, ṽ r
x′′ (̃v r

z′′ ) can be obtained by replacing γ0 and ṽz′′

with γr and ṽ r
z′′ into ṽx′′ (̃vz′′ ), respectively.

In the frame O′, the changes in the scaled velocity for the
(1, 2)±(k) and (1, 2)±(k)

∗ are

(̃vx′, ṽy′ , ṽz′ )
ξ1−→ (̃vx′,−ṽy′ ,−ṽz′ )

1LEC−−→ (̃vx′,−ṽy′ , ṽz′ )

ξ2r−→ (̃v r
x′ , 0,−ṽ r

z′
) 1REC−−−→ (̃v r

x′ , 0, ṽ r
z′
) ξ2l =ξ2r−−−→

(̃vx′, ṽy′ ,−ṽz′ )
2LEC−−→ (̃vx′ , ṽy′ , ṽz′ ). (D16)

In particular, ξ2r does not exist, ξ2l degenerates into ξ2, and ξ1

splits into ξ1r and ξ1l owing to the collision with the right bar-
rier. This process includes three motion segments without any
collision. There is only one point on the Poincaré section at
the right barrier.

FIG. 16. Bifurcations from the (2)−(k) and (2)∗(k) orbits with
the tilted angle increases in double-barrier dynamics. [(a)–(c)]
bifurcation of the (2, 2)−(0), (1,2), (0, 2)−(0), and (0, 2)∗(0) or-
bits in regimes 2-4, respectively. The parameters are ṽ0 = 0.8
and � = 1.2 for (a) θ = π/9, (b) θ = π/7.7, and (c) θ = π/6.
The rectangles, pentagrams and cycles represent the saddle-node,
period-doubling (or backward inverse period-doubling), and cusp
bifurcations, respectively.

The motion segment without any collision with the param-
eter ξ1 is self-retracing, implying

ṽz′′ = exp(α′ξ1) − 1

exp(α′ξ1) + 1
,

(D17)
ṽy′′ = −ṽx′′ tan(ξ1/2),
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without involving ξ1r . For type-B orbits, ṽx′′ is a function of
ξ1, and we have ṽ′′(ξ1) and ṽ′′

l (ξ1). In addition to requiring that
the velocity be perpendicular to the right barrier immediately
before the first collision, we further solve{

F±(ξ2r, ṽ′′
l ) = (1 − 1/γ ′

0)/�′ cos θ ′
S±(ξ2r, ṽ′′

l ) = 0 , (D18)

where ξ2r is the first positive real root of

F±(ξ, ṽ′′
l ) = (1 − 1/γ ′

0)/�′ cos θ ′.

The bifurcations from the (2)−(k) and (2)∗(k) orbits as the
tilted angle increases have four distinct behaviors: regime one
(θ < θ̂1), regime two (θ̂1 < θ < θ̂2), regime three (θ̂2 < θ <

θ̂†), and regime four (θ̂† < θ ), which are described, as follows.
Regime one. As shown in Fig. 15, as 1/α increases, the

(1, 2)+(0) and (0, 2)−(0) orbits emerge through a cusp bi-
furcation, and (1, 2)+(0) then becomes (2, 2)−(0) through a
connectivity transition. As 1/α reaches the value correspond-
ing to the first intersection of Tr[M] for (1, 1)+(0) and −2,
the (2, 2)−(0) orbit disappears through a backward inverse
period-doubling bifurcation. However, there is no deformation
of (2)∗(0), because it cannot reach the right barrier even for
sufficiently large values of 1/α. The (2)−(k) and (2)∗(k) orbits
can deform into the orbits in the form (1,2), different from
(2)+(k). What happens instead is that the (0, 2)−(k) orbit is
born in a cusp bifurcation with (1, 2)+(k) instead of the type
of (2,2), because ξ1 	= ξ2 for type-B period-2 orbits and one of
ξ1 and ξ2 is always destroyed by the right barrier by breaking
into two motion segments without a collision: denoted as ξir

and ξil with i = 1 or 2 near the critical boundary. Note that,
for the type-A orbits (2)+(k), ξ1 and ξ2 are equal so they are
destroyed at the same 1/α value.

Regime two. As shown in Fig. 16(a), the (2)∗(0) orbit
has still not been deformed but a new orbit has emerged:
(1, 2)−(0). In fact, the (1, 2)+(0) and (0, 2)−(0) orbits are cre-
ated through a cusp bifurcation, so are the (1, 2)−(0) and
(2, 2)−(0) orbits. As 1/α increases further, a stable-unstable
periodic orbit pair (1, 2)±(0) is destroyed through a backward

saddle-node bifurcation, similar to the disappearance of the
(1, 1)±(k) orbits. The (2, 2)−(0) orbit goes through the same
process as in regime one until it disappears.

Regime three. The deformation of the (2)−(0) orbit is the
same as in regime two. As the tilted angle increases, the
(2)∗(0) orbit begins to deform and new orbits (1, 2)±(0)

∗ are
born, as shown in Fig. 16(b). The (1, 2)+(0)

∗ orbit is created
through a cusp bifurcation, where (0, 1)+(0) and (1, 1)−(0)

emerge through the same cusp bifurcation, indicating that the
new periodic orbits are always born at the critical boundary.
In addition, the (1, 2)−(0)

∗ and (0, 2)∗(0) orbits appear through
a cusp bifurcation and then an orbit pair (1, 2)±(0)

∗ is destroyed
through a backward saddle-node bifurcation. The bifurcation
behaviors in regime three bear certain similarities to those of
type-B period-2 orbits in single-barrier dynamics [Fig. 9(b)],
where the third intersection of Tr[M] for (1)+(0) with −2 is
close to the second one.

Regime four. This regime corresponds to the case of θ >

θ† in single-barrier dynamics [Fig. 9(c)], where the (2)−(k)

orbit is connected to (2)∗(k) by a saddle-node bifurcation
from an inverse period-doubling bifurcation and the sec-
ond period-doubling bifurcation for (1)+(k). In double-barrier
dynamics, a similar connection occurs for (1, 2)±(k) and
(1, 2)±(k)

∗ via an “exchange of partners” bifurcation, where
two backward saddle-node bifurcations in regime three are ex-
changed. In the corresponding nonrelativistic dynamics, this
exchange phenomenon plays a dominant role in the tunnel-
ing spectrum [31–33]. Figure 16(c) shows that (1, 2)+(0) and
(0, 2)−(0) emerge through a cusp bifurcation, so do (1, 2)−(0)

∗
and (0, 2)∗(0). As 1/α increases further, the (1, 2)+(0) and
(1, 2)−(0)

∗ orbits are destroyed through a backward saddle-
node bifurcation, and the same behavior occurs for the
(1, 2)−(0) and (1, 2)+(0)

∗ orbits.
For a small tilted angle, the (2, 2)±(k) orbits are dominant.

As the angle increases, more (1,2) orbits emerge. A general
observation is that the right-barrier period-n orbits always
appear through a cusp bifurcation as the relevant left-barrier
orbits cross the critical boundary.
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