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Machine-learning parameter tracking with partial state observation
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Complex and nonlinear dynamical systems often involve parameters that change with time, accurate tracking
of which is essential to tasks such as state estimation, prediction, and control. Existing machine-learning methods
require full state observation of the underlying system and tacitly assume adiabatic changes in the parameter.
Formulating an inverse problem and exploiting reservoir computing, we develop a model-free and fully data-
driven framework to accurately track time-varying parameters from partial state observation in real time. In
particular, with training data from a subset of the dynamical variables of the system for a small number of
known parameter values, the framework is able to accurately predict the parameter variations in time. Low- and
high-dimensional, Markovian and non-Markovian, and spatiotemporal nonlinear dynamical systems are used to
demonstrate the power of the machine-learning based parameter-tracking framework. Pertinent issues affecting
the tracking performance are addressed.
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I. INTRODUCTION

The behavior of a nonlinear dynamical system is controlled
by its parameters. In a real-world environment, the parameters
typically change or drift with time. For example, when an
optical sensor system is deployed to an outdoor environment,
climatic disturbances such as temperature and humidity fluc-
tuations can cause the geometrical and material parameters of
the system to change with time. In an ecological system, sea-
sonal fluctuations and human influences on the environment
can induce changes in the parameters underlying the popula-
tion dynamics such as the carrying capacity and species decay
rates. Often, due to the complex interactions between the
system and the environment, the simplistic assumption that
the parameters drift linearly with time is not valid. Rather, the
variations of the parameters with time can be complicated. A
generic feature of nonlinear dynamical systems is that even a
small parameter change can lead to characteristically different
and even catastrophic behaviors. For example, a nonlinear sys-
tem can typically exhibit a variety of bifurcations including a
crisis [1] at which a chaotic attractor is destroyed and replaced
by transient chaos [2], leading to system collapse. Being able
to predict or forecast how some key system parameters change
with time into the future can lead to control strategies to
prevent system collapse.
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The problem of tracking parameter variations is an inverse
problem [3], which is difficult even if an accurate mathe-
matical model of the system is known. A related concept
is data assimilation [4,5] that aims to tackle challenges in
estimating the state and certain parameters. Our assumption
is that the parameter of interest cannot be directly accessed
or measured, so tracking its variations will need to be done
indirectly using the measurements of some accessible dynam-
ical variables of the system. Suppose that a key parameter
will change with time in the future but at present the system
is stationary so that a few distinct values of this parameter
can be measured, together with the time series of a subset of
the dynamical variables. A scenario is that an instrument or
device is to be deployed in certain missions where the harsh
and nonstationary environment will cause the key parameter
to change with time. Before deployment, the device can be
tested in a controlled laboratory environment where the values
of the parameter and the corresponding time series can be
obtained. Assuming in the real environment the parameter
cannot be measured but some time series from partial state
observation still can be, we ask the question of whether it is
possible to extract the parameter variations. In this work, we
demonstrate that machine learning can be exploited to provide
an affirmative answer.

The idea of exploiting machine learning for parameter ex-
traction has been investigated recently [6–11] (Sec. II provides
a background review of the previous methods on static param-
eter identification and dynamic parameter tracking, as well
as the more recent machine-learning approaches). In existing
machine-learning works, the time series from all dynamical
variables and the time variations of the parameter is required
for training. Here we articulate a machine-learning framework
with the following two main features that go beyond the
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FIG. 1. Proposed reservoir-computing based parameter tracking
scheme. The goal is to track a parameter of the system from which
only partial state observation is available. The output of the reservoir
computer is o(t ). (a) In the training or laboratory calibration phase,
the input to the neural network is an integrated vector time series
yT (t ) recombining segments of the time series from partial state
observation for a small number of parameter values. The training
goal is the corresponding piecewise constant function of the param-
eter values versus time, denoted as p(t ), i.e., minimizing the error
between p(t ) and o(t ). (b) In the testing or deployment phase where
the parameters are inaccessible, the input to the neural network is
the current observation vector time series y(t ) and the output is the
parameter as a function of time.

existing methods: (1) only the measurements from a partial
set of the dynamical variables are needed, (2) observation of
the state from a small number of parameter values suffices,
and (3) the historical parameter values are not required in
real-time parameter tracking. More specifically, let x ∈ RD

be the D-dimensional state vector of the dynamical system
and let y ∈ RD′

be the measurement or observation vector:
y = g(x), where D′ < D and g : RD → RD′

is the measure-
ment function. We choose reservoir computing [12–15] as the
machine-learning architecture, which in recent years has been
applied to predicting nonlinear dynamical systems [16–40],
and propose the following parameter tracking scheme. Sup-
pose the goal is to track a single parameter p (for simplicity),
so the output of the neural network is a scalar quantity o(t ). In
a well-controlled laboratory environment, vector time series
of dimension D′ from a small number of parameter values
can be measured. We construct the input data by first breaking
the measured time series into a number of segments of equal
length and recombining them to form an integrated vector
time series y(t ). Corresponding to each segment in y(t ), there
is an exact value of the parameter, thereby generating a piece-
wise constant function of the parameter with time, denoted as
p(t ). The goal of training is to minimize the error between
o(t ) and p(t ), as shown in Fig. 1(a). This arrangement ensures
that the neural network learns the dynamical “climate” of
the underlying system and how it changes with time through
alternating exposure to the measurements taking from differ-
ent parameter values. During the testing phase, e.g., when
the system is deployed to a real application environment, the
parameter varies with time and it is no longer accessible to

observation or measurement. What can be observed is vector
time series y(t ). When the well-trained neural network takes
in y(t ) as the input, its output should give the time variation
of the parameter, realizing accurate parameter tracking, as
illustrated in Fig. 1(b).

In Sec. II, we present a concise background review of
the main existing approaches to parameter identification
and tracking. Success of parameter tracking is demonstrated
in Sec. III using prototypical, low- and high-dimensional,
Markovian and non-Markovian nonlinear dynamical systems:
a low-dimensional chaotic food-chain system, the chaotic
Rössler oscillator, the high-dimensional chaotic Mackay-
Glass delay-differential equation system, and the spatiotem-
poral Lorenz-96 model. Conclusions and discussion are
offered in Sec. IV.

II. BACKGROUND LITERATURE REVIEW

There are two types of tasks associated with the general
problem of parameter extraction: identification and tracking.
For parameter identification, the parameter of interest is a
constant, and the task is to estimate its value. The problem
of parameter tracking is more difficult, where the parameter
is time varying and the task is to predict the parameter as a
function of time.

Most existing works dealt with the parameter-identification
problem, and a wide variety of methods were proposed in
different fields. The conventional least-squares method [41]
for parameter identification fits a linear or a nonlinear model
to data by minimizing the sum of the squares of the errors.
Likewise, the method of maximum likelihood estimation [42]
finds the set of parameter values which, given the model, max-
imizes the likelihood of the data. The maximum-likelihood
method is often used in statistical modeling and can be ap-
plied to both continuous-time and discrete-time systems. The
method of Bayesian estimation [43] uses the Bayes’s theorem
to update the probability of a set of parameter values based on
new data, which is commonly used in statistical modeling and
enables incorporating prior knowledge about the parameters
into the model. Genetic algorithms [44] exploit the principles
of natural selection and genetics to optimize a continuous-
time or discrete-time model to identify the parameter values.
For identifying parameters associated with complex patterns
from large datasets, artificial neural networks can be used
[45]. The method of Markov-chain Monte Carlo [46] involves
sampling from a distribution of the possible parameter val-
ues to estimate the posterior distribution, which is commonly
used in statistical modeling and allows for the incorporation
of uncertainty in the parameter estimates. A widely used
parameter-estimation method is Kalman filters [47–51]. It
deals with linear or nonlinear dynamical systems with an un-
certain state-space model through a combination of prediction
and correction steps. Specifically, at the prediction step, the
Kalman filter uses the current estimate of the parameter values
and the dynamics to predict the future state of the system. At
the correction step, the Kalman filter compares the predicted
state with the measured state and uses the difference between
them to update the estimate of the parameters. This process
is repeated iteratively, and the estimates of the parameters are
updated at each iteration based on the measurement residuals.
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When the parameter of interest is hidden in the sense that it
cannot be directly measured or accessed in an specific ap-
plication, machine learning provides a viable solution [52].
Specifically, given time series of the dynamical variables of
the system, a machine-learning algorithm can identify the
time averaged value of the parameter.

Computationally, parameter identification can be done
through a single scan [53] or multiple scans [54]. In the
single-scan scheme, the parameters are estimated using a sin-
gle measurement or a single set of measurements [53]. This
approach was often used in situations where it is not possi-
ble or practical to take multiple measurements or where the
system changes so rapidly to render multiple measurements
not representative. The methodology can be either static or
dynamic, depending on whether the system being measured
is time invariant or time varying. In particular, static single-
scan estimation can be done using least-squares fitting or
numerical optimization techniques such as gradient descent.
Multiscan parameter estimation [54] is based on taking multi-
ple measurements of the system over a period of time. It can
be more accurate than single-scan estimation through some
averaging process of the measurements and can detect param-
eter variations with time. However, the method is resource
and computation intensive, due to the need to take multiple
measurements and the required computation.

The problem of tracking the time variations of a parameter
is significantly more challenging than static parameter identi-
fication. Earlier, machine learning was used for integration-
free and data-driven extraction of a set of spatiotemporal
stride parameters [6]. Recently, a machine-learning method
was proposed [7] for this task based on measured time-series
data. In the training phase, time series from all dynami-
cal variables of the system are required and, in the testing
phase, the exact values of the parameters in the past are
required. A common difficulty in using neural networks to
extract parameter variations is the slow convergence rate and
local optima stagnation in solving the underlying complex
optimization problem. In another recent work, an improved
machine-learning model (neural network algorithm with re-
inforcement learning) was proposed for extracting parameters
of photovoltaic models [9]. More recently, a machine-learning
based approach to feature parameter extraction from speech
signals to improve the performance of speech recognition ap-
plications in real-time smart city environments was articulated
[10]. In general, difficulties associated with certain supervised
machine-learning methods include large sample demand, high
computational complexity, and low accuracy when processing
high-dimensional data. One solution is the manifold Gaussian
process machine-learning method based on the differential
evolution algorithm [8] to extract the dimension-reduction
parameters. In addition, a deep learning-based parameter ex-
traction method was proposed [11].

III. RESULTS

We consider four prototypical nonlinear dynamical sys-
tems: a three-species chaotic food-chain system [55], the
chaotic Rössler oscillator [56], the Mackey-Glass delay-
differential equation system [57], and the 40-dimensional
Lorenz-96 system [58]. The first two systems are three-

dimensional while the Mackey-Glass system is non-
Markovian with an infinite-dimensional phase space. The
Lorenz-96 system is a high-dimensional spatiotemporal sys-
tem. For each system, three types of parameter variations
are considered: frequency modulation (FM), sawtooth wave,
and amplitude modulation (AM), with different numbers of
parameter sampling in different ranges for training. In all
cases, partial state observation is used. The machine-learning
performance is characterized by the root-mean-square error
(RMSE). The effects of measurement and dynamical noises as
well as the hyperparameters on the parameter-tracking perfor-
mance are also studied. Simulations are run using MATLAB
on a desktop computer with 32 CPU cores, 128-GB memory,
and one RTX 4000 NVIDIA GPU.

For clarity of presentation, we show the results for the
chaotic food-chain system here while displaying those from
the chaotic Rössler, Mackey-Glass and Lorenz-96 systems in
Appendices B, C, and D, respectively.

A. Visualization of parameter-tracking results

Our first example is a food-chain system of three species:
resource, consumer, and predator [55], described by the fol-
lowing set of nonlinear differential equations:

dR

dt
= R

(
1 − R

K

)
− xcycCR

R + R0
,

dC

dt
= xcC

(
ycR

R + R0
− 1

)
− xpypPC

C + C0
, (1)

dP

dt
= xpP

(
ypC

C + C0
− 1

)
,

where R, C, and P are the population densities of the resource,
consumer, and predator species, respectively. The system has
seven parameters: K, xc, yc, xp, yp, R0,C0 > 0. To illustrate
the process of parameter tracking, we assume that the follow-
ing three parameters: K , yc, and yp are time varying, and fix
all other parameters at constant values: xc = 0.4, xp = 0.08,
C0 = 0.5, and R0 = 0.16129, according to some bioenergetics
argument [55]. We focus on tracking a single parameter: K ,
yc, or yp, whose respective nominal values are 0.94, 1.7, and
5.0. When tracking one of the three parameters, the other two
are fixed at their respective nominal values. Representative
bifurcation diagrams of the food-chain system with respect to
the three parameters: K, yc, yp are shown in Fig. 2.

Figure 3 exemplifies the results of tracking the three differ-
ent types of parameter variations for different combinations
of the bifurcation parameter and state observation. The com-
putational setting is as follows. Time series are generated
by integrating the system model using the time step dt =
0.01. The initial states of both the dynamical process and
the reservoir neural network are randomly chosen from a
uniform distribution. The training and testing data are ob-
tained by sampling the time series at the interval �s. We
set �s = 250dt = 2.5, corresponding to approximately 1/25
cycles of oscillation in the chaotic food-chain system. Let �Ts

be the switching time interval in which the target parame-
ter is a constant. The training time is 900�Ts. The testing
length is chosen to be slightly longer than the training length,
enough for tracking several cycles of the parameter variation.
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FIG. 2. Bifurcation diagrams of the chaotic food chain system.
[(a)–(c)] Diagrams for the bifurcation parameters K , yc, and yp,
respectively.

The size of the reservoir network is Dr = 500 and the bias
number is set to 1. The other six hyperparameters are de-
termined by Bayesian optimization (Appendix A), which are
fixed during training and testing. The values of the optimized
hyperparameters for the chaotic food-chain system are listed
in Table I. Often, a constant bias may arise between the
machine predicted parameter variation and the ground truth,
which can be removed by calibrating using two parameter
values (Appendix E). The results in Fig. 3 indicate that the
machine-learning framework is capable of accurate parameter
tracking based on partial state observation only.

TABLE I. Optimal values of the reservoir-computing hyperpa-
rameters for tracking the variations of three different bifurcation
parameters of the chaotic food-chain system (1).

Bifurcation parameter ρ γ α β p

K 1.47 0.04 0.93 10−5.8 0.67
yc 0.42 0.40 0.21 10−3.7 0.21
yp 1.92 0.10 0.65 10−3.9 0.70

B. Minimally required bifurcation parameter
values for training

Two characteristics of the bifurcation parameter values
used in the training which can affect significantly the perfor-
mance of tracking are the number of such parameter values
(denoted as sn) and the relative range of the parameter varia-
tion (denoted as sw) from which the training time-series data
are generated. Intuitively, if the training data come from only
one value of the bifurcation parameter, then it will not be
possible for the reservoir computer to learn the features of
parameter variation, resulting in a large tracking error. As sn

increases from 1, we expect the error to decrease. What is the
minimum number of bifurcation parameter values required
for accurate parameter tracking? Likewise, if the bifurcation
parameter values are taken from the full range of the actual
parameter variation, then accurate tracking is likely, resulting
in a small error. As the range sw is reduced, the error will
increase. How tolerant can the machine-learning parameter
tracking scheme be with respect to this range?

Figures 4(a), 4(c), and 4(e) demonstrate the effect of vary-
ing sn on the parameter-tracking performance for different
combinations of the bifurcation parameter and its time vari-
ations. It can be seen that, for all cases illustrated, the testing
error decreases dramatically as sn increases from one to three
and remains approximately constant afterwards, indicating
that using the time series from as few as three values of the
bifurcation parameter suffices for accurate tracking of the ac-
tual parameter variations. Figures 4(b), 4(d), and 4(f) show the
effect of varying the relative range sw on the tracking perfor-
mance. As sw decreases from 100%, the RMSE increases, but
it does so in a slow manner until sw falls below about 20%, in-
dicating that the machine-learning parameter tracking scheme
is remarkably tolerant to the range of the bifurcation parame-
ter from which the time series for training are generated.

C. How partial can state observation be?

The main feature of our work is that tracking complicated
time variations of a bifurcation parameter can be achieved
using only partial state observation by exploiting machine
learning. Historically, the celebrated and extensively applied
Takens’s delay-coordinate embedding theorem [59] provided
the mathematical foundation to reconstruct the phase space
of a dynamical system even with a single measured time
series. Indeed, Takens’ methodology guarantees faithful re-
construction of a topological equivalent of the underlying
dynamical system, which allows the key dynamical invariants
such as the Lyapunov exponents and the fractal dimensions of
the attractor to be estimated. Our task of accurate parameter
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FIG. 3. Tracking time-varying parameters of the chaotic food-chain system. Different combinations of the parameter waveforms and partial
state observation are illustrated: the top, middle, and bottom row correspond to three types of parameter variations (AM, FM, and sawtooth
waveform), while the gray-shaded region in the left column illustrates the partial state observation. The right column gives the results of
parameter tracking in comparison with the ground truth. [(a) and (b)] One-dimensional observational state variable y = (R) for tracking AM
parameter K . [(c) and (d)] Two-dimensional observation y = (R,C) for tracking FM parameter yc. [(e) and (f)] Two-dimensional observation
y = (C, P) for tracking the sawtooth-wave parameter yp. The five horizontal dashed lines indicate the parameter values from which training
data are generated, i.e., sn = 5.

tracking, where the bifurcation parameter is assumed to vary
with time in a sophisticated manner, requires reconstruction of
the system at a more detailed level, for which the embedding
methodology is not effective. A key question is how partial
the state observation can be. A related question is which “typ-
ical” variables can be observed to ensure accurate parameter
tracking. Atypical situations can often arise; for example, the
z variable of the Lorenz-63 chaotic attractor cannot be used
to infer the x and y variables, due to an inherent symmetry
of the system. In nonlinear dynamics, a general theory for
determining a set of partial observations for obtaining the
complete knowledge of the whole system has not been avail-
able, yet. We thus resort to a systematic numerical approach to
addressing these questions by exploring a range of variables
and testing their efficacy in parameter tracking. In particu-

lar, for x ≡ (x1, x2, x3)T , full state observation is represented
by y = x. There are six cases of partial state observation:
y = (x1), y = (x2), y = (x3), y = (x1, x2), y = (x1, x3), and
y = (x2, x3). Altogether, there are seven distinct cases of state
observation. For each case, we conduct a reasonable of num-
ber (e.g., 50) of tests. For each test, define an error threshold.
If the resulting testing RMSE is below the threshold, then the
test is deemed successful. The fraction of successful cases
gives the success probability. We then calculate, for different
types of parameter variations, the success rate Ps and use a bar
graph to represent the rate for the seven cases of state obser-
vation. Some representative results for the chaotic food-chain
system are shown in Fig. 5. It can be seen that in most cases,
close to 100% success rate can be achieved by observing two
state variables. Depending on the specific parameter, in some
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FIG. 4. Effects of the training bifurcation-parameter values on
tracking. The two relevant quantities are sn (the number of distinct
bifurcation-parameter values for training) and sw (the relative pa-
rameter range from which time series are taken for training). [(a),
(c), and (e)] Testing RMSE versus sn for parameters K , yc, and yp,
respectively. [(b), (d), and (f)] Testing RMSE versus sw for K , yc,
and yp, respectively. Each panel has results from FM, sawtooth, and
AM types of parameter variations, and each point is the result of
averaging over 50 independent realizations. The results in (a), (c),
and (e) indicates that using time series from three distinct values
of the bifurcation parameter suffices to guarantee accurate param-
eter tracking. The results in (b), (d), and (f) suggests acceptable
parameter-tracking performance for sw > 20%.

cases observing even one state variable can lead to satisfactory
success rate.

In nonlinear dynamical systems, the situation of “atypical”
variables can often arise in the sense that the observation
of such a variable cannot be used to construct the original
system dynamics. Examples are the z variable in the classical
Lorenz-63 system or the Rössler oscillator, which cannot be
used to infer the dynamical behaviors of the variables x and y.
One reason for reconstruction to fail is an inherent symmetry
of the system, which is difficult to detect, especially in realistic
situations where the detailed system equations are not known.
At the present, a theory to determine whether a specific
configuration of partial observation is enough to reconstruct
the dynamics or track the parameters in nonlinear dynamical
systems is not available. Our approach is thus computational:
As a proof of principle, we apply the machine-learning based
framework to some classical chaotic systems to demonstrate

FIG. 5. Success probability for different partial observation
scenarios for the chaotic food-chain system. [(a)–(c)] Bar-graph rep-
resentation of the success rate for the seven distinct cases of state
observation for the three different bifurcation parameters, for three
types of parameter variation (FM: green; sawtooth: blue; AM: yel-
low). The success rate is calculated from 50 independent realizations.
In most cases, observing two state variables can lead to nearly 100%
success rate.

that accurate tracking of a parameter varying in time in a
complicated way is indeed possible, but failure can arise if the
observed variable is “atypical” in the aforementioned sense.
For instance, for the chaotic food-chain system, the success
rate of tracking the time variations of the bifurcation parame-
ter K by observing y = (x2) or y = (x3) is zero, as shown in
Fig. 5.

D. Robustness against noise

It is important to study how parameter-tracking perfor-
mance is degraded by measurement and dynamical noises.
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FIG. 6. Robustness of parameter tracking against measurement
and dynamical noises. The upper, middle, and lower rows corre-
spond to tracking the three parameters (K , yc, and yp) in the chaotic
food-chain system, respectively. The left and right columns are for
measurement and dynamical noises, respectively. FM type of pa-
rameter variations is used. Each value of the testing RMSE and the
error bar are obtained from 50 independent training and test runs.
The RMSEs remain small and approximately constant if the noise
amplitude is below some reasonable value. The horizontal dashed
lines are indicative of some (arbitrary) threshold below which the
tracking performance is deemed satisfactory.

Measurement noise can be modeled as additive noise that
perturbs the data vector x to x + ξn before normalization,
and dynamical noise can be incorporated into the system
dynamics, which perturbs the system function (or velocity
field) at each time step [60]. We assume that both types of
noises are normally distributed with zero mean and standard
deviation σm and σd , respectively. Figure 6 illustrates the ef-
fects of measurement and dynamical noises on time-varying
parameter tracking, for the three bifurcation parameters in
the food-chain system subject to FM. It can be seen that, for
both measurement and dynamical noises, insofar as the noise
amplitude is below some reasonable value, the testing RMSE
remains small, demonstrating that our machine-learning pa-
rameter tracking scheme is robust against the noises.

E. Effect of network size and training time on tracking
performance and minimum switching time required

of the training data

Figure 7 illustrates the effect of network size Dr and
training time Ttrain on tracking performance, where the color-
coded values of the success probability are displayed in the

FIG. 7. Effects of two hyperparameters: network size Dr and
training time Ttrain, on parameter-tracking performance. [(a)–(c)]
Color-coded success probability values in the plane of these two
hyperparameters for tracking the bifurcation parameters K , yc, and
yp in the food chain system, respectively, subject to FM type of
variations. Each value of the success probability is obtained using 50
statistical realizations. Increasing the network size and the training
time can often dramatically improve the success rate.

two-dimensional parameter plane (Dr, Ttrain ). As the network
becomes larger, the success probability can be dramatically
improved, as can be intuitively expected. However, the per-
formance decreases as the training time increases, due to
overfitting, especially in cases where the network size is not
large enough.
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In machine learning in general, increasing the training data
should reduce overfitting for a model of fixed complexity.
However, in reservoir computing, “fixed complexity” is not
solely related to the reservoir size but also includes dynam-
ics within the reservoir network. If the network size is not
sufficiently large, then the inherent complexity within the
reservoir will not be high enough to capture the nuances of
the larger dataset, and this can reduce the parameter-tracking
performance. In essence, the reservoir computer maps the
low-dimensional data into a high-dimensional complex hid-
den state. The anomaly in Fig. 7 arises mainly due to the
fixed complexity in reservoir computing. Empirically, as the
network becomes larger, the performance should not worsen
insofar as more training data are used.

As indicated in Fig. 1, the training data consist of mutually
switched time series from a small number of bifurcation-
parameter values, with switching time �Ts, the length of
each continuous time-series segment. Intuitively, time series
of certain length are needed for the neural network to learn
the dynamics at the specific bifurcation-parameter value. If
�Ts is too small, then this would not be possible, even
with frequent switchings of the time series from different
bifurcation-parameter values. Furthermore, a small �Ts indi-
cates a fast change in the bifurcation parameter during the
testing phase, rendering difficult for the machine-learning
scheme to track the waveform. We thus expect large RMSEs
for small �Ts values but, as �Ts increases, the testing errors
will decrease. Figures 8(a)–8(c) show this effect for the three
bifurcation parameters (K , yc, and yp) of the chaotic food-
chain system, respectively, where the switching time �Ts is
in units of the sampling time interval �s. In each case, three
types of parameter variations (FM, sawtooth, AM) are tested.
It can be seen that the RMSEs decrease continuously with
�Ts. For �Ts � 25, the RMSEs are below some threshold
values, so the minimally required switching time is about
25 sampling time intervals, which correspond to roughly one
cycle of oscillation in the original time series. (To ensure
satisfactory performance, we set the switching time �Ts to
be 100 in all cases.)

IV. DISCUSSION

In realistic applications, a nonlinear dynamical system is
never a closed system but interacts with the environment into
which it is deployed. The constant interactions lead to time
variations in the system parameters. Tracking how some key
bifurcation parameters vary with time enables the possible
future behavior of the system to be assessed, but this remains
to be a challenging problem in nonlinear dynamics, espe-
cially when the system equations are unknown and parameter
tracking needs to be carried out in a purely data-driven fash-
ion. In recent years, various machine-learning methods were
developed to address this challenge, but with the tacit assump-
tion that the full state observation of the system is available,
and the ways the parameters vary with time are needed to
be known for training [6–11]. The main contribution of our
present work are (1) to relax the full state observation con-
dition, i.e., to develop a machine-learning parameter tracking
framework based on partial state observation, (2) only sev-
eral constant parameter values are necessary for training the

FIG. 8. Determination of the minimum switching time �Ts. [(a)–
(c)] Testing RMSE versus �Ts for tracking the three bifurcation
parameters K , yc, and yp of the chaotic food chain system, respec-
tively, where �Ts is in units of the sampling time interval �s, for
three types of parameter variations: FM, sawtooth, and AM. Each
data point and the associated error bar are obtained from 50 inde-
pendent runs. In all cases, the minimally required switching time is
about 25 sampling time intervals, corresponding roughly to a single
cycle of oscillation in the original time series.

framework, while in the testing phase, the parameter varies in
real time, and (3) the historical parameter values are not used
in real-time parameter tracking. The importance and necessity
of relying on partial observation and only a few parameter
values for parameter tracking are evident: in applications not
all the dynamical variables and parameters of the systems are
accessible and there can even be unknown hidden variables.
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This paper developed a reservoir-computing based frame-
work to continuously track parameter variations with time
based on observation from a subset of the full state variables.
Relying on partial observation is necessary in real applica-
tions where not all the dynamical variables of the system
are accessible and there can be unknown hidden variables.
Our unique training scheme enables the reservoir computer
to learn the correspondence between the input time series and
the underlying parameter value so that it is able to forecast
the parameter variations with time based on input time series
from partial state observation. We demonstrated the working
of the proposed parameter-tracking framework using chaotic
systems subject to three distinct types of parameter variations.
The effects of a number of factors on the tracking performance
were investigated: minimally required bifurcation parameter
values for training, the number of state vectors associated
with partial-state observation, measurement and dynamical
noises, network size and training time, and the minimum
switching time required of the training data. The developed
reservoir-computing based scheme represents a general and
robust parameter-tracking framework that can be deployed in
real-world applications.

A key feature of our machine-learning framework is to
track the complicated time variations of some inherent pa-
rameter of the system, rather than predicting its dynamical
state. Our framework is model free and fully data driven:
the equations of the system are not needed. There are po-
tential applications. For example, in a power grid where the
equations of the whole network are unknown, continuous
parameter tracking with time will allow us to detect if the net-
work is under attack by observing the current flows in a subset
of transmission lines. In an ecological system, even if the
precise relationships among the different spices are unknown,
the reproduction rate of some species or environmental factors
such as the degree of drought can be estimated and their
time variations can be tracked by observing the populations
of some species.

In our study, three forms of the time variations of the pa-
rameter to be tracked were considered: FM, AM, and sawtooth
wave. None of them is linear. Numerically, machine-learning
training using time series from three distinct parameter values
appears sufficient for the neural network to learn the “dynam-
ical climate” of the underlying system, as done in previous
works on predicting critical transitions in and digital twins
of nonlinear dynamical systems [30,38], but this phenomenon
has not been theoretically understood.

A possible application is in epidemiology. For example,
some virus has seasonal behaviors: its spreading rate varies
in different seasons. Our framework can be used to track
the spreading rate change with time based on state evolu-
tion, thereby enabling accurate prediction of the infection
scale and period. Another potential application is predict-
ing if a dynamical system is about to approach a tipping
point at which a transition from a normal to a collapsing
(e.g., large-scale extinction in an ecosystem) steady state
occurs. With inevitable noises, we can use the noisy time
series from partial state observation as the input to our
machine-learning scheme to generate the time-varying be-
havior of some key bifurcation parameters of the system.
Based on the predicted trend of the parameter variation, the

FIG. 9. Basic configuration of a reservoir computer.

chance of a tipping point occurring in the near future can be
assessed.
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APPENDIX A: RESERVOIR COMPUTING

Reservoir computing (RC) is a class of recurrent neural
networks (RNNs) that consists of three layers: an input layer,
a hidden recurrent layer, and an output layer, where the input
weights and the parameters of the hidden layer network such
as the edge weights are defined before training and remain
fixed. At the end of the training phase, a linear regression
is performed to tune the weights of the output layer, which
are characterized by the output matrix Wout. These properties
render efficient the training of RC with performance similar
to that of the conventional RNNs [61].

Figure 9 illustrates the basic operational scheme of RC:
The input matrix Win maps the reservoir input signal y(t ),
which is typically low dimensional, into the high-dimensional
state vector of the hidden layer network with n nodes. Acti-
vated by the sequence of reservoir input signals [y(:, 1), y(:
, 2), . . . , y(:, t )], the hidden layer state r(t ) is updated step-
by-step according to

r(t + 1) = (1 − α) · r(t )

+ α · tanh[A · r(t ) + Win · y(t ) + Wbias], (A1)

where α is the leaking parameter that determines the rate of
“leakage” in reservoir state updating, and the activation is
governed by the hyperbolic tangent function (tanh). The bias
vector Wbias inside the tanh function is composed of equal
constants wb, whose role is to shift the small signals into
the nonlinear region [37]. The quantities Dy, Dr , and Do are
the dimensions of the input signal y(t ), the hidden state r(t )
and the output signal o(t ), respectively. The dimension of the
input matrix Win is Dr ∗ Dy, whose elements are generated
uniformly in the range [−γ , γ ] prior to training. The dimen-
sion of the hidden layer connection network A is Dr ∗ Dr ,
whose elements are Gaussian random numbers before train-
ing, given the network link probability p and spectral radius
ρ. Generally, Dr is much larger than Dy in order to assure
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TABLE II. Optimal reservoir-computing hyperparameter values
for tracking the variations of the three different parameters of the
chaotic Rössler oscillator Eq. (B1).

Bifurcation parameter ρ γ α β p

a 2.12 1.62 0.18 10−1.3 0.99
b 0.39 3.42 0.19 10−6.3 0.03
c 2.39 2.90 0.06 10−1.9 0.30

that the reservoir computer is sufficiently complex and high-
dimensional to learn dynamical system generating the input
signal. The dimension of the output matrix Wo is Do ∗ Dr .
In the training phase, the reservoir state r(t ) is updated step
by step according to Eq. (A1) and then concatenated into the
matrix R that has dimension Dr ∗ Ttrain, where Ttrain is the
training length. Combined with the input time-series matrix U ,
the output matrix Wout can be calculated by using Tikhonov
regularization [62]

Wout = U · R′ᵀ(R′ · R′ᵀ + βI )−1, (A2)

where I is the identity matrix of dimension Dr , β is the
regularization coefficient, and R′ is the transpose of reservoir
state matrix R. In the testing phase, with the observed system
state y(t ) as the input, the predicted parameter value o(t ) at
time t is given by

o(t ) = Woutr(t ). (A3)

Hyperparameter optimization is essential for reservoir com-
puting to achieve the desired performance. We apply Bayesian
optimization [63] from Matlab (surrogateopt) to find the op-
timal values of the following hyperparameters: the leakage
α, the regularization coefficient β, the scaling factor γ of
the input matrix Win, the spectral radius ρ of the recurrent
network in the hidden layer, the link probability p determining
the network connection matrix A, and the constant in the bias
matrix wb.

APPENDIX B: PARAMETER TRACKING FOR CHAOTIC
RÖSSLER OSCILLATOR

The chaotic Rössler system [56] is described by

dx

dt
= −y − z,

dy

dt
= x + ay, (B1)

dz

dt
= b + z(x − c),

for a = 0.2, b = 0.2, and c = 5.7. We focus on tracking a
single parameter, with the other two fixed. Figure 10 displays
some typical bifurcation diagrams of the system.

Table II lists the optimal hyperparameter values for track-
ing the three parameters: a, b, and c in the chaotic Rössler
oscillator Eq. (B1) for different time-varying waveforms. Rep-
resentative results are presented in Fig. 11, where the shaded
regions in the left column indicate the partial observation
y and the three panels in the right column present tracking
results with AM, FM, and sawtooth parameter variations,

FIG. 10. Bifurcation diagrams of the chaotic Rössler system.
[(a)–(c)] Diagrams with respect to bifurcation parameters a, b, and
c, respectively.

respectively. In all cases, the sampling number is sn = 5 and
the tracking performance is reasonable. Figure 12 shows the
testing RMSE versus sn for the three parameters in the Rössler
system and three types of time-varying waveforms. In all
cases, it can be seen that choosing sn � 3 leads to small errors.
Figure 13 demonstrates the effect of varying the relative range
sw of the parameter variation from which the training time
series are taken on the tracking performance. As sw decreases
from 100%, the RMSE increases slowly, but large error will
arise when sw is larger than 30%.

The effects of various machine-learning characteristics on
the parameter-tracking performance for the Rössler oscillator
have been studied. First, the system is three-dimensional,
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FIG. 11. Tracking time-varying parameters of the chaotic Rössler system based on partial state observation. Different combinations of
the parameter-variation waveforms and partial state observation are illustrated: the top, middle, and bottom rows correspond to three types of
parameter variations (AM, FM, and sawtooth wave), while the left column illustrates the partial state observation. The full state is x = (x, y, z)
and the partial state observation used for parameter tracking is indicated by the gray shade. The right column presents the results of parameter
tracking, where both the machine-learning result and the ground truth are displayed. [(a) and (b)] One-dimensional observational state variable
y = (x) for tracking AM parameter a. [(c) and (d)] Two-dimensional observation y = (z) for tracking FM parameter b. [(e) and (f)] Two-
dimensional observation y = (x, y) for tracking the sawtooth-wave parameter c. The five horizontal dashed lines indicate the parameter values
from which training data are generated: sn = 5.

so there are seven configurations of partial state observation
(including full state observation as a special case) (x1), (x2),
(x3), (x1, x2), (x1, x3), (x2, x3), (x1, x2, x3). Figure 14 shows
the success probability for the three parameters. It can be seen
from Figs. 14(a) and 14(b) that, for tracking parameters a and
b in Eq. (B1), close to 100% success rate can be achieved
by observing two state variables. However, for tracking the
third parameter c, it is necessary to observe the first two state
variables. Second, we have tested the robustness of parameter
tracking against measurement and dynamical noises that are
normally distributed with zero mean and standard deviation
σm and σd , respectively. Representative results are shown
in Fig. 15. It can be seen that the RMSEs are small and

vary slowly with σm or σd , insofar as these noise amplitudes
are below some threshold. Third, the effects of the reservoir
network size Dr and training time Ttrain on the tracking per-
formance for the Rössler system are illustrated in Fig. 16. As
the network becomes larger, the success probability can be
dramatically improved, but the training time has a relatively
small effect on the performance. Fourth, the effect of switch-
ing time �Ts on the tracking performance has been studies,
as shown in Fig. 17. For �Ts � 70, the RMSEs are below
some threshold values, so the minimally required switch-
ing time is about 70 sampling time intervals, corresponding
to roughly two cycles of oscillation in the original time
series.
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FIG. 12. Determining the number sn of the distinct values of the
bifurcation for training. [(a)–(c)] Testing RMSE versus sn for the
bifurcation parameters a, b, and c in the Rössler system, respectively.
Each panel contains results from three types of parameter variations:
FM, sawtooth, and AM wave. Each point is the result of averaging
over 50 independent runs. The horizontal dashed lines in the insets
indicate the specific values of the bifurcation parameter from which
the training data are generated. For sn = 1, the testing error is large.
As sn increases, the error decreases. For sn � 3, the errors become
smaller than some threshold, indicating when sn is above three,
accurate parameter tracking can be achieved.

APPENDIX C: PARAMETER TRACKING
FOR MACKEY-GLASS SYSTEM

The Mackey-Glass system is described by a time-delayed
nonlinear differential equation [57,64]. Because of the time
delay, the system has a memory so it is non-Markovian and
in principle has an infinite dimensional phase space. The

FIG. 13. Effect of the relative range sw of the time variations of
the bifurcation parameter from which time series are taken for train-
ing. [(a)–(c)] Testing RMSE versus sw for the bifurcation parameters
a, b, and c in the Rössler system, respectively. Each panel contains
results from three types of parameter variations: FM, sawtooth, and
AM wave. Each point is the result of averaging over 50 independent
runs. The horizontal dashed lines in the insets indicate the specific
values of the bifurcation parameter from which the training data are
generated. In most cases, the error increases slowly as sw decreases
to about 30%, indicating a high level of tolerance of the machine-
learning parameter tracking scheme to the range of the bifurcation
parameter in which the training time series are generated.

equation was introduced to model healthy and pathological
behaviors in some biological systems [57], which is

dx

dt
= ax(t − τ )

1 + x(t − τ )c
− bx(t ), (C1)
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FIG. 14. Success probability for different partial observation
scenarios for the chaotic Rössler system. [(a)–(c)] Bar-graph rep-
resentation of the success rate for the seven distinct cases of state
observation for three different bifurcation parameters. Each case
contains results from three types of parameter variation (FM: green,
sawtooth: blue, AM: yellow). The success rate is calculated from 50
independent realizations.

where τ is the delayed time, a, b, and c are parameters. De-
pending on the parameter values, distinct dynamical behaviors
can arise. For example, for a = 0.2, b = 0.1, and c = 10, the
attractor of the system is periodic for τ � 17 and chaotic
for τ � 17. Suppose τ is the time-varying parameter to be
tracked. To be concrete, we assume that τ varies in the range
[14,22]. A representative bifurcation diagram is shown in
Fig. 18.

For fixed a = 0.2, b = 0.1, and c = 10, the reservoir-
computing hyperparameters for tracking the time-varying
parameter τ are determined to be ρ = 1.26, γ = 0.73, α =

FIG. 15. Robustness of parameter tracking against measurement
and dynamical noises. The upper, middle, and lower rows correspond
to tracking the three parameters (a, b, and c) in the chaotic Rössler
system, respectively. The left and right columns are for measurement
and dynamical noises, respectively. The type of parameter variations
is used. Each value of testing RMSE and the error bar is obtained
from 50 independent training and test runs. The RMSEs remain
small and approximately constant if the noise amplitude is below
some reasonable value. The horizontal dashed lines are indicative of
some (arbitrary) threshold below which the tracking performance is
deemed satisfactory.

0.31, β = 10−6.9, and p = 0.17. Figures 19(a) and 19(b) show
the testing RMSE versus sn and sw, respectively, for FM, saw-
tooth, and AM types of parameter variations. It can be seen
from Fig. 19(a) that, sn = 2 is sufficient for tracking the time
variation of τ accurately, and Fig. 19(b) demonstrates that the
subrange of the parameter variation from which the training
data are taken can be as low as 10% while still generating
small RMSEs. Robustness of tracking the time variation of
τ against measurement and dynamical noises is illustrated
in Fig. 20. The effects of reservoir-computing network size
Dr , training time Ttrain, and switching time �Ts on parameter-
tracking performance is exemplified in Fig. 21.

It is worth noting that while the chaotic Mackey-Glass
system contains a single dynamical variable, the phase-space
dimension is infinite. If the time-delay parameter τ is a
constant, then it can be estimated by calculating the linear
autocorrelation. However, in our study, τ is time varying,
which cannot be revealed by linear autocorrelation.
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FIG. 16. Effects of two hyperparameters: the network size Dr

and training time Ttrain, on parameter-tracking performance. [(a)–(c)]
Color-coded success probability values in the plane of these two
hyperparameters for tracking the bifurcation parameters a, b, and c
in the Rössler system, respectively, subject to FM type of variations.
Each value of the success probability is obtained using 50 statisti-
cal realizations. Increasing the network size can often dramatically
improve the success rate.

APPENDIX D: TRACKING COMPLEX PARAMETER
VARIATIONS FOR THE LORENZ-96 SYSTEM

The Lorenz-96 model [58] is a benchmark system in me-
teorological and climatological studies, which is capable of
replicating complex behaviors akin to those observed in real

FIG. 17. Determination of the minimum switching time �Ts.
[(a)–(c)] Testing RMSE versus �Ts for tracking the three bifurcation
parameters a, b, and c of the chaotic Rössler system, respectively,
where �Ts is in units of sampling time interval �s. In each case, three
types of parameter variations are tested: FM, sawtooth, and AM.
Each data point and the associated error bar are obtained from 50
independent runs. In all cases, the minimally required switching time
is about 70 sampling time intervals, corresponding approximately to
two cycles of oscillation in the original time series.

atmospheric systems. The model is essentially a system of N
coupled oscillators, which described by the following set of N
coupled, first-order differential equations:

dx j

dt
= −x j−1(x j−2 − x j+1) − x j + F (t ), (D1)

013196-14



MACHINE-LEARNING PARAMETER TRACKING WITH … PHYSICAL REVIEW RESEARCH 6, 013196 (2024)

FIG. 18. A representative bifurcation diagram the Mackey-Glass
system with the time delay τ being the bifurcation parameter.

FIG. 19. Demonstration of parameter-tracking performance for
the Mackey-Glass system. The time delay τ is the parameter whose
time variation is to be tracked. The other three parameters in Eq. (C1)
are fixed: a = 0.2, b = 0.1, and c = 10. [(a) and (b)] Testing RMSEs
versus sn and sw , respectively, for three different types of parameter
variation: FM, sawtooth, and AM. Panel (a) indicates that using time
series from three distinct values of the bifurcation parameter suffices
for accurate parameter tracking. Panel (b), the error increases slowly
as sw decreases to about 20%, indicating a high level of tolerance
of the scheme to the range of the bifurcation parameter in which the
training time series are generated.

FIG. 20. Robustness against noise for tracking the time-delay
parameter in the chaotic Mackey-Glass system. [(a) and (b)] RMSE
versus σm and σd , the amplitudes of the measurement and dynam-
ical noise, respectively, for the FM type of parameter variations.
Each value of testing RMSE and the error bar is obtained from 50
independent training and test runs. The RMSEs remain small and ap-
proximately constant if the noise amplitude is below some reasonable
value. The horizontal dashed lines are indicative of some (arbi-
trary) threshold below which the tracking performance is deemed
satisfactory.

FIG. 21. Effects of reservoir-computing network size Dr , train-
ing time Ttrain, and the switching time �Ts on parameter-tracking
performance for the Mackey-Glass system. (a) Color-coded success
probability values in the plane of these two hyperparameters for
tracking the time-delay parameter τ , subject to FM type of variations.
(b) Testing RMSE versus �Ts for three types of parameter variations:
FM, sawtooth, and AM. Each value of the success probability is
obtained using 50 statistical realizations. Increasing the network size
and the training time can often dramatically improve the success
rate. In all cases, the minimally required switching time is about
60 sampling time intervals, corresponding roughly to three cycles
of oscillation in the original time series.
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FIG. 22. Tracking time-varying parameters of the chaotic
Lorenz-96 system based on partial state observation. (a) The sys-
tem is 40-dimensional and the observation is made on five sites.
[(b) and (c)] Representative observed time series and tracking of FM
parameter variations, respectively. [(d) and (e)] Same as in (b) and
(c) but for AM parameter variations. [(f) and (g)] Same as in (b) and
(c) but for sawtooth parameter variations. In (c), (e), and (g), the three
horizontal dashed lines indicate the parameter values from which
training data are obtained: sn = 3.

where x j is the state variable at position j, for j = 1, . . . , N ,
and F (t ) is a forcing term. To be concrete, we set N = 40,
regard F (t ) as the time-varying parameter to be tracked in
the range [8, 14], and assume periodic boundary conditions
so topologically the oscillators are located on a ring with
nearest-neighbor couplings. The 40-dimensional chaotic
Lorenz-96 system constitutes a spatiotemporal nonlinear sys-
tem.

The reservoir-computing hyperparameters for tracking the
time-varying parameter F (t ) are determined to be ρ = 2.95,
γ = 0.17, α = 0.23, β = 10−5.6, and p = 0.56. Figures 22
and 23 show the parameter-tracking results where the partial
state observation is taken from five and one random locations,
respectively, as indicated by the green dots in the top panel.
In both figures, the left column displays some representative

FIG. 23. Tracking time-varying parameters of the
40-dimensional chaotic Lorenz-96 system with a single
measurement. Legends are the same as in Fig. 22 but for observing
a single state variable as indicated by the green dot in (a).

time-series observation and the right column shows the cor-
responding parameter-tracking results, for three types of time
variations (FM, AM, and sawtooth wave). It can be seen that
our machine-learning framework is able to track the parameter
variations with quite limited observation. It is worth noting
that the parameter structure of the Lorenz-96 system is rela-
tively simple: the forcing is additive and uniformly applied to
all the oscillators.

We have also attempted to track the parameter variations
for the spatiotemporal system described by the Kuramoto-
Sivashinsky equation: ut + νuxxxx + φ(uxx + uux ) = 0, where
u(x, t ) is a scalar field, ν and φ are the system parameters.
Note that, in this case, the two parameters are no longer addi-
tive to the equation but are multiplicative as they are directly
multiplied to terms that involve the scale field and its deriva-
tives. Our extensive and exhaustive numerical computations
failed to yield any satisfactory results of parameter tracking.
The failure represents a limitation of our machine-learning
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FIG. 24. Illustration of the calibration method. The process is
to remove the constant bias from the machine-learning predicted
parameter variation.

based parameter tracking framework, warranting further ef-
forts into the development of a more applicable scheme for
tracking parameter variations in spatiotemporal dynamical
systems.

APPENDIX E: CALIBRATION METHOD

To remove the constant bias between the machine predicted
parameter variation and the ground truth, we assume that
two true values of the parameter are available for calibration.
The calibrated parameter variation is obtained by subtracting
the constant bias from the machine-learning output. As an
example, we consider the case of tracing the time-varying
parameter K in the food chain system Eq. (1). Figure 24
illustrates that, after removing the constant bias, the calibrated
machine-learning prediction of the parameter variation (green
dashed curve) agrees well with the ground truth (solid dark-
red curve).
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[14] M. Lukoševičius and H. Jaeger, Reservoir computing ap-
proaches to recurrent neural network training, Comput. Sci.
Rev. 3, 127 (2009).

[15] L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert,
S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, and I.
Fischer, Information processing using a single dynamical node
as complex system, Nat. Commun. 2, 468 (2011).

[16] N. D. Haynes, M. C. Soriano, D. P. Rosin, I. Fischer, and
D. J. Gauthier, Reservoir computing with a single time-
delay autonomous Boolean node, Phys. Rev. E 91, 020801(R)
(2015).

[17] L. Larger, A. Baylón-Fuentes, R. Martinenghi, V. S. Udaltsov,
Y. K. Chembo, and M. Jacquot, High-speed photonic reser-
voir computing using a time-delay-based architecture: Million
words per second classification, Phys. Rev. X 7, 011015 (2017).

[18] J. Pathak, Z. Lu, B. Hunt, M. Girvan, and E. Ott, Using machine
learning to replicate chaotic attractors and calculate Lyapunov
exponents from data, Chaos 27, 121102 (2017).

[19] Z. Lu, J. Pathak, B. Hunt, M. Girvan, R. Brockett, and E.
Ott, Reservoir observers: Model-free inference of unmeasured
variables in chaotic systems, Chaos 27, 041102 (2017).

[20] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, Model-free
prediction of large spatiotemporally chaotic systems from data:
A reservoir computing approach, Phys. Rev. Lett. 120, 024102
(2018).

[21] T. L. Carroll, Using reservoir computers to distinguish chaotic
signals, Phys. Rev. E 98, 052209 (2018).

[22] K. Nakai and Y. Saiki, Machine-learning inference of fluid
variables from data using reservoir computing, Phys. Rev. E 98,
023111 (2018).

013196-17

https://doi.org/10.1016/0167-2789(83)90126-4
https://doi.org/10.1038/s41467-023-41379-3
https://doi.org/10.1063/5.0048050
https://doi.org/10.1002/qj.4116
https://doi.org/10.1109/JBHI.2016.2636456
https://doi.org/10.1016/j.knosys.2020.105479
https://doi.org/10.1109/ACCESS.2020.3015043
https://doi.org/10.1109/TNNLS.2021.3109565
https://doi.org/10.3390/s22218122
https://doi.org/10.1109/TED.2022.3181536
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1038/ncomms1476
https://doi.org/10.1103/PhysRevE.91.020801
https://doi.org/10.1103/PhysRevX.7.011015
https://doi.org/10.1063/1.5010300
https://doi.org/10.1063/1.4979665
https://doi.org/10.1103/PhysRevLett.120.024102
https://doi.org/10.1103/PhysRevE.98.052209
https://doi.org/10.1103/PhysRevE.98.023111


ZHAI, MORADI, GLAZ, HAILE, AND LAI PHYSICAL REVIEW RESEARCH 6, 013196 (2024)

[23] Z. S. Roland and U. Parlitz, Observing spatio-temporal dynam-
ics of excitable media using reservoir computing, Chaos 28,
043118 (2018).

[24] A. Griffith, A. Pomerance, and D. J. Gauthier, Forecasting
chaotic systems with very low connectivity reservoir computers,
Chaos 29, 123108 (2019).

[25] J. Jiang and Y.-C. Lai, Model-free prediction of spatiotem-
poral dynamical systems with recurrent neural networks:
Role of network spectral radius, Phys. Rev. Res. 1, 033056
(2019).

[26] G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa,
S. Takeda, H. Numata, D. Nakano, and A. Hirose, Recent ad-
vances in physical reservoir computing: A review, Neural Netw.
115, 100 (2019).

[27] H. Fan, J. Jiang, C. Zhang, X. Wang, and Y.-C. Lai, Long-term
prediction of chaotic systems with machine learning, Phys. Rev.
Res. 2, 012080(R) (2020).

[28] C. Zhang, J. Jiang, S.-X. Qu, and Y.-C. Lai, Predicting phase
and sensing phase coherence in chaotic systems with machine
learning, Chaos 30, 083114 (2020).

[29] C. Klos, Y. F. Kalle Kossio, S. Goedeke, A. Gilra, and R.-M.
Memmesheimer, Dynamical learning of dynamics, Phys. Rev.
Lett. 125, 088103 (2020).

[30] L.-W. Kong, H.-W. Fan, C. Grebogi, and Y.-C. Lai, Machine
learning prediction of critical transition and system collapse,
Phys. Rev. Res. 3, 013090 (2021).

[31] D. Patel, D. Canaday, M. Girvan, A. Pomerance, and E. Ott,
Using machine learning to predict statistical properties of
non-stationary dynamical processes: System climate, regime
transitions, and the effect of stochasticity, Chaos 31, 033149
(2021).

[32] J. Z. Kim, Z. Lu, E. Nozari, G. J. Pappas, and D. S. Bassett,
Teaching recurrent neural networks to infer global tempo-
ral structure from local examples, Nat. Mach. Intell. 3, 316
(2021).

[33] H. Fan, L.-W. Kong, Y.-C. Lai, and X. Wang, Anticipating syn-
chronization with machine learning, Phys. Rev. Res. 3, 023237
(2021).

[34] L.-W. Kong, H.-W. Fan, C. Grebogi, and Y.-C. Lai, Emergence
of transient chaos and intermittency in machine learning, J.
Phys. Complex. 2, 035014 (2021).

[35] E. Bollt, On explaining the surprising success of reservoir
computing forecaster of chaos? The universal machine learning
dynamical system with contrast to VAR and DMD, Chaos 31,
013108 (2021).

[36] D. J. Gauthier, E. Bollt, A. Griffith, and W. A. Barbosa,
Next generation reservoir computing, Nat. Commun. 12, 5564
(2021).

[37] T. L. Carroll, Optimizing memory in reservoir computers,
Chaos 32, 023123 (2022).

[38] L.-W. Kong, Y. Weng, B. Glaz, M. Haile, and Y.-C. Lai,
Reservoir computing as digital twins for nonlinear dynamical
systems, Chaos 33, 033111 (2023).

[39] J. Z. Kim and D. S. Bassett, A neural machine code and pro-
gramming framework for the reservoir computer, Nat. Mach.
Intell. 5, 622 (2023).

[40] Z.-M. Zhai, M. Moradi, L.-W. Kong, and Y.-C. Lai, De-
tecting weak physical signal from noise: A machine-learning
approach with applications to magnetic-anomaly-guided navi-
gation, Phys. Rev. Appl. 19, 034030 (2023).

[41] E. W. Weisstein, Least squares fitting (2002), https://mathworld.
wolfram.com/.

[42] J.-X. Pan and K.-T. Fang, Maximum likelihood estimation, in
Growth Curve Models and Statistical Diagnostics (Springer,
Berlin, 2002), pp. 77–158.

[43] A. J. Haug, Bayesian Estimation and Tracking: A Practical
Guide (John Wiley & Sons, New York, 2012).

[44] L. Yao and W. A. Sethares, Nonlinear parameter estimation
via the genetic algorithm, IEEE Trans. Signal Process. 42, 927
(1994).

[45] P. Guo, M. R. Lyu, and C. L. P. Chen, Regularization parameter
estimation for feedforward neural networks, IEEE Trans. Syst.
Man, Cybern. B 33, 35 (2003).

[46] F. Yandun, M. Torres-Torriti, and F. Auat Cheein, Markov chain
monte carlo parameter estimation for nonzero slip models of
wheeled mobile robots: A skid-steer case study, J. Mech. Robot.
13, 050902 (2021).

[47] R. Van Der Merwe and E. A. Wan, The square-root unscented
Kalman filter for state and parameter-estimation, in Proceed-
ings of the IEEE International Conference on Acoustics, Speech,
and Signal Processing (IEEE, Los Alamitos, CA, 2001), Vol. 6,
pp. 3461–3464.

[48] G. Evensen, The ensemble Kalman filter for combined state
and parameter estimation, IEEE Contr. Syst. Mag. 29, 83
(2009).

[49] T. A. Wenzel, K. Burnham, M. Blundell, and R. Williams,
Dual extended Kalman filter for vehicle state and parameter
estimation, Vehicle Syst. Dyn. 44, 153 (2006).

[50] H. Moradkhani, S. Sorooshian, H. V. Gupta, and P. R. Houser,
Dual state–parameter estimation of hydrological models us-
ing ensemble Kalman filter, Adv. Water Resour. 28, 135
(2005).

[51] L. Ljung, Asymptotic behavior of the extended Kalman filter as
a parameter estimator for linear systems, IEEE Trans. Autom.
Control 24, 36 (1979).

[52] B. A. Acuña Acurio, D. E. C. Barragán, J. C. L. Amezquita,
M. J. Rider, and L. C. P. D. Silva, Design and implementation
of a machine learning state estimation model for unobservable
microgrids, IEEE Access 10, 123387 (2022).

[53] P. Litkey, X. Liang, H. Kaartinen, J. Hyyppä, A. Kukko, M.
Holopainen, R. Hill, J. Rosette, and J. Suárez, Single-scan TLS
methods for forest parameter retrieval, Proc. SilviLaser 2008,
8th (2008).

[54] D. Musicki, R. Evans, and B. La Scala, Multi-scan parametric
target tracking in clutter, in Proceedings of the 42nd IEEE
International Conference on Decision and Control (IEEE, Los
Alamitos, CA, 2003), Vol. 5, pp. 5372–5377.

[55] K. McCann and P. Yodzis, Nonlinear dynamics and population
disappearances, Am. Natural. 144, 873 (1994).

[56] O. E. Rössler, An equation for continuous chaos, Phys. Lett. A
57, 397 (1976).

[57] M. C. Mackey and L. Glass, Oscillation and chaos in physio-
logical control systems, Science 197, 287 (1977).

[58] E. N. Lorenz, Predictability: A problem partly solved, in Pro-
ceedings of the Seminar on Predictability (ECMWF, Reading,
UK, 1996), Vol. 1.

[59] F. Takens, Detecting strange attractors in turbulence, in Dy-
namical Systems and Turbulence, Warwick 1980: Proceedings
of a Symposium Held at the University of Warwick 1979/80
(Springer, Berlin, 2006), pp. 366–381.

013196-18

https://doi.org/10.1063/1.5022276
https://doi.org/10.1063/1.5120710
https://doi.org/10.1103/PhysRevResearch.1.033056
https://doi.org/10.1016/j.neunet.2019.03.005
https://doi.org/10.1103/PhysRevResearch.2.012080
https://doi.org/10.1063/5.0006304
https://doi.org/10.1103/PhysRevLett.125.088103
https://doi.org/10.1103/PhysRevResearch.3.013090
https://doi.org/10.1063/5.0042598
https://doi.org/10.1038/s42256-021-00321-2
https://doi.org/10.1103/PhysRevResearch.3.023237
https://doi.org/10.1088/2632-072X/ac0b00
https://doi.org/10.1063/5.0024890
https://doi.org/10.1038/s41467-021-25801-2
https://doi.org/10.1063/5.0078151
https://doi.org/10.1063/5.0138661
https://doi.org/10.1038/s42256-023-00668-8
https://doi.org/10.1103/PhysRevApplied.19.034030
https://mathworld.wolfram.com/
https://doi.org/10.1109/78.285655
https://doi.org/10.1109/TSMCB.2003.808176
https://doi.org/10.1115/1.4051016
https://doi.org/10.1109/MCS.2009.932223
https://doi.org/10.1080/00423110500385949
https://doi.org/10.1016/j.advwatres.2004.09.002
https://doi.org/10.1109/TAC.1979.1101943
https://doi.org/10.1109/ACCESS.2022.3224758
https://doi.org/10.1086/285714
https://doi.org/10.1016/0375-9601(76)90101-8
https://doi.org/10.1126/science.267326


MACHINE-LEARNING PARAMETER TRACKING WITH … PHYSICAL REVIEW RESEARCH 6, 013196 (2024)

[60] C. Van den Broeck, J. M. R. Parrondo, R. Toral, and R. Kawai,
Nonequilibrium phase transitions induced by multiplicative
noise, Phys. Rev. E 55, 4084 (1997).

[61] P. R. Vlachas, J. Pathak, B. R. Hunt, T. P. Sapsis, M. Girvan,
E. Ott, and P. Koumoutsakos, Backpropagation algorithms and
reservoir computing in recurrent neural networks for the fore-
casting of complex spatiotemporal dynamics, Neural Netw. 126,
191 (2020).

[62] C. M. Bishop, Training with noise is equivalent to Tikhonov
regularization, Neural Comput. 7, 108 (1995).

[63] Surrogate optimization for global minimization of time-
consuming objective functions– https://www.mathworks.com/
help/gads/surrogateopt.html.

[64] H. Wernecke, B. Sándor, and C. Gros, Chaos in time
delay systems, an educational review, Phys. Rep. 824, 1
(2019).

013196-19

https://doi.org/10.1103/PhysRevE.55.4084
https://doi.org/10.1016/j.neunet.2020.02.016
https://doi.org/10.1162/neco.1995.7.1.108
https://www.mathworks.com/help/gads/surrogateopt.html
https://doi.org/10.1016/j.physrep.2019.08.001

