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Emergence of a resonance in machine learning
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The benefits of noise to applications of nonlinear dynamical systems through mechanisms such as stochastic
and coherence resonances have been well documented. Recent years have witnessed a growth of research in
exploiting machine learning to predict nonlinear dynamical systems. It has been known that noise can act
as a regularizer to improve the training performance of machine learning. Utilizing reservoir computing as a
paradigm, we find that injecting noise to the training data can induce a resonance phenomenon with significant
benefits to both short-term prediction of the state variables and long-term prediction of the attractor. The optimal
noise level leading to the best performance in terms of the prediction accuracy, stability, and horizon can
be identified by treating the noise amplitude as one of the hyperparameters for optimization. The resonance
phenomenon is demonstrated using two prototypical high-dimensional chaotic systems.
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I. INTRODUCTION

A challenging problem in nonlinear dynamics is model-
free and data-driven prediction of chaotic systems [1–23]. In
general, there are two kinds of forecasting problems: short
term and long term. In short-term forecasting, the goal is to
predict the detailed dynamical evolution of the state variables
from specific initial conditions, typically for a few cycles of
oscillation (or Lyapunov times). In long-term prediction, the
aim is to generate the attractor of the system with the correct
statistical behaviors. According to conventional wisdom, for
solving the prediction problems, noise would be detrimental.
For example, in short-term prediction, because of the sen-
sitive dependence on initial conditions, noise will make the
predicted state evolution diverge exponentially from the true
one. In long-term prediction, noise can induce the trajectory
to cross the basin boundary, leading to a wrong attractor.

Recent years have witnessed the development of machine-
learning techniques for predicting chaotic systems [24–41],
where an extensively studied scheme is reservoir com-
puting [42–45]. In machine learning, it has been known
that adding noise to the training data can improve the
generalizability through the mathematical mechanism of reg-
ularization [46]. Quite recently, in a study of reservoir
computing used to learn the relationship between different
state variables of a chaotic system, it was found that the best
performance is achieved when noise amplitudes in the training
and testing phases are matched [47]. What is the physical
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or dynamical mechanism underlying the benefit of noise and
how do we find the optimal level of noise?

In this paper, we uncover a resonance phenomenon in
which a certain amount of noise can significantly enhance
the short-term and long-term prediction accuracy and robust-
ness for chaotic systems, where the optimal noise level can
be found through a generalized scheme of hyperparameter
optimization. In particular, we consider reservoir computing
and inject noise into the input signal. The machine-learning
architecture contains a number of hyperparameters and the
prediction performance depends on their values. Our simu-
lations reveal that if the hyperparameters are not optimized,
noise in the training data can improve to certain extent the
prediction performance. However, in order to maximize the
predictive power of a reservoir computer, it is necessary to
find the optimal values of the hyperparameters, a task that can
be accomplished through, e.g., Bayesian optimization [48,49].
The key to identifying the resonance is to treat the noise
amplitude as one of the hyperparameters, i.e., to regard it
as an intrinsic parameter of the reservoir computer. Bayesian
optimization can then yield the optimal noise level. We
demonstrate using two prototypical high-dimensional chaotic
systems in which noise with the determined amplitude can
generate more accurate, robust and stable predictions in both
short and long terms. We develop a physical theory by de-
riving an approximate Langevin equation to understand the
emergence of the resonance.

II. RESULTS

The basic principle of reservoir computing and the opti-
mization method are described in Appendix A. There are six
hyperparameters to be optimized: the spectral radius ρ of the
reservoir network, the scaling factor γ of the input weights,
the leakage parameter α, the regularization coefficient β, the
link connection probability p of the random network in the
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hidden layer, and the noise amplitude σ . To determine the
optimal hyperparameter values, we use the SURROGATEOPT

function in MATLAB [50], a Bayesian optimization procedure,
and employ a surrogate approximation function to estimate
the objective function and to find the global minimum through
sampling and updating. Specifically, the SURROGATEOPT algo-
rithm [51] first samples several random points and evaluates
the objective function at these trial points. The algorithm
then creates a surrogate model of the objective function by
interpolating a radial basis function through all the random
trial points. From the surrogate function, the algorithm iden-
tifies the potential minima and samples the points about these
minima to update the function.

We demonstrate the benefits of noise to both short-term and
long-term prediction using two prototypical chaotic systems:
the Mackey-Glass (MG) system described by a nonlinear
delay differential equation and the spatiotemporal chaotic
Kuramoto-Sivashinsky (KS) system. We use the Bayesian
algorithm to obtain the optimal values of the six hyperpa-
rameters (including the noise amplitude σ ). We then choose
a number of σ values away from the optimal value and test
the prediction performance. For each fixed σ value, we opti-
mize the other five hyperparameters. For a different value of
σ , the set of the other five hyperparameters is then different.
As the noise amplitude deviates from the optimal value on
either side, there is a gradual deterioration of the prediction
performance, signifying the emergence of a resonance.

A. Emergence of a resonance from short-term prediction

Our first example is the MG system [52] described by
ṡ(t ) = as(t − τ )/(1 + [s(t − τ )]c) − bs(t ), where τ is the
time delay, a, b, and c are parameters. The state of the sys-
tem at time t is determined by the entire prior state history
within the time delay, making the phase space of the system
infinitely dimensional. To be concrete, we use two values of
the time delay: τ = 17 and τ = 30, and fix the other three
parameters as a = 0.2, b = 0.1, and c = 10. For τ = 17, the
system exhibits a chaotic attractor with one positive Lya-
punov exponent: λ+ ≈ 0.006. For τ = 30, the system has a
chaotic attractor with two positive Lyapunov exponents [53]:
λ+ ≈ 0.011 and 0.003. To generate the one-dimensional MG
time series data, we integrate the delay differential equa-
tion with the time step h = 0.01 and generate the training
and testing data by sampling the time series every 100 steps:
	t = 100h = 1.0, where 	t is evolutionary time step of the
dynamical network in the hidden layer of the reservoir com-
puter. To remove any transient behavior, we disregard the first
10 000	t in the training data set. The length of training data
is T = 150 000	t . The step after the training data marks the
start of the testing data, whose length depends on whether
the task is to make short-term or long-term prediction. The
time series data are preprocessed by using z-score normal-
ization: z(t ) = [s(t ) − s̄]/σs, where s(t ) is the original time
series, s̄ and σs are the mean and standard deviation of s(t ),
respectively. For τ = 17 and τ = 30 in the MG system, the
testing lengths for Bayesian optimization are Topt = 900	t
and 300	t , respectively, which are also the testing lengths
for short-term prediction. The so-obtained optimal hyperpa-
rameter values are listed in Table I. Figure 1(a) shows, for

TABLE I. Optimal hyperparameter values for MG and KS.

System ρ γ α β p σ

MG (τ = 17) 1.62 0.55 0.64 10−6.0 0.99 10−3.42

MG (τ = 30) 1.27 0.23 0.57 10−6.4 0.09 10−1.97

KS 0.01 0.35 0.62 10−9.0 0.21 10−2.35

τ = 30, representative results of short-term prediction of the
state evolution, where Gaussian noise with the optimal am-
plitude is injected into the training time series. Results of
long-term prediction in terms of the attractors in the plane
{X ≡ s(t ),Y ≡ s(t − τ )} are shown in Figs. 1(b) and 1(c).
Visually and statistically, the predicted attractor cannot be
distinguished from the true attractor. Prediction results for
τ = 17 are presented in Fig. 2.

Our second example is the one-dimensional KS sys-
tem [54,55], a paradigm not only in physics and chemistry
but also in applications of reservoir computing for demon-
strating the predictive power for high-dimensional dynamical
systems [28]. The system equation is

∂u

∂t
+ μ

∂4u

∂x4
+ φ

(
∂2u

∂x2
+ u

∂u

∂x

)
= 0, (1)

where u(x, t ) is a scalar field defined in the spatial domain
0 � x � L, μ and φ are parameters. We set μ = 1 and φ =
1, and use the periodic boundary condition. As the domain
size L increases, the system becomes progressively more
high-dimensionally chaotic with the number of Lyapunov

FIG. 1. Short-term and long-term prediction of the MG system
for τ = 30. The optimal noise amplitude is 10−1.97. (a) Machine-
predicted system evolution (red trace) in comparison with the ground
truth (blue). The predicted state evolution agrees with the true evo-
lution for a time period that contains about 15 local maxima (T =
500	t), a result that is significantly better than those without optimal
noise. (b), (c) Representation of the true and predicted attractor in
the {X ≡ s(t ),Y ≡ s(t − τ )} plane. The prediction time length is
T = 10, 000	t .
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FIG. 2. Short-term and long-term prediction of MG system for
τ = 17. The optimal noise amplitude is determined to be 10−3.42. Top
row: Machine-predicted system evolution (red trace) in comparison
with the ground truth (blue). The predicted state evolution agrees
with the true evolution for more than 20 cycles of oscillation, a
result that is significantly better than those without optimal noise.
Bottom row: Representation of the true (blue) and the predicted (red)
attractor in the {X ≡ s(t ),Y ≡ s(t − τ )} plane. The prediction time
length is T = 20, 000	t .

exponents increasing linearly with the system size [56]. As
a representative case of high-dimensional chaos, we choose
L = 60, where the system has seven positive Lyapunov ex-
ponents: λ+ ≈ 0.089, 0.067, 0.055, 0.041, 0.030, 0.005, and
0.003. The length of the training data is about 1000 Lyapunov
times (after disregarding a transient of about 300 Lyapunov
times), where a Lyapunov time is defined as the inverse of the
largest positive exponent. The testing data for short-term and
long-term prediction are taken immediately after the training
data of six and 100 Lyapunov times, respectively.

Figure 3 shows the results of short-term and long-term
predictions of the KS system. It can be seen that the reservoir
computing machine with the aid of optimal noise not only
can accurately predict the short-term spatiotemporal evolution
but also is able to replicate the long-term attractor with the
correct statistical behavior. To demonstrate the emergence of
a resonance for both short-term and long-term predictions,
we ascertain that the optimal noise amplitude values from
Bayesian optimization as listed in Table I are indeed optimal.
To this end, we vary the noise amplitude (uniformly on a loga-
rithmic scale) in the range [10−8, 10−0.5]. For each fixed noise
amplitude, we optimize the other five hyperparameters (ρ, γ ,
α, β, and k). For different values of the noise amplitude, the
so-obtained values of the other five hyperparameters are listed
in three tables in Appendix B. To characterize the performance
of short-term prediction, besides the conventional RMSE, we
introduce two additional measures: Prediction horizon and
stability, where the former (denoted as ts) is the maximal
time interval during which the RMSE is below a threshold

FIG. 3. Short-term and long-term prediction of the KS system.
(a), (b) True short-term (six Lyapunov times) and long-term (100
Lyapunov times) spatiotemporal evolution of the nonlinear field
u(x, t ), respectively, (c), (d) the predicted field û(x, t ) in short and
long terms, respectively. (e) Difference between the predicted and
true fields defined as D(x, t ) ≡

√
[u(x, t ) − û(x, t )]2. (f) Overlapped

image of the true and predicted attractors in terms of the fourth
and fifth dimension of the KS system. The values of the optimal
hyperparameters (including the optimal noise amplitude) are listed
in Table I.

and the latter is the probability that a reservoir computer
generates stable dynamical evolution of the target chaotic
system in a fixed time window, which is defined as Rs(rc) =
(1/n)

∑n
i=1[RMSE < rc], where rc is the RMSE threshold, n

is the number of iterations, and [·] = 1 if the statement inside
is true and zero otherwise.

Figure 4 shows the RMSE, the prediction stability Rs(rc),
and the prediction horizon versus the noise amplitude σ for
the MG system for τ = 30 (left column, rc = 0.1), as well
as the KS system (right column, rc = 8.0). In both cases, an
optimal noise level emerges in the sense that a prediction
measure versus the noise amplitude exhibits either a bell-
shape or an anti-bell-shape type of variation about an optimal
point. Figure 4 thus provides strong evidence for a resonance
associated with short-term performance of machine-learning
prediction of chaotic systems.

Figure 5 illustrates the three quantitative measures (RMSE,
prediction stability and horizon) characterizing the short-term
prediction versus the noise amplitude for the MG system for
τ = 17. The emergence of an optimal noise level can be
seen. The results in Figs. 2–5 provide strong evidence for
the emergence of an optimal noise level and a resonance in
reservoir-computing-based machine learning.
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FIG. 4. A resonance associated with short-term prediction of
chaotic systems. Shown are three measures of short-term predic-
tion versus the noise amplitude for two examples: left column,
MG system for τ = 30 (rc = 0.1, length of prediction time
window = 300	t); right column, KS system (rc = 8.0, length of
prediction time window = five Lyapunov times); top row, RMSE;
middle row, prediction stability Rs(rc ); bottom row, prediction
horizon ts. The error bars are obtained from an ensemble of 80
performing reservoir computers. For each chaotic system, a specific
and unique noise level emerges at which each prediction measure is
optimized, which is characteristic of a resonance.

B. Emergence of a resonance from long-term prediction

We study the beneficial role of noise in long-term predic-
tion of chaotic attractors. Due to the sensitive dependence on
initial conditions in chaotic systems, an accurate prediction
of the state evolution is possible only within a few Lyapunov
times. However, as we have demonstrated in the main text, it
is still possible to predict the long-term statistical behavior,
e.g., the attractor of the system. If this is the case, the trained
reservoir computer has captured the dynamical climate of the
target system. It can also occur that a reservoir computer,
in spite of training, fails to capture the climate of the target
system. In this case, the attractor predicted by the machine
deviates from the true one. Remarkably, we find that noise
can enhance the reservoir computer’s ability to capture the
dynamical climate of the target system, providing a beneficial
role in long-term prediction.

To compare two attractors, it is necessary to introduce a
measure to quantify their mutual deviation. To gain insights,
we first generate six examples of long-term prediction of the
Mackey-Glass (MG) system: two for τ = 17, two for τ = 30,
and long-term prediction of the Kuramoto-Sivashinsky (KS)
system. For each example, we generate a case of successful

FIG. 5. A resonance associated with short-term prediction for the
MG system for τ = 17. Shown are the three measures of short-term
prediction versus the noise amplitude: (a) RMSE, (b) prediction
stability Rs(rc ), (c) prediction horizon ts. The error bars are obtained
from an ensemble of 80 performing reservoir computers. For this
system, a specific and unique noise level emerges at which each pre-
diction measure is optimized, which is characteristic of a resonance.
The relevant parameter values are rc = 0.1 and length of prediction
time window = 900.

prediction (with noise amplitude as one of the hyperparame-
ters optimized) and a case of unsuccessful prediction (without
noise), as shown by the predicted and true chaotic attractors
in Figs. 6(a) and 6(b), and in Figs. 7(a) and 7(b). We place
a uniform grid in a two-dimensional subspace with cell size
	 = 0.05, count the number of trajectory points in each cell

FIG. 6. Quantifying long-term prediction through the deviation
value DV. (a) A successful case of attractor prediction for the MG
system for τ = 17. (b) An unsuccessful case of attractor prediction
for the same system. The two-dimensional phase space is {X (t ) ≡
s(t ),Y (t ) ≡ s(t − τ )}. (c) DV versus the noise amplitude for the MG
system for τ = 17. There is a range of noise amplitude in which
the DV value is minimized, which contains the optimal noise level
determined from the corresponding short-term prediction results
in Fig. 2.
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FIG. 7. Quantifying long-term prediction through the deviation
value DV. (a), (b) Successful cases of attractor prediction in the
presence of optimal noise for the MG system for τ = 30 and KS
system, respectively. (c), (d) Unsuccessful cases of attractor predic-
tion without noise for the two systems. The two-dimensional phase
space for the MG system is {X (t ) ≡ s(t ),Y (t ) ≡ s(t − τ )}. For the
KS system, the space is {X (t ) ≡ u(4, t ),Y (t ) ≡ u(5, t )}. (e), (f) DV
versus the noise amplitude for the MG and KS systems, respectively.
There exists an optimal noise amplitude at which the DV value is
minimized, which agrees with the optimal noise level determined
from the corresponding short-term prediction results in Fig. 4.

for both the true and predicted attractors in a fixed time inter-
val, and define the deviation value (DV) as:

DV ≡
mx∑
i=1

my∑
j=1

√
( fi, j − f̂i, j )2 (2)

where mx and my are the total numbers of cells in the x and
y directions, respectively, fi, j and f̂i, j are the frequencies of
visit to the cell (i, j) by the true and predicted trajectories,
respectively. If the predicted trajectory leaves the square, we
count them as if they belonged to the cells at the boundary
where the true trajectory never visits.

The length of the time interval to demonstrate long-term
prediction of the MG system for τ = 17 and τ = 30 is
T = 20 000	t . For the KS system, the length is 200 Lya-
punov times. Different from RMSE, the DV value will not
be large even if there is a collapse. It is meaningful to
calculate the average DV. We do this using 100 indepen-
dent realizations of the reservoir computer for each example.
Figures 6(a) and 6(b) show that the DV value for the suc-
cessful case of prediction is much smaller than that for the
unsuccessful case, for the MG system for τ = 17. In fact,
for the unsuccessful cases without noise, the predictions
are so bad that, after a transient time, the predicted

trajectories largely deviate from the true attractor. Without
noise facilitating the training, such unsuccessful cases of at-
tractor prediction are not uncommon [26]. Figure 6(c) show
DV versus the noise amplitude for the MG system for τ = 17.
In this case, there is a range of the noise amplitude in which
the DV value is minimized. Note that this range contains
the optimal value of the noise amplitude from the short-term
prediction results in Fig. 2.

Figure 7 illustrates the emergence of a resonance from
long-term prediction for the MG system for τ = 30 (left
column) and the KS system (right column). In each case,
there is an optimal noise amplitude at which the DV value is
minimized [Figs. 7(e) and 7(f)], which agrees with the optimal
value of the noise amplitude from the short-term prediction re-
sults in Fig. 4, providing additional support for the emergence
of a resonance in machine learning in terms of long-term
prediction of chaotic attractors. Compared with short-term
prediction, the resonance associated with long-term prediction
is wider about the same optimal noise level. These results pro-
vide consistent support for the emergence of a resonance from
the perspective of long-term prediction of chaotic attractors.

III. HEURISTIC REASON FOR THE OCCURRENCE
OF A RESONANCE

Intuitively, the dynamical mechanism of the resonance is
the result of a time-scale match. In particular, the input chaotic
signal to the machine has an intrinsic time scale. When noise
is present in the input, the recurrent nature of the neural
network generates stochastic evolution of the dynamical state,
inducing another time scale: the mean first-passage time.
When these two time scales match, a resonance emerges. For
reservoir computing with nonlinear activation, at the present
it is not feasible to develop a quantitative mathematical un-
derstanding of the resonance. However, the seminal work
by Bollt [40] suggested that an approximate model of linear
reservoir computing captures the essential dynamics of the
neural learning mechanism. We thus consider this approxi-
mate model subject to input noise and provide a heuristic
argument that the underlying stochastic dynamics can be de-
scribed by a Langevin-like equation: ṙ ≈ f (r, u) + ξ , where
r and u represent the reservoir hidden state and the input
vectors, respectively, the deterministic force f (·) is a function
of r and u and ξ is a vector of random fluctuations repre-
senting the stochastic perturbations. The time-scale match can
be demonstrated by applying the analysis of the Langevin
equation in treating noise-enhanced temporal regularity (or
coherence resonance) in chaotic systems [57,58].

A resonance in nonlinear dynamical systems is broadly
referred to as the phenomenon in which noise can improve
the performance of the system. For example, coherence reso-
nance is characterized by the optimization of a measure of the
temporal regularity of the state variables by noise, which was
originally studied in neural dynamical systems [59] and ob-
served in various other systems, such as climate systems [60],
lasers [61], and biological systems [62]. Unlike a stochas-
tic resonance [63–68], which describes the effect of noise
on overcoming the system’s energy barriers and improving
the signal-to-noise ratio, coherence resonance concerns the
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temporal aspect of the signal and it does not require an ex-
ternal periodic driving.

In general, the underlying mechanism of any resonance
phenomenon is a match between two time scales, which oc-
curs at some optimal noise level. For example, in a coupled
oscillator system, one time scale can be the characteristic
average frequency of the individual oscillators and the other
is induced by noise, e.g., the mean first-passage time. We
have demonstrated that a certain level of noise in the data can
improve, quite remarkably, the ability of a reservoir computer
to predict both the short-term dynamical evolution and the
long-term invariant sets of chaotic systems. Quantitatively, we
find that a number of measures characterizing the short-term
and long-term prediction performance exhibit the defining
feature of a resonance: there exists an optimal noise am-
plitude for which the measures are maximized. Because of
this remarkable consistency and agreement with the notion
of a general resonance in nonlinear systems, we propose that
the phenomenon uncovered in our work indeed represents a
resonance.

A challenging issue is to identify the underlying dynami-
cal mechanism responsible for the emergence of a resonance
in machine learning. It is difficult to apply a mechanical

model to the machine-learning system, as the dynamics of
the high-dimensional neural network in the hidden layer are
extraordinarily complicated. Our approach is to develop an
approximate physical picture. Following Bollt’s seminal work
on explainable reservoir computing [40], we apply stochastic
input and derive a Langevin type of equation to obtain a
physical understanding of the numerically observed resonance
phenomenon.

The state evolution of the recurrent neural network in the
hidden layer is described in Appendix A 1. For simplicity, we
set α = 1 and rewrite the equation of dynamical evolution as

r(t + 	t ) = tanh{A · r(t ) + Win · [u(t ) + ξ (t )]}, (3)

where 	t is the time step, ξ (t ) represents the noise added
to the input signal, and the activation is described by the
hyperbolic tangent function tanh(x). For x � 1, we have
tanh(x) ∼ x and obtain the special class of linear reservoir
computers [40]:

r(t + 	t ) ≈ A · r(t ) + Win · u(t ) + Win · ξ (t ). (4)

To simplify notation, we set 	t = 1. Successive iterations of
Eq. (4) are

r(2) = A · r(1) + Win · [u(1) + ξ (1)] = Win · [u(1) + ξ (1)],

r(3) = A · r(2) + Win · [u(2) + ξ (2)] = A · Win[u(1) + ξ (1)] + Win · [u(2) + ξ (2)]

...

r(t + 1) = A · r(t ) + Win · [u(t ) + ξ (t )]

= A · {A · r(t − 1) + Win · [u(t − 1) + ξ (t − 1)]} + Win · [u(t ) + ξ (t )]

...

= Ak−1 · Win · [u(1) + ξ (1)] + Ak−2 · Win · [u(2) + ξ (2)] + . . . (5)

+ A · Win · [u(t − 1) + ξ (t − 1)] + Win · [u(t ) + ξ (t )]

=
t∑

i=1

Ai−1 · Win · [u(t − i + 1) + ξ (t − i + 1)],

where A0 = I. Since the output matrix Wout maps r(t ) into the output signal v(t ) that has the same dimension as that of the
input vector u(t ), we have

v(t + 1) = Wout · r(t + 1) =
t∑

i=1

Wout · Ai−1 · Win · [u(t − i + 1) + ξ (t − i + 1)], (6)

indicating that a linear reservoir computer yields a vector
autoregressive process (VAR) with a general form [40]:

y(t + 1) = c + A1 · x(t ) + A2 · x(t − 1) + . . .

+ At x(1) + ξ (t + 1), (7)

where x and y represent the input and output, respectively, c
is a constant term, and A1, A2, . . . , At are coefficient matrices,
and ξ denotes the stochastic process.

Note that the reservoir state evolution Eq. (4) and its recur-
sion Eq. (5) can be cast into the form

dr
dt

= [A − I] · r + Win · u + Win · ξ, (8)

which is similar in mathematical form to the Langevin equa-
tion:

dx

dt
= f (x) + g(x)ξ (t ) (9)

that describes a particle moving under the influence of two
forces: a deterministic force f (xl ) and a stochastic force
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g(xl )ξ (t ). Comparing Eqs. (8) and (9), we have that [A − I] ·
r + Win · u represents the deterministic force while Win · ξ

is the stochastic force that provides the random driving to
the reservoir intrinsic state. The Langevin equation of the
form Eq. (4) was shown previously through the correspond-
ing Fokker-Planck equation to yield a stochastic time scale
required for matching with the dynamical time scale of the
system in the context of coherence resonance [57,58]. The ap-
proximate equivalence of Eq. (4) to the particular form of the
Langevin equation provides a physical reason for a resonance
to arise in reservoir computing, as we have demonstrated
numerically.

IV. DISCUSSION

To summarize, we have uncovered the emergence of a
resonance in machine-learning prediction of chaotic systems.
Focusing on reservoir computing, we find that injecting noise
into the training data can be beneficial to both short- and
long-term predictions. In particular, for short-term prediction,
a number of characterizing quantities such as the prediction
accuracy, stability, and horizon can be maximized by an opti-
mal level of noise that can be found through hyperparameter
optimization. For long-term prediction, optimal noise can
significantly increase the chance for the machine generated
trajectory to stay in the vicinity of (or to shadow) the true
attractor of the target chaotic system. Intuitively, training with
noise can enhance the machine’s tolerance to chaotic fluctu-
ations, which can be beneficial for the machine to learn the
dynamical climate of the target chaotic system. This suggests
that the optimal noise level should be on the same order of
magnitude as the one-step prediction error in noiseless predic-
tion, which is indeed so as verified by our numerical examples.
Pertinent issues such as the requirement of prediction time
for the emergence of a resonance, robustness of resonance
against different scenarios of noise injection, and the bene-
ficial role of noise in reducing the reservoir network size and
computational complexity are addressed in Appendix C. Our
work extends the ubiquitous phenomena of stochastic [63–68]
and coherence [57,59] resonances in nonlinear dynamical
systems to the realm of machine learning, where deliberate
noise combined with hyperparameter optimization can be
a practically feasible approach to enhancing the predictive
power.

We note that, previously the role of noise in neural network
training was studied, e.g., adding noise to the training data
for convolutional neural networks can play the role of reg-
ularization to reduce overfitting in the learning models [69].
In reinforcement learning, injecting noise into the signals can
help the system reach the persistent excitation condition to
facilitate parameter estimation [70,71]. How noise negatively
affects the prediction of chaotic systems has recently been
considered [72], where long short-term memory machines
tend to be more resistant to noise than other machine-learning
methods. The beneficial role of noise in machine-learning
prediction has also been recognized [46,73–75]. We present a
systematic study of the interplay between noise and machine-
learning prediction of dynamical systems in this work, along
with the demonstration of the resonance phenomenon in
machine learning.

All relevant data are available from the authors upon re-
quest. All relevant computer codes are available from the
authors upon request.
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APPENDIX A: RESERVOIR COMPUTING WITH INPUT
NOISE FOR PREDICTING DYNAMICAL SYSTEMS

1. Principle of reservoir computing

A reservoir computer is essentially a recurrent neural net-
work (RNN), which consists of three components: an input
layer, a hidden layer, and an output layer. Compared with
the conventional RNNs, the key advantage of reservoir com-
puting lies in its computational efficiency: the input weights
and the hidden layer neural network are predefined and only
the weights of the output layer need to be determined from
training through a standard linear regression.

As illustrated in Fig. 8, the input matrix Win maps the input
signal u(t ) into a hidden layer. The hidden, recurrent layer
hosts a neural network characterized by the adjacency matrix
A, whose state vector is r(t ), where the ith entry represents
the dynamical state of the ith neuron in the network. The
dynamical evolution of r(t ) is determined by both the input
and the recurrent structure:

r(t + 	t ) = (1 − α)r(t ) + α · tanh [A · r(t ) + Win · u(t )],

(A1)

where α is the leakage parameter determining the tempo-
ral scale of the neural network, 	t is the time step of the
dynamical evolution, and the activation is described by the
hyperbolic tangent function tanh(x). The output matrix Wout

maps r(t ) into the output signal v(t ) that typically has the
same dimension as the input vector u(t ).

FIG. 8. Reservoir computing structure. A reservoir computer
consists of three components: an input layer, a hidden layer, and an
output layer. The vectors u(t ), r(t ), and v(t ) are the input signal, the
dynamical state of the network in the hidden layer, and the output sig-
nal, respectively. The matrices Win, A, and Wout represent the input
weights, the network structure, and the output weights, respectively.
The elements of Win and A are predefined and fixed. The matrix
Wout is determined by training through a linear regression.
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Let Din and Dr be the dimension of the input vector u(t )
and of the hidden-layer state vector r(t ), respectively. The
matrix Win thus has the dimension Dr × Din, where Dr �
Din so that Win maps a low-dimensional input vector to a
high-dimensional hidden state vector. Prior to training, the
weights (elements) of Win are chosen uniformly from the
interval [−γ , γ ]. The dimension of the adjacency matrix A
is Dr × Dr , which characterizes a symmetric random network
with link probability p. The nonzero elements of A are drawn
from a Gaussian normal distribution of zero mean and unit
variance. We rescale A so that its spectral radius is given by
the hyperparameter ρ. The output matrix Wout has the dimen-
sion Dout × Dr , which is determined by l-2 linear regression
(ridge regression) as

Wout = U · R′ᵀ(R′ · R′ᵀ + βI )−1, (A2)

where I is the identity matrix of dimension Dr , β is the l-2
regularization coefficient, U and R′ consist of u(t ) and r′(t )
at all time steps, respectively, in which a column represents
the corresponding vector at a specific time step. The vector
r′(t ) is identical to r(t ) except that all the entries in the even
rows are squared. Note that u(t ) is the training target for the
reservoir to produce a one-step prediction.

We inject Gaussian white noise of zero mean and stan-
dard deviation σ to each dimension of the training data and
investigate the prediction performance for different values
of the noise amplitude σ . We treat σ as one of the hyper-
parameters of the whole reservoir computer. For prediction
and validation, no noise is applied. In particular, during the
prediction phase, the output vector v(t ) becomes the input
vector u(t ) and the reservoir computer generates one-step pre-
dictions. A step-by-step iterative process leads to a prediction
signal, whose accuracy is determined by the real, noiseless
testing data. For validation, we measure the performance of
the trained reservoir computer using the root mean-square
error (RMSE):

RMSE(y, ŷ) =
√√√√ 1

Tstp

1

N

Tstp∑
t=1

N∑
n=1

[yn(t ) − ŷn(t )]2, (A3)

where y and ŷ are the real and predicted signals, respectively,
yn(t ) represent the nth component of y at time step t , and Tstp

is the prediction time. We use the RMSE to characterize the
short-term prediction performance, typically for about 4∼5
Lyapunov times.

2. Implementation of reservoir computing
and hyperparameter optimization

In the past few years, reservoir computing has been shown
to be effective for modeling the dynamics of low- and high-
dimensional chaotic systems [24–41]. As denoted in Ref. [35],
if a reservoir computer can acquire the full state dynamics
in the training phase, it outperforms the back propagation
through time approaches, such as long short-term mem-
ory (LSTM) systems with respect to both short-term and

long-term prediction even with much less training time. A
main advantage of reservoir computing is that the input
weights and the hidden-layer neural network are predefined
prior to training, and only the output parameters need to be
optimized at the end of training phase through, e.g., an l-2
linear regression (ridge regression).

We choose MATLAB so that we can readily build up
the reservoir-computing framework through adjusting the
network structure, parameters, and noise input setting. In
fact, a number of reservoir-computing packages now exist,
such as RESERVOIRPY and ECHOTORCH in PYTHON or RESER-
VOIRCOMPUTING in JULIA. Regardless of the programming
languages, the core algorithm of reservoir computing is the
same and the implementation of the algorithms are quite
similar.

It is essential to choose an appropriate optimization al-
gorithm to search for the optimal hyperparameters. In our
work, we used Bayesian optimization to determine the optimal
hyperparameter values. This is because some traditional op-
timization algorithms, such as the gradient-free optimization
algorithms that use grid or random search, may not be suitable
for solving such complex problems as predicting chaotic sys-
tems, while Bayesian optimization has the ability to handle
difficult problems with fewer iterations [54]. The Bayesian
optimization method can be implemented using PYTHON or
other languages. Different packages for Bayesian optimiza-
tion are now available, such as BAYESIAN-OPTIMIZATION and
BOTORCH in PYTHON.

APPENDIX B: BAYESIAN OPTIMAL
HYPERPARAMETER VALUES

Tables II, III, and IV list the Bayesian optimal hyperparam-
eter values for a set of systematically varying noise amplitudes
to demonstrate the emergence of a resonance for the three
examples in the main text.

TABLE II. Optimal hyperparameter values for MG system with
τ = 17.

noise amplitude σ ρ b α β p

10−8.0 1.38 0.88 0.45 10−3.5 0.58
10−7.5 1.27 0.64 0.31 10−5.2 0.53
10−7.0 1.31 0.62 0.30 10−4.2 0.99
10−6.5 1.18 0.49 0.32 10−5.6 0.48
10−6.0 1.17 0.56 0.30 10−4.5 0.77
10−5.5 1.32 0.20 0.43 10−5.1 0.55
10−5.0 1.30 0.25 0.51 10−4.7 0.54
10−4.5 1.23 0.57 0.40 10−4.2 0.70
10−4.0 1.31 0.54 0.84 10−5.3 0.25
10−3.5 1.38 0.71 0.34 10−5.8 0.33
10−3.0 1.68 0.71 0.55 10−7.4 0.85
10−2.5 1.48 0.63 0.36 10−6.7 0.71
10−2.0 1.92 1.73 0.26 10−5.6 0.90
10−1.5 1.60 1.15 0.49 10−6.3 0.95
10−1.0 1.38 0.76 0.48 10−4.4 0.72
10−0.5 0.88 0.19 0.96 10−4.6 0.84
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TABLE III. Optimal hyperparameter values for MG system with
τ = 30.

noise amplitude σ ρ b α β p

10−8.0 1.55 0.12 0.60 10−6.0 0.09
10−7.5 1.59 0.22 0.22 10−7.1 0.81
10−7.0 1.29 0.19 0.17 10−7.5 0.34
10−6.5 2.08 0.11 0.50 10−7.2 0.17
10−6.0 1.35 0.25 0.18 10−7.1 0.12
10−5.5 1.28 0.14 0.74 10−4.6 0.24
10−5.0 1.45 0.15 0.94 10−4.6 0.19
10−4.5 1.51 0.11 0.71 10−5.8 0.34
10−4.0 1.63 0.15 0.59 10−6.3 0.39
10−3.5 1.53 0.10 0.69 10−7.5 0.97
10−3.0 1.09 0.21 0.66 10−6.1 0.32
10−2.5 1.14 0.15 0.71 10−7.4 0.95
10−2.0 2.00 0.24 0.41 10−7.2 0.17
10−1.5 0.87 0.72 0.20 10−7.5 0.37
10−1.0 1.72 0.31 0.36 10−7.5 0.15
10−0.5 1.57 0.19 0.41 10−4.7 0.95
10+0.0 1.52 0.07 0.63 10−3.8 0.30
10+0.5 2.46 0.01 0.35 10−6.5 0.56

APPENDIX C: PERTINENT ISSUES

1. Requirement of prediction time for the emergence
of a resonance

The emergence of a resonance in predicting the dynamical
evolution of the chaotic system depends on the prediction
time Tstp in the definition of RMSE. For a short prediction
time, the RMSE is generally small, regardless of the training
noise amplitude. As Tstp increases, the benefits of noise begin
to stand out, leading to the emergence of a resonance. This
behavior is illustrated in Fig. 9 for the MG and KS systems,
where the color-coded RMSE values in the parameter plane
(Tstp, σ ) are shown. Here, for better visualization, the RMSE
values are normalized to the unit interval with respect to the
variation in the noise amplitude for each fixed value of Tstp.

TABLE IV. Optimal hyperparameter values for KS system.

noise amplitude σ ρ b α β p

10−8.0 0.01 0.43 0.83 10−9.0 0.14
10−7.5 0.01 0.27 0.82 10−7.5 0.36
10−7.0 0.01 0.31 0.76 10−7.4 0.49
10−6.5 0.01 0.33 0.90 10−8.4 0.13
10−6.0 0.01 0.31 0.87 10−6.4 0.37
10−5.5 0.01 0.43 0.78 10−8.0 0.59
10−5.0 0.01 0.29 0.82 10−5.7 0.71
10−4.5 0.01 0.27 0.91 10−7.2 0.35
10−4.0 0.01 0.26 0.81 10−6.5 0.48
10−3.5 0.01 0.25 0.81 10−6.8 0.13
10−3.0 0.01 0.29 0.73 10−6.9 0.86
10−2.5 0.01 0.08 0.67 10−9.0 0.09
10−2.0 0.01 0.15 0.65 10−8.3 0.32
10−1.5 0.01 0.09 0.95 10−8.4 0.51
10−1.0 0.01 0.18 0.37 10−9.0 0.34
10−0.5 0.16 0.00 0.58 10−5.4 0.26

FIG. 9. Emergence of a resonance. Shown are the color-coded
normalized RMSE values in the parameter plane (Tstp, σ ) for (a),
(b) MG system for τ = 17 and τ = 30, respectively, and (c) KS
system. To reduce the statistical fluctuations, the normalized RMSE
values are calculated from an ensemble of 80 independently trained
reservoir computers.

As shown in Fig. 9(a), for the MG system for τ = 17, a
resonance emerges for Tstp � 600	t , whereas for τ = 30, a
resonance emerges almost immediately as Tstp increases from
zero, as shown in Fig. 9(b). For the KS system, it takes about
two Lyapunov times for a resonance to emerge, as shown in
Fig. 9(c).

2. Robustness of resonance against different
scenarios of noise injection

The results in the main text and discussed so far here
are under the scenario where noise is injected into the entire
training set. Specifically, we generate a matrix of Gaussian
noise of zero mean and standard deviation σ , which has the
same dimension and time length as training data set, and add
this noise matrix directly to the normalized training data ma-
trix. When updating the reservoir state with the input training
data as a driving force, noise appears directly at the input.
Simultaneously, the same noise is present at the output layer
during the linear regression.

What if noise is added only to the input layer without
appearing in the regression step? Figure 10 shows the RMSE
versus the noise amplitude for the three examples in Fig. 9,
together with the results from the scenario where noise is
applied at both the input and output layers (for comparison).
A resonance arises under both noise-injection scenarios. In
fact, there is little difference between the results from the two
scenarios, indicating that the occurrence of the resonance is
robust with respect to the ways by which noise is supplied to
the reservoir computer.
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FIG. 10. Resonance under two different noise-inputting scenar-
ios. The two scenarios are: adding noise to both the input and output
layers (yellow circles) and injecting noise to the input layer only
(blue diamonds) for (a), (b) MG system for τ = 17 and τ = 30,
respectively, and (c) KS system. The error bars are obtained using an
ensemble of 80 independent realizations of the reservoir computer.
Each data point is the result of the ensemble average of 80 best results
out of 100 independent realizations of the reservoir computer.

3. Beneficial role of noise in reducing the reservoir network
size and computational complexity

In general, the predictive power of a reservoir computer can
be improved by increasing the size Dr of the random network
in the hidden layer to enable the neural machine to generate
more complex and richer dynamics. However, increasing the
network size leads to higher computational complexity. Can
noise be used to reduce the network size while maintaining
the prediction accuracy?

Figure 11 shows, for the three examples in Figs. 9 and 10,
the RMSE of short-term prediction versus the network size
for four different values of the noise amplitude. For each
example, the blue points are for a noise amplitude close
to the optimal value for the resonance. It can be seen that
optimal noise can lead to a tremendous reduction in the

FIG. 11. Demonstration of the beneficial role of noise in re-
ducing the network size (thus computational complexity) while
maintaining the prediction accuracy. Shown is the RMSE for short-
term prediction versus the size Dr of the hidden-layer network for
four different values of the noise amplitude for (a), (b) MG system for
τ = 17 and τ = 30, respectively, and (c) KS system. The blue circles
correspond to the case of optimal noise level at which a resonance
arises, for which the RMSE values are low even for small network
size. For different network sizes and noise amplitudes, the values
of the five hyperparameters are fixed, which is the reason for the
abnormal increase in RMSE at large network size in (c) as predicting
the dynamical evolution of the KS system depends sensitively on the
hyperparameters. Overall, with optimal noise, the reservoir computer
can achieve a high prediction accuracy that cannot be achieved even
with much larger networks without noise or when the noise level is
not optimal.

network size. For example, for the MG system for τ = 17 in
Fig. 11(a), when optimal noise is added to the training data,
the RMSE becomes small as the network size exceeds about
600, whereas this low value of RMSE can never be achieved
for near-zero noise (e.g., σ = 10−8) even if the network size
is increased to 3000. A similar behavior occurs for the other
two examples, as shown in Figs. 11(b) and 11(c).
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