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Machine learning prediction of tipping in complex dynamical systems
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Anticipating a tipping point, a transition from one stable steady state to another, is a problem of broad relevance
due to the ubiquity of the phenomenon in diverse fields. The steady-state nature of the dynamics about a tipping
point makes its prediction significantly more challenging than predicting other types of critical transitions from
oscillatory or chaotic dynamics. Exploiting the benefits of noise, we develop a general data-driven and machine-
learning approach to predicting potential future tipping in nonautonomous dynamical systems and validate the
framework using examples from different fields. As an application, we address the problem of predicting the
potential collapse of the Atlantic meridional overturning circulation, possibly driven by climate-induced changes
in the freshwater input to the North Atlantic. Our predictions based on synthetic and currently available empirical
data place a potential collapse window spanning from 2040 to 2065, in consistency with the results in the current

literature.
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I. INTRODUCTION

A tipping point in nonlinear and complex dynamical sys-
tems is referred to as a transition from one stable steady state
supporting the normal functioning of the system to another
that can often be catastrophic and corresponds to system
collapse [1]. This can happen as a system parameter passes
through a critical point. For example, in ecosystems, before
tipping the system is in a survival state with healthy species
populations, while the state after the tipping is associated
with extinction [1-8]. Since the early 2010s, tipping point
in ecosystems has been extensively studied [1-25]. The phe-
nomenon of tipping can also arise in other contexts such as
epidemic outbreak [26], a sudden transition from normal to
depressed mood in bipolar patients [27], alterations in the
stability of the Amazon rain forest [28], an increase in the
carbon emission from Boreal permafrost [29], and the melting
of Arctic sea ice [30]. A likely scenario by which a tipping
point can occur is when a parameter of the system varies with
time-nonautonomous dynamical systems. Suppose the system
is in a normal functioning state at the present. Due to the
parameter change, at a certain time in the future a critical point
will be crossed, leading to a catastrophic tipping. The global
climate change is causing ecosystems and climate systems

“Contact author: Ying-Cheng.Lai @asu.edu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

2643-1564/2024/6(4)/043194(18)

043194-1

of different scales to become such nonautonomous dynami-
cal systems with the increasing risk of tipping. Articulating
effective methods to reliably anticipate tipping is an urgent
problem with broad implications and applications.

In this paper, we develop a reservoir-computing framework
tailored to anticipating tipping in nonautonomous dynamical
systems and demonstrate its predictive power using examples
from different fields. A particular application that provided
the main motivation for our work is predicting the possible
collapse of the Atlantic meridional overturning circulation
(AMOC) [31-33] that supports moderate and livable tempera-
ture conditions in Western Europe [34]. The AMOC transports
warmer, upper waters in the Atlantic northward and returns
colder, deeper waters southward [33]. Studies suggested that,
since about 30 years ago, there has been a tendency for the
AMOC to weaken [35,36]. At the present, the AMOC is still
in a “healthy” steady state that maintains a stable circulation
of the pertinent ocean flows. A potential halt of the circulation
would signify a collapse of the AMOC with dire conse-
quences, which corresponds to another stable steady state of
the underlying dynamical system. Such a collapse meets the
criterion of a tipping point, i.e., a transition from one stable
steady state to another.

It is worth emphasizing that the phenomenon of tipping
in its original context [1-8] is characteristically distinct
from the more commonly studied critical transitions from
an oscillatory state to some final state. Examples of such
transitions include a crisis through which a chaotic attractor
is destroyed and replaced by a chaotic transient [37], the
onset of synchronization from a desynchronization state [38],
amplitude death [39], and the encountering with a periodical
window [40]. While machine learning, in particular reservoir
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computing, has been applied to predicting such critical
transitions [41-44], a shared characteristic among the
existing works is the system’s oscillatory behavior before the
transition. This is advantageous because the time series for
training the neural networks contain the temporal variations
necessary for the machine to learn the dynamics of the system.
Predicting a tipping point is significantly more challenging
because, prior to the tipping, the system is in a stable steady
state with no oscillations in the dynamical variables. (See
Appendix A for a more detailed account of the notion of
tipping in the literature.)

Our solution for machine-learning based prediction of tip-
ping is exploiting dynamic noise. In particular, time series
measured from real-world systems are noisy, and the inherent
random oscillations are naturally suited for machine-learning
training. In developing a machine-learning prediction frame-
work, synthetic data are needed for validation. In this case,
we generate time series with random perturbations about
the deterministic steady state through stochastic dynamical
modeling. While the presence of noise may potentially com-
promise the prediction accuracy, it serves a dual purpose by
facilitating an adequate exploration of the phase space by
the neural network dynamics, unveiling latent features that
would otherwise remain obscured under noise-free conditions.
A recent work has established that dynamical noise and/or
measurement noise in the training dataset can be beneficial
to the training process through a stochastic-resonance mecha-
nism [45]. In addition, optimal calibration of noise levels can
mitigate the risk of overfitting and promote generalization,
allowing the reservoir computer to adapt to varying envi-
ronmental conditions and data distributions. Incorporating a
parameter channel into reservoir computing [41] to accom-
modate the time-varying parameter, we demonstrate that the
reservoir computer can be trained to predict the occurrence
of tipping in the future. To show the efficacy of our predic-
tion framework, we present examples from climatic systems
and ecological networks. For the problem of anticipating a
potential collapse of the AMOC with synthetic and currently
available empirical data, our machine-learning scheme places
a collapse window spanning from 2040 to 2065, in consistence
with the results in the current literature.

II. METHODS
A. Nonlinear dynamical mechanism of tipping

In nonlinear dynamics, a typical bifurcation leading to
tipping is the forward or backward saddle-node bifurcation.
Consider the situation of two coexisting stable steady states
(or attractors): a normal “healthy” state and a catastrophic
or “low” state, where each attractor has its own basin of
attraction. As the bifurcation parameter increases with time,
the healthy attractor can disappear through a backward saddle-
node bifurcation, after which the low state is the only attractor
in the phase space, signifying a tipping point. In the past,
considerable efforts were devoted to anticipating tipping by
identifying early warning indicators or signals [2,46—49]. A
known phenomenon is enhanced fluctuations where, as the
tipping point is approached, the variances of the measured
values of the dynamical variables tend to increase. The reason
is that, as the system moves toward a fold bifurcation, the
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FIG. 1. Illustration of parameter-adaptable reservoir computing.

dominant eigenvalue of the Jacobian matrix evaluated at the
steady state approaches zero, making the landscape flatter
and closer to a random walk about the steady-state attractor.
Small noise will then generate large deviations of the tra-
jectory from the attractor. In a recent work, a deep-learning
based time-series classification scheme was introduced to
determine if a tipping event is about to occur and the
bifurcation [49].

B. Challenges with anticipating tipping

Oscillatory behaviors in the data in the precritical regime
have the benefit of system trajectory’s visiting a substantial
portion of the phase space, thereby facilitating training by
enabling the neural network to effectively learn the phase-
space behavior or the dynamical climate of the target system.
Differing from existing works on predicting critical transitions
from an oscillatory dynamical state to a collapsed state, we
aim to predict tipping from one stable steady state to another.
In a noise-free situation, in the pretipping regime the system
is in a stable steady state without oscillations in its dynamical
variables. Introducing stochasticity or noise into the system
leading to randomly oscillating dynamical variables provides
a solution for neural-network training. We exploited dynamic
noise in the data for training, where validation and hyper-
parameter optimization are performed based on data in the
precritical regime. During the test or prediction phase, the
reservoir computer operates as a closed-loop, deterministic
dynamical system capable of predicting how the dynamical
climate of the system changes with the time-varying bifur-
cation parameter. Since no data from the target system in
the post-tipping regime were used for training (in a realistic
situation, such data are not available), it is not possible for
the reservoir computer to correctly predict the detailed system
behavior after the tipping. However, the neural machine is
capable of generating characteristic changes in the output vari-
ables at the tipping transition, making its anticipation possible.
(See Appendix B for more details.)

C. Parameter-adaptable reservoir computing

We adopt parameter-adaptable reservoir computing
[41] for anticipating tipping. A basic reservoir computer
comprises three layers: an input layer, a hidden recurrent
layer, and an output layer. Figure 1 illustrates the basic
structure of parameter-adaptable reservoir computing that
extends conventional reservoir computing by incorporating
an additional parameter channel for the bifurcation parameter
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b. During the training, the input time series vector u(z)
and the parameter b are concurrently projected onto the
hidden layer through the time-series input matrix Wi, and the
parameter input matrix W,, respectively. The hidden layer
consists of N one-dimensional (1D) dynamical neurons.
Concatenating the dynamical states of all the neurons leads to
an N-dimensional vector—the hidden state r(¢) at each time
step. The neural network in the hidden layer is recurrent with
the connection matrix W, and short-term memory. The output
matrix Wy, projects the hidden state r(z) to the output layer,
generating the output vector v(z). The iteration equations of
the parameter-adaptable reservoir computer are

r(t) =1 — a,)r( — At)
+ «, tanh [Wor(t — At) + Wizu(t) + Wy (kpb + by)],
()

v(t) = Woul (r(2)), (@)

where o, € (0, 1] is the leakage parameter defining a temporal
scale of the reservoir network, Ar is the time step, tanh(-)
is the hyperbolic tangent function serving as the nonlinear
activation function in the hidden layer, k, and b, are the
gain and bias of the parameter b, respectively, and f(-) is a
nonlinear output function of the reservoir computer.

A feature of the reservoir network is the random generation
and the subsequent fixation of the input matrices Wi, and W,
along with the recurrent network matrix W;. These matrices
remain fixed during training with only the output matrix Wy,
undergoing optimization. This design choice eliminates the
need for back propagation in time during the training, allevi-
ating computational cost and mitigating potential difficulties
such as vanishing and exploding gradients. Following the
random generation of the three matrices, the training process
begins by inputting the time series u(¢) and the corresponding
control parameter b through the input layer. The dynamical
evolution of the neural network follows Eq. (1). This process
is also referred to as the “listening phase” or “echoing phase,”
as if the driving training signals are echoing in the hidden
state. During the training, Eq. (2) is not invoked as the output
matrix has not been trained yet. Multiple trials of the time
series data from the target system, each associated with a
distinct parameter value, are presented as the training data.
On completion of the echoing phase for a specific trial for a
particular b value, the parameter-adaptable reservoir computer
is reinitialized for a new echoing phase for another training
parameter value. The hidden state behaviors observed dur-
ing the training are recorded, whose variations are implicitly
linked to the corresponding parameter value b since it affects
the dynamical evolution of the state in the hidden layer.

Let the length of each trial of the training time series be
Tirain (in the unit of the number of steps) and the number of
trials of training with different parameter values be n;, (n, = 4
in our work). The “echoing” results r(z) are concatenated into
a matrix R of dimensions N X 7y Tiin. Applying the nonlinear
function f(-), we obtain the transformed matrix R’ = f(R)
that captures the echoing hidden state for subsequent linear
regression. A training target is essential. We focus on reser-
voir networks whose output represents one-step prediction,
where v(¢) is equal to u(f + A), making the training target the

stacking of all training time series with a one-step difference
from the input data, denoted as V. Finally, a ridge regression
is conducted between R’ and V to determine the output matrix:

Wou =V -RT(R -R" +8.)7", 3)

where B, is the coefficient of L — 2 regularization.

An alternative training approach involves supplying a time
series with a nonconstant parameter value, a nonstationary
time series with the corresponding time-varying parameter
b(t) as the training data [41]. This configuration is more
practical in various scenarios and is employed in our work.

Having successfully trained a parameter-adaptable reser-
voir computer, we can now use it to make predictions for a
specific parameter value b of interest, which is in a parameter
regime different from that for training. The reservoir com-
puter autonomously extrapolates the learned dynamics during
training, generating predictions of the system dynamics at
some unobserved parameter value. The iteration equation dur-
ing prediction is given by

r(t) =(1 —a,)r( — At) + o, tanh(W; - r(t — Atr)
+ Winv(t — At) + Wy(kpb + b)), “4)

v(t) = Wouf (r(1)), &)

where u(¢) in Eq. (1) is replaced by v(r — At). Given the
recurrent structure of reservoir computing, it is necessary to
properly initialize the hidden states in order to make any
predictions. As one may observe from Eq. (1), a previous
state r(r — At) is needed to calculate r(z). For short-term
validation, we initialize the prediction by replicating the fi-
nal hidden state obtained during the training as a one-step
previous state. This allows for a direct comparison of the
validation result with the actual time series, facilitating the
calculation of an error metric, such as the root-mean-square
error, as the validation error. To conduct long-term testing
on the “climate,” where a more diverse ensemble of pre-
dictions is required to capture the behaviors of the target
system, we introduce additional randomness. Specifically, we
utilize a randomly selected short segment from the actual
time series data to “warm up” the reservoir hidden state. To
prevent the reservoir computer from becoming stuck in a
single attractor, especially in the presence of multistability in
the dynamics, we introduce additive observational noise to the
“warm-up” data.

III. RESULTS

A. Anticipating a potential collapse of the AMOC

Our machine-learning framework is designed to tackle the
challenge of anticipating tipping in nonautonomous dynam-
ical systems in general, as shown in Fig. 2 where, prior to
tipping, the system is in a stable steady state with no determin-
istic oscillations in the dynamical variables. We use four types
of data: (1) synthetic data from 1D AMOC fingerprint model,
(2) synthetic data from a 2D conceptual model of AMOC,
(3) synthetic data from the community Earth system model
(CESM), and (4) empirical AMOC fingerprint data. As will be
demonstrated, the predicted time window of a potential future
AMOC collapse from the four types of data are consistent
with each other.
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FIG. 2. Schematic illustration of the machine-learning framework for anticipating tipping in nonautonomous dynamical systems. The
system begins in a stable steady state with no deterministic oscillations in the dynamical variables. Dynamic noise is leveraged to perturb the
system, enabling the machine-learning model to detect changes and predict the tipping point even when the system is in a parameter regime

prior to tipping.

1. Anticipating AMOC collapse from 1D synthetic fingerprint data

Due to the difficulty of continuously monitoring the
AMOC and the limited availability of long-term observational
data, analyzing certain fingerprints of the AMOC provides a
viable method to gain insights [51]. For example, sea surface
temperature (SST) has been employed as a promising proxy
for assessing the AMOC strength [52-55]. Quite recently, a
1D stochastic SST model [50] with parameter values esti-
mated from the real data was constructed to understand the
tipping dynamics of the AMOC. It was suggested that the
AMOC may be approaching a potential collapse through a
tipping point, which can occur as early as 2025. The model
is described by the following stochastic nonlinear differential
equation with a generic bifurcation parameter A:

X, = —(A(X, — m)* + 1) + 0dB,, ©6)

where X, is a stochastic dynamical variable exhibiting a tip-
ping transition, A is a timescale parameter, m is defined as
U — +/|A|/A with u representing the stable fixed point of the
process, B; is a Brownian motion, and o is the noise ampli-
tude. Initially, the system is in a statistically stable state with
constant A = Xg. At time 7, A begins to increase toward the
critical point A.. As A increases, the dynamical variable X; ex-
hibits fluctuations but its mean value decreases continuously.
Despite the fluctuations, X; eventually collapses to a large neg-
ative value, signifying the collapse of the AMOC. For fixed
model parameters at the most likely estimated values from
the AMOC fingerprint data (A = 0.95,m = —1.3, Ag = —2.7,
o = 0.3, and 7y = Year 1924), the underlying deterministic
system exhibits a backward saddle-node bifurcation, corre-
sponding to the coalescing point of the stable and unstable
equilibrium points, as shown in Fig. 3, where a tipping point
occurs at A, = 0 (see Appendix C for details).

Climate change is a driving force to slow down and eventu-
ally halt the AMOC, making the underlying dynamical system
nonautonomous. The nonautonomous version of Eq. (6) can
be obtained by making the bifurcation parameter A time
dependent. In particular, the impact of climate change was
modeled [50] by an exponential increase in A(¢) with time

from some initial value Ay < 0, as illustrated in Fig. 4(a). As
X increases towards the bifurcation point A, = 0, the system
approaches a tipping point at the time 7. In the time interval,
[0, T.], the AMOC variable X (¢) fluctuates about the stable
equilibrium. After the tipping at T, X () rapidly decreases to

1940 1960 1980 2000 2020 2040 2060
time (year)

FIG. 3. Random realizations of a tipping point transition in the
1D stochastic AMOC fingerprint model (6). (a) Time-varying bi-
furcation parameter A that increases exponentially with time, while
other parameters are the best-estimated values extracted from the
empirical fingerprint data [50]: A =0.95, m = —1.3, 1y = —2.7,
o = 0.3, 1) = 1924, and A, = 0. (b) Ten random model realizations,
with the dashed green and red curves indicating the stable and un-
stable equilibria. In the underlying deterministic system, a backward
saddle-node bifurcation and hence a tipping point occurs at A, = 0.
In the presence of stochastic driving, the value of A at which the
system collapses, characterized by the dynamical variable X’s ap-
proaching a large negative value, varies among the realizations, but
they are near A = 0 on the positive side.
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FIG. 4. Reservoir-computing prediction of the time window of AMOC collapse from the 1D time-dependent fingerprint model. (a) The
exponential growth with time of the bifurcation parameter A(¢), which starts from the value Ay = —2.7 in the year 1870. The horizontal dashed
line indicates the tipping point A, = 0. (b) A realization of the time series X (), where the purple (blue) segment represents the training and
testing (validation and prediction) data, respectively. (c) The testing data (blue) and reservoir-computing prediction (red) in the time window
from year 2022 to year 2065. For this particular realization, the AMOC variable X (¢) collapses between the years 2062 and 2063 (blue, real
data). The reservoir computer predicts an abnormal behavior in X (¢) at about the same critical time T, signifying a tipping point. (d) Histogram
of the predicted AMOC collapse time 7. obtained from 1000 machine realizations. Tipping is likely to occur between year 2055 and year 2066.

a large negative value, signifying the AMOC collapse. The
value of the tipping time 7, varies across different realizations.

We now demonstrate that a trained reservoir computer is
able to predict the tipping time 7.. For each realization, we
divide the data into two distinct segments: training and test-
ing, as highlighted in Figs. 4(a) and 4(b) in purple and blue,
respectively, where the end of the purple data segment marks
the present time (in year). Note that, up to the present time, the
AMOC has been stable, where the dynamical variable X (¢)
fluctuates about the healthy stable steady state. If there was no
noise, then X (#) would be a smooth and a slowly decreasing
function of time, as exemplified in Fig. 3, and it is not possible
to train the reservoir computer with the nonoscillatory time
series. What makes training possible is noise rendering oscil-
latory and random the time series X (¢). Figure 4(c) presents
one prediction run, where the blue trace is the testing data
in the time interval between now and year 2065 (the ground
truth), and the dashed red trace is the reservoir-computing pre-
diction. For this particular realization, the predicted AMOC
collapse time is between the years 2062 and 2063. At about
the same time, the predicted X (#) exhibits an abnormal be-
havior that is drastically and characteristically different from
that prior to the tipping, indicating a successful prediction of
the tipping point. Note that, since the reservoir computer has
never “seen” the blue testing data segment that includes the
collapse of X(¢#) to some negative value, it is not possible
for the machine to predict the value of X (¢) after tipping.
Nevertheless, the predicted abnormal behavior is indicative
of some critical behavior in the system. Figure 4(d) shows a
histogram of the predicted values of T, from 1000 reservoir-
computing realizations. For the 1D AMOC fingerprint model,
the parameter-adaptable reservoir computer predicts that a
collapse of the AMOC is likely to occur between the

years 2055 and 2066, which is consistent with the result in
Ref. [50].

The histogram of the collapse time 7, in Fig. 4(d) was
obtained from 1000 machine realizations, but the training and
testing data are from one specific realization of the 1D AMOC
fingerprint model. For different model realizations, the tipping
time T is different, so are the predictions. Table I lists the
prediction results from 10 model realizations. It can be seen
that in all cases, the predicted mean value of the collapse year
is close to that of the original data, providing further validation
of our reservoir-computing prediction scheme.

2. Predicting AMOC collapse based on synthetic
data from a 2D conceptual model

A recent study [32] addressed the phenomenon of tip-
ping within climate systems, providing insights into how

TABLE I. Predicted tipping time from 20 synthetic datasets.

T.. from 1000 machine realizations

Dataset Model T. Mean Std (years)
1 2061 2062 4
2 2054 2057 6
3 2056 2057 3
4 2070 2069 6
5 2064 2062 5
6 2059 2060 4
7 2058 2060 5
8 2062 2061 4
9 2060 2062 6
10 2065 2066 4
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FIG. 5. Reservoir-computing prediction of the time window of AMOC collapse from the 2D time-dependent conceptual AMOC model.
(a) One realization of 2D conceptual AMOC model for y = 3 and o = 0.1. (b) Time-varying freshwater forcing parameter . (c) An example
of testing data (solid blue trace) and reservoir-computing prediction (dash-dotted red trace). (d) Histogram of the predicted critical point from

1000 random reservoir realizations.

time-varying parameters can lead to abrupt and potentially
catastrophic transitions in the climate. The mechanism of
tipping was illustrated using a 2D conceptual model [32]
with two state variables, denoted as x and y. The dynamics
produced by this model closely resemble those observed in
the ocean model. The 2D model is described by the following
equations:

dx N

- = (—r* 421 — B)x — w9, (7
dy 4 2 N

i (=r" +2r° — B)y + wx, ®)

where r? = x> 4+ 92 and § is defined as y — y 8. The param-
eter B is a bifurcation parameter describing the freshwater
forcing parameter, while @ represents the frequency. The
dependence of y on S is parameterized by y. The system pos-
sesses one stable and one unstable limit cycle for 8 < 1. For
B =1, the limit cycles merge and disappear in a saddle-node
bifurcation [32].

To make the dynamical system (7) nonautonomous, we
assume that the bifurcation parameter S is time-dependent:
starting from an initial value By, it linearly increases towards
a critical value B.. Dynamical noise is introduced into the
system by additive stochastic terms in (7) of independent
Gaussian random processes of zero mean and amplitude o.
Figures 5(a) and 5(b) show a single realization of the evolu-
tion of the conceptual AMOC fingerprint (x + 5r) and the g
parameter over time, respectively. As B increases, a tipping
point occurs at A, = 0, where the system undergoes a sudden
shift in the attractor, transitioning from random oscillations
about the stable limit cycle to a stable equilibrium. The spe-
cific tipping time varies among the independent stochastic
realizations.

To anticipate a possible tipping point, we partition the data
into two sets: training data (highlighted in purple) and testing
data (in blue). The training data consists of a portion of the
time series of x 4+ 5r as input and 8 as a control parameter as-
sociated with oscillations about the stable limit cycle. During
the testing phase, the trained reservoir computer is employed
alongside the remaining control parameter data to predict the
tipping. Figure 5(c) shows an illustrative example, where the
real testing data are in blue and the corresponding predicted
data are represented by red. Training data are collected for
parameter values 8 € [0.01, 0.79]. To ensure the prediction
efficacy, we repeat the whole process for 1000 random re-
alizations of the reservoir computer. Figure 5(d) presents a
histogram of the anticipated tipping point values. In all the
realizations, a tipping point is anticipated to occur in the future
within the time interval T, € [140, 190], which contains the
ground truth value 7, = 159 from direct simulation of the 2D
stochastic system.

3. Predicting AMOC collapse using the synthetic data
Jrom the community Earth system model

In a quite recent study of the CESM [56], an AMOC
tipping event with significant climate consequences was re-
vealed. CESM is a coupled climate model for simulating
various components of the Earth’s climate system simultane-
ously, making it possible to explore the dynamics under the
past, present, and future climate conditions. An analysis of the
output data of CESM revealed a tipping point as characterized
by the minimum of the AMOC-induced freshwater transport
at the Southern boundary of the Atlantic [56].

We use the simulated AMOC strength data from Ref. [56]
to test our reservoir-computing based framework for predict-
ing tipping. In the CESM model, the freshwater flux forcing
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FIG. 6. Reservoir-computing prediction of the time window of potential AMOC collapse from the CESM synthetic data. (a) Linear time-
varying freshwater flux. (b) AMOC strength, where the purple and blue segments represent the training and testing (validation and prediction)
data, respectively. The horizontal dashed line indicates the tipping point 7, = 1758. (c) Testing data (blue) and reservoir-computing prediction
(red). AMOC strength [x(z)] collapses at model year 1758 (blue, real data). The reservoir computer predicts an abnormal behavior in x(¢) at
about the same critical time T, signifying a tipping point. (d) Histogram of the predicted AMOC collapse time 7, obtained from 1000 reservoir
network realizations. Tipping is likely to occur between model years 1740 and 1775.

(Fy) linearly increases at the rate 3 x 10™* Sv year-1 until
the model year 2200, where a maximum of Fy = 0.66 Sv
is reached, as shown in Fig. 6(a). The AMOC strength, de-
fined as the total Meridional volume transport, is shown in
Fig. 6(b), where the vertical dashed line indicates a tipping
point 7. = 1758. The purple segment is used to train the
reservoir computer and the blue segment is the testing data.
The reservoir-computing output is shown in red in Fig. 6(c),
where an abnormal behavior in x(¢) occurs at about the same
critical time 7. as the model tipping time. To characterize
the prediction performance, we repeat the process using 1000
machine-learning realizations. The resulting histogram of the
predicted AMOC collapse time T is shown in Fig. 6(d), which
indicates that tipping is likely to occur between the model
years 1740 and 1775.

4. Predicting AMOC collapse using empirical fingerprint data

It is necessary to conduct tests using empirical AMOC
data. We use AMOC fingerprint sea-surface temperature
(SST) datasets with the same exponential growth of the
bifurcation parameter [50], as shown in Fig. 7(a). Figure 7(b)
shows a segment of the SST data up to the present time
(in purple color), which is used for training, and a typical
realization of the reservoir-computing predicted time series
(red). Prior to reaching the critical point A, = 0, the predicted
AMOC fingerprint exhibits a smooth behavior that is
essentially a continuation of the training data, indicating
no collapse. About A, = 0, the machine-learning prediction
becomes highly irregular, signifying a collapse. Figure 7(c)
shows a histogram of the predicted critical time of AMOC

collapse from 1000 reservoir-computing realizations. The
range of possible collapse time is from year 2040 to year
2066, with the median around year 2053. This result is
consistent with those in Fig. 4(d) and in Ref. [50].

To further demonstrate the generality and power of our
parameter-adaptable reservoir computing framework for pre-
dicting tipping in complex and nonautonomous dynamical
systems, we tested the following datasets from alternative
AMOC models and ecological networks that exhibit a tipping
point in the conventional sense of coexisting stable fixed-
point attractors: (1) mutualistic pollinator-plant networks, (2)
a plant-herbivore model, and (3) a climate model. For models
(1) and (2), a bifurcation parameter is assumed to vary con-
tinuously with time. For model (3), the observed time series
are collected from a sequence of different constants or nearly
constant parameter values. We have also tested a three-box
AMOC model, with detailed results presented in Appendix D.

B. Anticipating tipping in pollinator-plant mutualistic networks

We demonstrate the capability of our parameter-adaptable
reservoir-computing approach to anticipate tipping points in
real mutualistic networks. Specifically, we study two real-
world pollinator-plant networks (Web of Life database):
Network A from Flores, Acores [57] with 10 plant species
and 12 pollinator species; Network B from an empirical study
in Hestehaven, Denmark [58], which has 8 plant species and
42 pollinator species. The dynamical variables of these sys-
tems are the abundances of the plant and pollinator species.
We take «, the average pollinator species decay rate, as the
bifurcation parameter. Due to environmental changes, x varies
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FIG. 7. Reservoir-computing prediction of AMOC collapse time
using empirical fingerprint data. (a) An exponential growth of the
bifurcation parameter A (from Ref. [50]). (b) Available AMOC
fingerprint SST data from year 1875 to the present year (purple).
This data segment is noisy and employed in training the reservoir
computer. The red trace is one example of the predicted SST behav-
ior, which is smooth until the critical value A. = 0 for collapse is
reached. (c) A histogram of the predicted AMOC collapse time from
1000 reservoir-computing realizations. The time range of potential
AMOC collapse is between the year 2040 and the year 2066.

slowly with time. Tipping occurs in both systems, as shown in
Figs. 8(b) and 8(f), where the equilibria of the effective plant
abundance P averaged over all the plant species for different
« values are plotted. The tipping point for network A (B) is
k. = 0.881 (k. = 0.796), after which P.s decreases abruptly.

The training data are time series of the abundance of
the species in the mutualistic network. The reservoir com-
puter is trained based on noisy time series from a number
of distinct values of the bifurcation parameter in the pretip-
ping (“safe”) regime, where the networked system is under
correlated, demographic noise. Specifically, for network A
(B), the parameter values are k = 0.5, 0.6,0.7, and 0.8 (k =
0.4,0.5,0.6, and 0.7). As the mutualistic networks are high-
dimensional dynamical systems, training using the time series
from all species is computationally costly. We employ a previ-
ously developed dimension-reduction method for mutualistic
networks [17] and take the effective plant and pollinator abun-
dances, denoted as Pesy and A.g, respectively, as the training
data. Figures 8(a) and 8(e) show the Pz components of the
training data, which are noisy around the equilibria.
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FIG. 8. Anticipating tipping with noisy data in two real plant-
pollinator networks. (a) Noisy training data from mutualistic network
A. The four trials of data correspond to four different training values
of the control parameter «. (b) Tipping in network A: At the tipping
point k. &~ 0.881, the effective abundance of the plant species Pegr
goes through an abrupt regime shift to a lower level through a
saddle-node bifurcation. (c) Reservoir-computing predicted tipping.
The vertical dashed cyan lines correspond to the values of « in the
training data set, all in a safe regime. Occasional predicted negative
abundance values are counted as zero. (d) Histogram of the antici-
pated tipping point from an ensemble of 100 prediction runs, where
the vertical blue dashed line denotes the true value «.. () Noisy
training data from network B. (f) Tipping in network B at k. = 0.796.
(g) Reservoir-computing predicted tipping, where the vertical dashed
cyan lines correspond to the values of « in the training data set. (h)
Histogram of the anticipated tipping point from an ensemble of 100
prediction runs, with the ground-truth «. indicated by the vertical
blue dashed line.

In the prediction phase, we extend the bifurcation pa-
rameter into an untrained nearby regime. Figures 8(c) and
8(g) show the prediction results for networks A and B, re-
spectively, where the training parameter values are marked
by the vertical cyan dashed lines. The predicted tipping
points for both networks are near the true values. Note that,
during prediction the reservoir computer is a deterministic
dynamical system designed to capture the deterministic com-
ponents of the dynamics of the target system. As a result, the
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machine-generated trajectories correspond to smooth, damped
oscillations converging towards the fixed points, which de-
viate significantly from the noisy training trajectories. The
final equilibrium point is extracted as the predicted values
of the fixed point, as shown by the red circles in Figs. 8(c)
and 8(g). Given the stochastic nature of the training datasets,
we conduct 100 random testing trials for each mutualistic net-
work, where both the training data and the relevant matrices
underlying reservoir computing differ across the testing trials.
Figures 8(d) and 8(h) show the histograms of the anticipated
tipping point values. Tipping is consistently anticipated in
all the trials. For network A, the predicted tipping points
occur within the interval « € [0.8405, 0.9215] about the true
value k., = 0.881. Of 100 trials, 66 anticipate the tipping
point within the narrower interval « € [0.8608, 0.9012]. For
network B, 98 of 100 trials predict the tipping point to fall
within the interval « € [0.748, 0.844] about the true value
k. = 0.796. In addition, 66 of 100 trials foresee the tipping
point within the narrower interval « € [0.772, 0.820].

We address two pertinent issues. First, to remove any doubt
that the observed collapses in the predicting phase might be ar-
tifacts stemming from the instability of the reservoir computer
when operating in an untrained parameter region, we obtain
extrapolation results on the opposite side of the untrained
parameter region, i.e., with ¥ smaller than the training values.
For networks A and B, the parameter regions tested are « €
(0.35,0.50) and « € (0.25, 0.50), respectively. No collapse is
observed on this side of the parameter region for any trial, as
the reservoir computer predicts stable species abundances for
all trials. This justifies that the tipping behaviors predicted on
the other side of the parameter region are not artifacts. Second,
while we have shown that the tipping of the target attractor can
be anticipated from a forecasting approach, it is difficult to
predict the actual dynamics after the tipping. For the ground-
truth results shown in Fig. 8, there is an abrupt decrease in
the abundance of the plant species after tipping but without
an immediate total extinction. The reservoir computer is not
able to predict such behaviors correctly. In general, the target
system can be in a new regime after tipping, which can be far
away from the training region in the phase space. Expanding
the dynamics from the training region to such a distant new
regime can be difficult and unreliable given the nonlinearity in
the target system. For a similar reason, the parameter region
of multistability is also not accurately predicted, since the
dynamical features of the lower state have never been “seen”
by the reservoir computer.

C. Anticipating tipping in a plant-herbivore system

We study a plant-herbivore system [25,59] in a tipping pa-
rameter regime with a saddle-node bifurcation. The dynamical
variables are the biomass densities of the plant P and the
herbivore H. Two system parameters, the plant growth rate
and herbivore mortality rate, are time-varying [25] according
to a common environmental factor v. Increasing v across a
tipping point at v, = 0.657 results in a sudden decrease of the
herbivore biomass H and its subsequent extinction, dynami-
cally induced by a saddle-node bifurcation at v.. We assume
that the environmental factor v(¢) increases quadratically as
a function of the time. In a realistic situation, the functional

form of v(¢) is unknown. For simplicity, we assume that v ()
increases linearly with time [43].

We generate two different datasets (including training and
testing) for comparison. For the first set, v(r) is below the
tipping point in both the training and testing data. For the
second dataset, v(t) is below but close to the tipping point
V. during training, but it crosses the tipping point in the
testing data, leading to a sudden extinction of the herbivore.
Demographic noise is applied to the system to generate noisy
training data. In both cases, the surrogate parameter p(¢) has
the same rate of linear increase with time. Figures 9(a)-9(c)
show the testing results for the first dataset, while Figs. 9(d)—
9(f) are for the second dataset. For the pretipping dataset, the
reservoir computer predicts the correct dynamical behavior of
no tipping, as shown in Fig. 9(a). Likewise, for the second
dataset, the tipping behavior is correctly predicted, as shown
in Fig. 9(d). We repeat the process of training and predicting
on the two settings of v(¢) 1000 times with different random
seeds for dynamical noise and reservoir-computing matrices.
For the pretipping case, within the same testing time interval
as in Fig. 9(a), 126 trials (12.6%) provide false positive pre-
dictions, most of which are near the end of the testing interval
where the bifurcation parameter is closer to the tipping point.
The remaining 874 trials (87.4%) are all true negatives. For
the tipping case, only 72 trials (7.2%) fail to anticipate the
collapse within twice the average actual time of collapse.

D. Anticipating tipping in a climate model
with discrete control parameter scheme

‘We consider the climate model for the ice-albedo feedback
and represents the global temperature as a zero-dimensional
average field [9,60]. The deterministic version of the model is
given by [9,60]:

dT I , s
o= fo(T) = Zﬂlo(l —(ap — byT?)) — esqosT

wloby 24 ulo(1 — az)’

= T4
esaosl ™ + n n

€))

where }ulo(1 — (a2 — b>T?)) is the incoming solar radiation
subtracted by the reflected part proportional to the albedo
(az — byT?), and egpo5T* is the outgoing radiation described
by the Stefan-Boltzmann law. Following Ref. [9], we treat
parameter p as the time-varying bifurcation parameter. Other
parameter values are Iy = 1366, esqy = 0.62, o5 = 5.6704 x
1078, b, = 1.69 x 1073, and a, = 1.6927. The stochastic ver-
sion of the system is given by

dT = fc(T)dt + Unoisedw» (10)

where dW is a normalized Wiener (white noise) process.
To generate the training data, we numerically integrate this
stochastic equation by the Heun method [61] with an additive
noise of strength oy,0i5e = 0.1 and time step of Ar = 0.004. A
tipping point occurs at pu. = 0.761, as shown in Fig. 10(a).
Figure 10(b) shows the prediction results by our parameter-
adaptable reservoir computer. It can be seen that the tipping
behavior has been correctly predicted, based on training data
from the pretipping regime.

043194-9



SHIRIN PANAHI et al.

PHYSICAL REVIEW RESEARCH 6, 043194 (2024)

@ [ ]

11

0 - 1 1 1 1 1
100 200 300 400 500

steps

600 700

(@) T
1} | 1
m 10» 4
9, 4
(e i i i i i
0B5F ~~~ "~ T T T T T TS s s s s — = — TS
N 06 A
0.55 J
0.5 : : : : :
®
%
0 1 1 1 1 1
0 100 200 300 400 500 600 700
steps

FIG. 9. Anticipating tipping point with an unknown continuously changing environmental factor in a plant-herbivore system. (a) Simulated
herbivore abundance in a parameter region away from tipping. Training and testing data from the target system are shown as the noisy blue
curve, separated by the vertical dashed cyan line. The red segment to the right of the vertical dashed cyan line is the reservoir-computing
predicted abundance, which on average agrees with the blue data. (b) Time variation of the environmental factor v(¢) that has not yet reached
the tipping point value (marked by the horizontal dashed black line) in the testing interval. (c) The surrogate control parameter p(t), which
is assumed to increase linearly with time. (d) Simulated time series with tipping in the testing interval, which is successfully anticipated by
reservoir computing (the red curve). (e) Parameter v(¢) reaching the tipping point v, = 0.657 at the crossing of dashed black lines, leading to
the extinction behavior in panel (d). (f) The surrogate control parameter p(t).

IV. BENEFICIAL ROLE OF NOISE
IN ANTICIPATING TIPPING

An attractor made of a simple fixed point is zero-
dimensional and is essentially featureless with limited
information about the dynamics of the target system. A
machine-learning model is unable to learn the dynamics based
on time series with only constant values. In related previous
works [62,63], transient behaviors of the target systems before
reaching the asymptotic states were exploited in training to
overcome this difficulty, where the target system is initialized
at locations in the phase space away from the asymptotic
states. Another possibility is exploiting dynamical noise that
drives the target system around the fixed point. A certain
level of dynamical noise can in fact be advantageous for
parameter-adaptable reservoir computing, as it provides the
opportunity for the machine to explore a larger phase-space
region. As the target system approaches a tipping point, the
dominant eigenvalue of the Jacobian matrix around the fixed
point is approaching zero, so the system landscape becomes
flatter and noise can effectively enlarge the phase-space re-
gion of exploration for the reservoir computer to learn the
dynamics.

Our computations reveal an optimal region of the noise
strength for stable and relatively accurate anticipation results.
Some too large or too small noise level §,ise tends to reduce
the performance. As the reservoir network becomes larger
so that it possesses a higher level of dynamical complexity,
the optimal 8,4 region becomes wider. Figure 11 shows
histograms of the anticipation accuracy for different noise
levels on the climate model with different sizes of the reservoir

network, where a success rate is defined as the fraction of
the testing results that successfully anticipate the tipping and
predict the position of the tipping point with a relative error of
less than 50%. For the climate model, a predicted w. within
the interval of [0.751, 0.772] is considered as successful. Each
success rate is calculated from an ensemble of 50 statistical
realizations of the reservoir network and training data. For
weak dynamical noise, the training data are close to some
constant values, making it difficult for the reservoir computer
to grasp the dynamical features, leading to the anticipation
that the target system is near a stable steady state. While the
trend by which the equilibrium point changes slowly with the
bifurcation parameter can be anticipated as it requires only
the zero-order information about the equilibrium in the train-
ing set, the reservoir computer can hardly predict a tipping
point, which requires higher-order dynamical features of the
target system. The small dynamical fluctuations can also be
overwhelmed by observational noises.

Large dynamical noise is harmful, too. Intuitively, in
this case, the finite training data may not be statistically
representative for the machine-learning framework to learn
the deterministic component of the target system near the
equilibrium without overfilling. Extracting the deterministic
component from its noisy trajectory is similar to the problem
of information transmission through a noisy communica-
tion channel [64]. To see this, consider a one-dimensional
dynamical system dx = f(x)dt + OnoisedW, where dW is a
normalized Wiener (white noise) process and f(¢) is the de-
terministic component of the dynamics. Let there be a stable
fixed point at xy = 0, about which we have f(x) = —x + o(x).
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FIG. 10. Anticipating tipping in a climate model. (a) Tipping
behavior of the equilibrium temperature 7, with respect to the bifur-
cation parameter 4. (b) Successful prediction of the tipping behavior
by parameter-aware reservoir computing, where the bifurcation-
parameter values for training are marked by the vertical cyan
dashed lines.

The system’s capacity corresponds to the information channel
capacity and is given by [64]

1
C= ST f f(x)*P(x)dx, (11)
= zai / (x* = 2x0(x))P(x)dx, (12)

where P(x) is the distribution of x under dynamical noise.
The capacity C measures the maximal rate of information
transmission. If we ignore high-order terms o(x), then P(x)
is a normal distribution P(x) ~ N(0, onzoise /2). However, this
would result in a constant C independent of oy, because
C measures the maximal information transmission rate about
the features of f(x) in the entire phase space. Anticipating the
tipping point requires focusing on the local behavior of f(x)
about x(, and the information about f(x) away from xy may
not be useful. As a crude approximation, we integrate Eq. (12)
within a neighborhood x € (—d, d) of the fixed point and find
that C will quickly approach zero as the noise level increases
through d. (A more accurate approximation is to use a mask
distribution in the integration to put larger weights near the
fixed point.) This provides a heuristic understanding of the
disadvantage of large noise.
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FIG. 11. Anticipation performance with different noise levels
and varying complexity of reservoir computing. The rates of suc-
cessful anticipation for different levels of o, are obtained for
reservoir network of size (a) N = 1, 200, (b) N = 800, (c) N = 500,
and (d) N = 250. An optimal region of the noise strength arises for
stable and relatively accurate anticipation, which increases with the
size of the reservoir network. A larger reservoir network can also
exploit training data at a lower noise level, while a smaller network
performs better at exploiting training data with a higher noise level.

In realistic applications, it is not feasible to decide or
control the noise level of the observed data. However, as
shown in Fig. 11, the optimal noise region also depends on the
complexity of the reservoir network, where a larger network is
better at exploiting the relatively small fluctuations caused by
a lower noise level than a smaller network, and can also make
the optimal noise region wider. Overfitting can be a problem
with large reservoir networks. As a result, the optimal noise
level shifts to the lower side as the reservoir network size
increases.

V. DISCUSSION

Recent years have witnessed significant efforts in develop-
ing machine-learning models for predicting critical transitions
in nonlinear dynamical systems. A tacit assumption in these
works is that oscillatory time series are available for training
the neural network. For critical transitions such as crises, syn-
chronization onset and amplitude death, this requirement can
indeed be met. Tipping, by its historical origin from nonlinear
ecosystems, is a different type of critical transition in that the
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system is in some sort of stable steady state before and after
the transition. In a deterministic system, the available time
series are nonoscillatory. The lack of pretipping oscillations
means that the usual temporal variations used for training are
absent, making it significantly more challenging to predict
the impending shift using machine learning. This is a reason
that most previous works used detection-based approaches to
extracting early warning signals or features from observed
time series before the tipping.

We developed a forecasting-based, machine-learning
framework to anticipate tipping in nonautonomous dynami-
cal systems by taking advantage of noise. Our prediction is
based on the presently available time-series data in a stable
steady state but under the influence of noise. For synthetic
data from a dynamical model, we incorporate stochasticity
into the governing equations to generate noisy time series. For
empirical data from the real word, most likely they are already
noisy. In any case, the random oscillations associated with the
noisy time series make it possible to train a machine-learning
model, such as reservoir computing. We tested our parameter
adaptable reservoir-computing scheme on a variety of systems
from diverse fields, all sharing the common tipping scenario:
sudden transition from one steady state to another as a bi-
furcation parameter passes through a critical point. The main
application is predicting the potential collapse of the AMOC.
Using simulated and empirical fingerprint data, our results
suggest that the AMOC could halt in a time window centered
about the year 2055, with the earliest possible occurrence in
year 2040. These are consistent with the recent results based
on a statistical optimization approach [50].

Our machine-learning method is predicated on the avail-
ability of a known time-varying parameter that drives the
system towards tipping [41]. A simple assumption, in the
absence of detailed information, is that the control parameter
changes gradually and approaches its unknown critical value
linearly over time [50,56]. However, this linear assumption
does not fully capture the complexities of real-world scenar-
ios. The exact nature of the time-varying parameter and its
real-time changes remain ambiguous. It has been found that
the AMOC is sensitive to variations in the ocean’s freshwater
forcing [50,56,65] that can manifest through surface fresh-
water fluxes such as precipitation or through the input of
freshwater from river runoff and ice melt, including significant
contributions from the Greenland Ice Sheet. More sophisti-
cated models suggested that the freshwater flux exhibits a
quasiexponential behavior [66,67]. We have studied the case
where the time-varying parameter A(¢) changes exponentially
over time. This assumption aligns more closely with observed
behaviors and enhances the accuracy of our machine-learning
prediction, enabling better anticipation of a potential tipping
of the AMOC.

Another technical issue is whether the predicted collapse is
merely an artifact caused by the reservoir computer operating
in an untrained parameter region. To address this concern, we
conducted simulations to test the extrapolation results on the
other side of the untrained parameter region using synthetic
AMOC data. For example, we tested A values smaller than
those in the trained parameter interval A € (—2.5, —1.5) in
the 1D AMOC model. In the simulations, we conducted 500
testing trials. For all these trials, no collapse was observed

in this parameter region. The reservoir computer consistently
and persistently predicted that the system remained in a
healthy, stable steady state with no indication of an impend-
ing collapse. This consistent behavior across numerous trials
strongly suggests that the predicted collapse is not an arti-
fact of the reservoir computer functioning outside its trained
parameter region but rather robust prediction of the system’s
dynamics.

The code and data produced in this study, including the
training time series, the weights associated with reservoir
computing, and CESM data, are readily available [68,69].
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APPENDIX A: NOTION OF “TIPPING POINT”
IN THE LITERATURE

In recent years, tipping points have garnered sig-
nificant attention across diverse scientific disciplines
[3,4,6,10,15,16,70-72]. There is a public interest in the
phenomenon of tipping as well, e.g., Malcolm Gladwell’s
popular book entitled “The Tipping Point” [73]. In climate
science, a tipping point manifests itself as an abrupt transition
from one regime to another within some time frame [74]. In
ecology, the term denotes a critical threshold, often regarded
as a point of no return, where minor changes in the environ-
mental conditions can drive the system into a fundamentally
altered state [13]. In dynamical systems, a common situation
for a tipping point is multistability. Tipping can also occur in
monostable fast-slow dynamical systems [75].

Despite the broad spectrum of domains in which tipping
can arise, Kuehn’s work [76] identified several common at-
tributes shared by most tipping phenomena. These include
(1) a sudden qualitative shift in the system’s behavior, (2)
faster changes compared to regular dynamics, (3) the crossing
of a specific threshold near a transition, (4) the emergence
of a new state significantly distant from the preceding state,
(5) the presence of noise in a deterministic system, (6) a
slow recovery from perturbations, (7) escalating variance as
the transition approaches, (8) more asymmetric noisy fluc-
tuations, and (9) an increase in autocorrelation prior to a
transition. Another attribute of tipping is some hysteresis be-
havior associated with multistability [72]. In such an instance,
the trajectory leading to the tipping point differs significantly
during forward and backward shifts, influencing the system’s
response and recovery. The hysteresis near a tipping point,
particularly in ecosystems, poses a significant challenge, as
it complicates efforts to restore the system to its previous state
following the tipping transition.

While diverse types of tipping points have been reported
in the literature [2], a comprehensive classification of tip-
ping points in dynamical systems was proposed in 2011 [9],
based on the tipping mechanism. The most extensively studied
type is bifurcation-induced tipping (B-tipping) [77], where a
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small alteration in the system’s parameters leads to an abrupt
and qualitative change in the system’s state. Another type
is noise-induced tipping (N-tipping) associated with transi-
tions between states due to noisy fluctuations [22]. A more
recently discovered type is rate-induced tipping (R-tipping),
where a time-varying input or parameter of the system causes
the system to “tip” away from its normal states [9]. Overall,
B-tipping is triggered by a critical level of external inputs or a
critical value of a system parameter, N-tipping occurs due to
the presence of noisy fluctuations, and R-tipping arises when
the moving stable state cannot adapt to an external input or a
time-varying parameter of the system [78].

APPENDIX B: ANTICIPATING TIPPING VERSUS
PREDICTING CRITICAL TRANSITIONS

Our work differs from the recent work on machine-learning
prediction of critical transitions in nonlinear dynamical sys-
tems [41], where the former is predicting tipping from one
stable steady state to another and the latter is predicting a
transition from an oscillatory dynamical state to a collapsed
state. More specifically, oscillatory behaviors in the data in
the precritical regime have the benefit of system trajectory’s
visiting a substantial portion of the phase space, thereby facil-
itating training by enabling the neural network to effectively
learn the phase-space behavior or the dynamical climate of the
target system. However, for tipping in a deterministic system,
in the pretipping regime the system is in a stable steady state
without oscillations in its dynamical variables. In this case,
stochasticity or noise leading to randomly oscillating dynam-
ical variables is essential to neural-network training. In our
study, we exploit dynamic noise in the data for training, where
validation and hyperparameter optimization are performed
based on data in the precritical regime. During the test or
prediction phase, the reservoir computer operates as a closed-
loop, deterministic dynamical system capable of predicting
how the dynamical climate of the system changes with the
bifurcation parameter. Since no data from the target system in
the post-tipping regime were used for training (in a realistic
situation, such data are not available), it is not possible for the
reservoir computer to correctly predict the system’s behavior
after the tipping. However, the neural machine is capable of
generating characteristic changes in the output variables at the
tipping transition, making its anticipation possible.

A marked difference between our approach and the method
in Ref. [41] stems from variations in the target systems under
consideration. The assumption in Ref. [41] is that stochastic
effects in the target system are relatively small compared to
the deterministic component. It was demonstrated that even
with relatively small observational noise, the results remained
largely unaffected. In contrast, our study assigns crucial roles
to stochastic effects. Omitting stochastic noises renders the
training data with no variations in time and devoid of dis-
tinctive features. During the prediction phase, our closed-loop
reservoir network operates as a deterministic system. Conse-
quently, evaluating metrics such as root mean square errors
during validation or hyperparameter optimization provides
limited insights into the reservoir computer’s performance.
Validation can only discern stability in the prediction with no
abrupt collapse in a specific hyperparameter region. While this

stable region is generally broader than the optimized region
in Ref. [41], it does not hinder the ability to successfully
anticipate tipping.

APPENDIX C: A DETAILED ACCOUNT OF THE
1D AMOC FINGERPRINT MODEL

The AMOC is a crucial component of the global ocean
circulation system, playing a vital role in regulating global cli-
mate patterns. However, due to the challenges associated with
continuously monitoring the AMOC and the limited availabil-
ity of long-term observational data, researchers have turned
to fingerprint analysis techniques to gain insights into the
dynamics of the AMOC [51]. One such fingerprint analysis
technique involves using the SST data as a proxy for assess-
ing the AMOC strength [52-55], where SST is an important
fingerprint of the AMOC due to its sensitivity to changes in
the ocean circulation patterns and its ability to capture the
variations in heat transport within the North Atlantic [79-81].
In general, the fingerprints offer the possibility of detecting
changes in the AMOC earlier than direct observations and
extend time series data into the past, potentially enabling
anticipation and understanding of the shifts in this critical
ocean circulation system.

The 1D AMOC stochastic fingerprint model was intro-
duced recently to describe the AMOC dynamics with a
time-varying control parameter [50]. The basic assumption is
that the AMOC is in equilibrium before undergoing a transi-
tion, where the bifurcation parameter, denoted as X, undergoes
slow evolution towards an unknown critical value. In spite
of its simplicity, the 1D model produces time series in close
alignment with observed AMOC fingerprint data. The primary
drivers such as freshwater flux or the logarithm of atmospheric
CO, concentration are not reflected in the model, but the
fingerprint data generated are robust. In the vicinity of tipping,
the model is described by a dynamical variable X; governed by
the following stochastic differential equation:

X, = —(A(X, —m)* + 1) + 0dB,, (CDH
M <l
= B (C2)
ao(1-22),

where A is a timescale parameter, m = u — +/|A|/A with p
being the stable fixed point, B, denotes a Brownian motion,
and o is the noise amplitude. The underlying deterministic
system exhibits a tipping point triggered by a saddle-node
bifurcation at A = A, = 0. Initially, the system is in a sta-
tistically stable state with a constant A = A(. Starting from
time fy, A undergoes a linear change towards .. The actual
tipping time 7, exhibits fluctuations due to the stochastic forc-
ing and varies across different realizations. Figure 3(b) shows
ten different realizations of the tipping event for A = 0.95,
m=—13, 1 =-27,06 =03,1=1924and 1, = 0.

APPENDIX D: THREE-BOX AMOC MODEL

There are a number of models of the AMOC in the liter-
ature, ranging in complexity from simple box models to the
intricate atmosphere-ocean general circulation models. These
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TABLE II. Salinity and flux initial conditions for the three-box
AMOC model with doubled atmospheric CO, (2 x CO,).

Salinity Flux (m®s™')

Syo = 0.034912
Sro = 0.035435
Sso = 0.034427
Sipo = 0.034668
Sgo = 0.034538

Fuo = 0.486 x 10°
Fro = —0.997 x 10°
Fy = 1.265 x 106
Fipo = —0.754 x 10°

Fyi = 0.1311 x 10°
Fri = 0.6961 x 10°

models differ in their structure and parameters, such as the
five-box model [82] or the reduced three-box model [83]. In
the original five-box model, the boxes correspond to differ-
ent ocean regions: North Atlantic (N), Tropical Atlantic (T),
Indo-Pacific (IP), Southern Ocean (S), and bottom waters (B).
The AMOC flow (g) is directly proportional to the density
gradient of the temperatures and salinity in the N and S boxes.
In the reduced three-box model, variations in the salinity of
the Southern Ocean (Sg) and bottom waters (Sg) are treated
as constants over time due to their relatively small and slow
rate of change compared to the salinity variations in the North
Atlantic (Sy), Tropical Atlantic (S7), and the Indo-Pacific
(Stp). Taking the constant salt (C) and Spp as a dependent
variable, the governing equations of the AMOC dynamics are

g = MO = To) + Sy = 5,)

D1
14+ Aau b
where
dSy
VNW = q(St — Sy) + Kn (St — Sy) — (Fnvo + Fy1H )So,
(D2)
dsr
VT7 =q(ySs+ (1 —y)Swp — St) + Ks(Ss — S1)
+ Kn(Sy — S7) — (Fro + Fr1H)So, (D3)
for g > 0 and
dSy
VN7 = |q|(Sg — Sn) + Kn (St — Sy) — (Fyo + Fyi1H)So,
(D4)
dSr
VTW =1g|(Sy — St) + Ks(Ss — S7) + Kn(Sy — S1)
— (Fro + Fr1H)So, (D5)
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FIG. 12. Phase-space structure and bifurcation diagram of the
three-box AMOC model (D1). (a) An example of the vector field
of the model with the parameter values specified in Tables II and
II). [(b) and (c)] Basin of attraction of the stable equilibria for two
distinct values of the freshwater forcing parameter: H = 0.2 and
H = 0.35, respectively. The basins associated with the high (low)
state is highlighted in yellow (gray). Changing the freshwater forcing
parameter results in a decrease (increase) in the basin associated with
the “on (off)-state.” (d) A bifurcation diagram under the atmospheric
conditions of doubled preindustrial CO,.

for g < 0. The parameter H corresponds to the freshwater

fluxes and Spp is determined by the following equation:
C = VySy + VSt + VsSs + VipSip + VSs. (D6)

The parameter values of the three-box model are listed in
Tables II and III.

TABLE III. Parameter values of the three-box AMOC model with doubled atmospheric CO, (2 x CO,).

Volume (m?) Parameters Flux parameters (m> s~!) Parameters

Vy = 0.3683 x 10" So = 0.035 Ky = 1.762 x 10° A =1.62x 10" m kg~! s~!
Vr = 0.5418 x 10" Ty = 3.870°C n = 33.264 x 10° y =0.36

Vs = 0.6097 x 10V Ty = 7.919°C Ks = 1.872 x 10° =22 % 108°C m3 ¢!

Vip = 1.4860 x 10"
Vi = 9.9250 x 107

a=0.12kg°C' m™?
B =790.0 kg m~3

K]p =99.977 x 106
H €10.2,0.5]
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FIG. 13. Reservoir-computing prediction of the time window of AMOC collapse in the time-dependent three-box AMOC model. The fresh-
water flux parameter H (¢) is time dependent, making the system nonautonomous. [(a)—(c)] Different realizations of the AMOC fingerprint.
The data are divided into three segments: transients, training, and testing, depicted in black, purple, and blue, respectively. The vertical red
dotted line indicates the critical time 7, of tipping under dynamical noise of amplitude o = 5 x 1073, The critical point is H, = 0.359. [(d) and
(e)] An illustrative example of the testing data as represented by the solid blue line, while the reservoir-computing prediction is indicated by
the dash-dotted line. (f) Histogram of the predicted critical point 7, from 1000 random realizations of the reservoir computer.

Figure 12(a) presents an example of an AMOC fingerprint:
tropical Atlantic salinity in relation to north Atlantic salinity.
The three-box model has two stable equilibria as indicated
by the black dots. The locations of these equilibria and their
basins of attraction depend on the model’s parameter val-
ues. For example, Figs. 12(b) and 12(c) show the basin of
attraction for two different values of the parameter H. The
basins associated with the high and low states are shown in
yellow and gray, respectively. As the freshwater forcing pa-
rameter H is increased from 0.2 to 0.35, the basin of the high
state diminishes till it undergoes extinction at H, = 0.388.
Figure 12(d) shows a bifurcation diagram of the three-box
model with respect to the parameter H € [0.2, 0.5], where
the two stable equilibria are represented by the two solid
green curves. The upper (lower) equilibrium corresponds to
the “on state” (“off state).” At a critical value (H,., = 0.388),
the system undergoes a saddle-node bifurcation where the
high stable equilibrium and the unstable equilibrium collide
and annihilate together, leaving the low stable equilibrium as
the only attractor of the system.

We now use reservoir computing to predict the tipping
time. In general, augmenting the freshwater input from melt-
ing glaciers can impact the AMOC system and bring it into
closer to a tipping point, as illustrated in Figs. 13(a)-13(c)
by three different time-series realizations for different values
of H. The training data consist of time series for Sy and

St for H € [0.20, 0.38], representing the system’s behavior
associated with the “on-state” equilibrium. To introduce ran-
dom fluctuations about the fixed points in the training data,
we incorporate certain levels of dynamical noise into the
deterministic system. During the testing phase, the control
parameter continues to increase into the untrained regime,
enabling a potential tipping to be anticipated. Some represen-
tative prediction results are shown in Figs. 13(d) and 13(e).
From an ensemble of 1000 random reservoir realizations, we
obtain a histogram the anticipated tipping point, as shown
in Fig. 13(f), where tipping occurs for all the trials and the
anticipated tipping time falls within the interval 7, € [3.3 x
10*, 3.6 x 10*] about the ground truth from the model (T, =
3.48 x 10%).

The results in Fig. 13 imply that the system might undergo
a tipping in roughly the next 350 centuries, which are incon-
sistent with those from the recent study [50] that predicts the
potential collapse of the AMOC around the mid-century un-
der the current scenario of emissions. Discrepancies between
different models and studies are not uncommon in climate
science, where variations in the complexity, assumptions, and
input parameters among the models can lead to divergent
predictions. Additionally, uncertainties in climate projections
may stem from different sources, including variations in the
modeling techniques, emission scenarios, and natural climate
variability.
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