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It is evident that increasing the intensive-care-unit (ICU) capacity and giving priority to admitting and treating
patients will reduce the number of COVID-19 deaths, but the quantitative assessment of these measures has
remained inadequate. We develop a comprehensive, non-Markovian state transition model, which is validated
through the accurate prediction of the daily death toll for two epicenters: Wuhan, China and Lombardy, Italy.
The model enables prediction of COVID-19 deaths in various scenarios. For example, if appropriate treatment
priorities had been used, the death toll in Wuhan and Lombardy would have been reduced by about 10% and
7%, respectively. The strategy depends on the epidemic scale and is more effective in countries with a younger
population structure. Analyses of data from China, South Korea, Italy, and Spain suggest that countries with less
per capita ICU medical resources should implement this strategy in the early stage of the pandemic to reduce
mortalities. We emphasize that the results of this paper should be interpreted purely from a scientific and a
quantitative-analysis point of view. No ethical implications are intended and meaningful.
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I. INTRODUCTION

The continuous and recently accelerated spreading of
COVID-19 in more than 145 different countries and regions
of the world has placed an unprecedented burden on the cor-
responding healthcare systems. As of December 1, 2020, there
have been more than 63.3 million confirmed cases with over
1.4 million deaths reported, and the daily number of deaths
[1] has exceeded 8000. To mobilize the available medical
resources to the maximum degree to reduce the COVID-19
fatalities has become the top priority in many hospitals and
healthcare facilities. In a hospital, there are two types of
care resources for inpatients: General Ward (GW) and Inten-
sive Care Unit (ICU) beds, with the latter currently serving
mostly COVID-19 patients. Increasing the ICU beds would
undoubtedly reduce the COVID-19 fatalities. When a hospital
is overwhelmed with COVID-19 patients so that the ICU beds
are in a serious shortage, a selective ICU admission policy

*These authors contributed equally to this work.
†tangminghan007@gmail.com
‡ying-cheng.lai@asu.edu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

must be invoked to allow specific groups of patients to re-
ceive the ICU care. In this regard, from a sheer mathematical
point of view, exercising priority will reduce the fatality rate.
Stretching the ICU resources to their limit and implement-
ing selective ICU admission policy are becoming inevitable
and even absolutely necessary in many parts of the world as
the COVID-19 cases have continued to skyrocket in recent
months.

It is intuitively evident that enhancing ICU capabilities
and selectively admitting patients into ICU can reduce the
COVID-19 mortalities, but we lack a modeling framework to
quantitatively assess and characterize their effects. The main
goal of this paper is to address this issue that is critically
important to maximizing the usage and effectiveness of the
limited medical resources to minimize COVID-19 deaths.

There have been intense modeling efforts on early warning,
prevention and control of the COVID-19 pandemic [2–11].
For example, Kraemer et al. [2] found that travel restriction
in the early stage of the COVID-19 outbreak can effectively
prevent the infection imported from known sources. Once
cases begin to spread in the community, the contribution
of newly imported cases tends to diminish, requiring a set
of control measures including travel restrictions, detection,
tracking, and isolation to mitigate the pandemic. Kissler et al.
[3] established a SARS-CoV-2 transmission model with sea-
sonal variations, immune duration, and cross immunization,
where the peak of SARS-CoV-2 infection is assumed to be
low in spring and summer and a larger epidemic outbreak
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can occur in autumn and winter. A finding was that, with
respect to imposing one time social distancing, intermittent
social alienation measures can prevent the overload of public
health resources. Hao et al. [4] found that the new coronavirus
has two characteristics: high infectivity and concealment. If
87% of the infected individuals are not detected, without
any prevention and control measures, after 14 consecutive
days of zero confirmed cases, the probability of a second
wave of epidemics will be 32%. If only 53% of the infected
are undetected, the probability of an epidemic rebound will
drop to 6%. Premature removal of prevention and control
measures will greatly increase the possibility of a second
outbreak of the epidemic. Long et al. [5–7] developed a
time-delay transmission model that can accurately simulate
and predict the epidemic development in countries or regions,
and the model enables evaluation of the impact of virus de-
tection and social distancing intensity on the epidemic, as
well as an accurate estimate of the time zero point of the
epidemic in various countries and regions. In particular, it
was found [7] that community-based transmission occurred
in Europe and in the United States in early January 2020.
The study of Flaxman et al. [8] revealed that the outbreak
interventions implemented in 11 European countries have
reduced about 1.3 million deaths and these measures are
enough to bring down the basic reproduction number R0

to less than one. Dehning et al. [9] studied the spread of
COVID-19 in Germany by combining epidemiological mod-
eling with Bayesian inference, and found that the change
point of the effective growth rate of new infection is closely
related to the time point when the intervention measures were
imposed.

There have also been recent studies on the interplay
between the medical resources and COVID-19 mortality. Par-
ticularly, in comparison with the common influenza virus, a
higher proportion of the patients infected with SARS-CoV-2
need to be hospitalized. The aggravated growth in the num-
ber of infected individuals in recent months has stretched
the capacities of the medical systems in many countries and
regions to their limit. A shortage of medical resources, such as
the respiratory support devices, will result in a large number
of severely ill patients not getting timely and effective treat-
ment, exposing them to a greater risk of mortality. Ferguson
et al. [12,13] evaluated the demand for medical resources
of the nonpharmaceutical interventions type, predicting that,
even when the most effective mitigation measures are imple-
mented, the numbers of hospital GW and ICU beds in the
UK still need to be expanded by more than eight times to
meet the needs of patient care. Miller et al. [14] used the
age-specific mortality and demographic data to predict the
cumulative COVID-19 cases and medical resource burden in
different regions of the United States, pointing out that med-
ical resources are relatively scarce in remote areas. When the
medical system is overloaded, the nursing standard for the pa-
tients will be compromised, which would affect the treatment
outcome. Without proper and rigorous care, the condition of
critically ill patients with COVID-19 will further deteriorate,
and the shortage of ICU facilities will aggravate the high mor-
tality rate of such population [15,16]. These studies [12–16]
made evident the potential significant impact of the medical
resource availability on the COVID-19 mortality.

In this paper, we develop a comprehensive state transition
model to predict the COVID-19 death and its evolution over
time for a regional healthcare system with limited medical
resources and selective ICU admission policy. The typical
systems are a city or a region, e.g., Wuhan city in China or the
Lombard region of Italy. Realistic time delays associated with
various state transitions are fully incorporated into the model,
rendering it non-Markovian to better describe the real world
situations. The model is based on and validated with empirical
data such as the number of confirmed cases, clinical data,
demographics, and the amount of medical resources, and it
enables such questions to be addressed as if the ICU resources
were deployed certain days earlier or if the ICU capacity was
doubled or tripled, how much reduction in the death toll would
be achieved? The findings of this paper can be best described
with concrete numbers. For example, for Wuhan city, if the
ICU resources had been deployed a week in advance or if the
number of ICU beds had been doubled, the death toll would
have been reduced by 5% or 13%, respectively. For Lombardy,
the corresponding numbers are similar: 3% or 14%. For both
Wuhan and Lombardy, tripling the ICU capacity would have
resulted in a 21% reduction in the mortalities. With respect
to selective ICU admission policy, prioritizing certain groups
of patients would have reduced the death toll in Wuhan and
Lombardy by about 10% and 7%, respectively. As illustrated
by the exemplary numbers, our model provides a framework
to predict COVID-19 deaths in arbitrary scenarios. Because
the model has been fully validated with real data, we expect
the model predictions to be reliable and accurate. A further
analysis of the data from China, South Korea, Italy and Spain
indicates that the age-selective admission strategy is more
effective in countries with a younger age structure, while the
countries with less per capita ICU medical resources should
implement the selective admission strategy in the early stage
of the epidemic to suppress mortalities.

It is emphasized that the results of this paper should be
interpreted purely from a scientific and a quantitative-analysis
point of view. No ethical implications are intended and may
be regarded as meaningful.

II. MODEL

Our COVID-19 patient admission model under limited
medical resources has ten dynamical states, as shown in Fig. 1.
It describes the basic transition process of a diagnosed indi-
vidual’s state from onset to recovery or death. Time delays
associated with the various state transitions are taken into
account, rendering non-Markovian the dynamical evolution.
In particular, morbidity (M) state denotes that a patient is
infected with COVID-19, state F means that the patient needs
to be hospitalized but is currently under home isolation or
centralized isolation, critical (C) state describes that the pa-
tient needs ICU support treatment but is currently isolated,
General Ward (G) and Intensive Care Unit (U) states indicate
an inpatient occupying a GW and an ICU bed, respectively,
a patient in state W currently occupies a GW bed but needs
ICU treatment, a patient in the GU state is transferred out of
ICU who does not need to occupy a GW bed and is isolated
in a provisional square cabin bed, a patient in the MX state is
discharged from the hospital with lessened symptoms or was
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FIG. 1. Schematic diagram of the proposed COVID-19 patient
admission model under limited medical resources. Each node repre-
sents a possible state of the patients. The specific definition of each
state and the transition paths among them (light blue and light red
arrows with time representing the average delay of the transition)
are described in detail in the text. The various quantities P·→· denote
the fractions of the state transition paths, and the time delays follow
a normal distribution. The light red dotted arrows indicate the two
admission paths of ICU, where ICU admissions I and II have the
first and second priorities, respectively. The light blue dotted arrows
indicate the two treatment paths of GW, which have a lower priority
than ICU admission: GW admissions I and II have the third and
fourth priorities, respectively.

very ill but now has lessened symptoms, and the recovered (R)
and dead (D) states represent two clinical outcomes: recovery
and death.

The medical resources can be divided into two categories:
GW and ICU resources denoted as QG and QU , respectively,
which can be measured, e.g., by the corresponding numbers
of beds. That the resources are limited is modeled as follows.
When the GW beds are all used up, new patients will no longer
be admitted. When all ICU beds have been occupied, patients
who require ICU care either continue to wait at GW (W state)
or continue to wait outside the hospital (C state). A common
hospital admission policy is “first-come first-serve” (FCFS),
which gives priority to patients who have had a long waiting
time. The admission policies of GW and ICU thus consist of
four admission paths with different priorities: GW admission
I/II and ICU admission I/II, where ICU admission I for the
W-state patients has the highest priority, followed by ICU
admission II for the C-state patients, GW admission I for the
remaining C-state patients in GW, and GW admission II for
the F-state patients. The priorities define the execution order
of the corresponding paths. For the M-state patients, two dif-
ferent transitions can occur: some patients deteriorating into
the F state so as to require hospitalization and others slowly
recovering into the R state. For patients in the F state, there
are three types of transitions: (i) when the GW resources are
available, the patients are admitted to the hospital through GW
admission II, (ii) a proportion of the remaining F-state patients
deteriorate to C state, requiring ICU treatment, and (iii) the
rest are cured so they switch to the MX state. Patients in state
C enter ICU through ICU admission II to transition into U
state, or through GW admission I to enter GW to become W
state, while the rest switch to D state. For G-state patients,
some switch to MX state and no longer occupy GW resources,

while others deteriorate to the W state, requiring ICU care.
W-state patients will enter ICU through ICU admission I, and
the remaining will be in the D state. Some of the U-state
patients occupying ICU resources will transition to the GU

state, and the others will switch to the D state. For patients
in the GU state, the symptoms are relieved after a period time
and they enter the MX state. Patients in the MX state recover
to the R state after a period of time.

Let � QG and � QU denote the changes in the GW and
ICU resources in each time step, respectively. A decrease in
the GW resources is the sum of the number of patients admit-
ted through the GW admission I/II pathway, and an increase
is the sum of the number of ICU admission I, the number
of patients in G(W) state cured (or died), and the amount
of newly deployed GW resources. Likewise, a decrease in
ICU resources is the sum of the number of patients admitted
through ICU admission I/II pathway, and an increase is the
sum of the number of patients cured (or died) in state U
and any newly deployed ICU resources. The state dynamical
evolution is described by a set of difference equations with
time delays characterizing the state ages (Appendix A).

III. RESULTS

We validate our ten-state model by simulating the trend
of the death tolls in Wuhan and Lombardy, using the daily
number of confirmed cases, clinical and demographic data.
The model then enables us to assess the overall effects of
varying the timing of resource deployment and its amount on
the COVID-19 mortalities. At a more detailed level, we divide
the patients into several age groups and calculate the death-toll
trend in each age group. This allows us to assess the impact
of resource allocation scheme of different age groups on the
number of deaths, and to obtain the optimal ICU admission
strategy in terms of the age structure and outbreak scale with
limited medical resources.

A. Impact of limited medical resource deployment

1. Model validation

To simulate the trend of the death tolls in Wuhan and Lom-
bardy by using the the second-order difference equations in
our modeling framework, three types of data are required:
time delays associated with state transitions, patient morbidity
data, and local medical resource deployment data. The details
of these data are described in Appendixes B which include
information such as the average number of days in the transi-
tion delay from M to F state and the average mortality rate of
patients in ICU. Most of the data were obtained through refer-
ences and official reports [17–19]. As detailed in Appendix B,
the values of some model parameters need to be estimated
in an optimal way, e.g., at the 95% confidence level, through
model simulation and empirical data such as the average frac-
tion of the patients switching from G to W state, denoted as
|P|G→W , and that from F to C state, denoted as |P|F→C . We use
the cumulative days of insufficient GW and ICU resources to
quantify the level of stress on the healthcare system, defined
as the GW overload days OG and ICU overload days OU (see
Appendix C - medical system stress level indicators).
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FIG. 2. Simulation results of the daily evolution of death tolls
for the two COVID-19 epicenters. [(a) and (b)] Empirical data and
simulation of cumulative death toll with time in Wuhan and Lom-
bardy, respectively. The open black squares represent the empirical
data. The blue and red crosses represent, respectively, the simulated
and predicted data, where the latter are obtained by using the model
parameter values estimated from the training data. For each data
point, the 95% confidence interval is indicated. There is a good
agreement between the predicted daily number of deaths and the
actual data, thereby validating our ten-state model.

To validate the model, we first obtain the optimal estimates
of the model parameters from an incomplete training data set,
i.e., the first half of the epidemic time series (see Appendix B:
Parameter estimation), and then test if the model is capable of
predicting the second half of the time series. Specifically, the
empirical data of cumulative death toll with time in Wuhan
(from December 8, 2019 to March 4, 2020) and Lombardy
(from January 28 to April 30, 2020) are set as the training
data. With the optimal parameter values and empirical data as
inputs to the model, we predict the cumulative death toll over
time afterwards in Wuhan and Lombardy for the time periods
from March 4, 2020 to April 15, 2020 and from April 30,
2020 to June 14, 2020, respectively. The results are shown in
Fig. 2, where the red crosses represent the predicted numbers
of deaths. It can be seen that the model predicted trends of the
cumulative death toll agrees with the actual data quite well,
thereby validating the model. The model also gives that the
values of OG are 14 and 17 days for Wuhan and Lombardy,
respectively, with the corresponding values of OU as 49 and
74 days.

2. Deployment of medical resources

Since the onset of COVID-19 pandemic, many countries
(most notably the USA) and regions have missed the best

time window to control the spreading. At present, there is
a skyrocketing increase in the demand for ICU beds and
medical resources such as ventilators and other special med-
ical devices. Many hospitals and healthcare facilities have
reached or will soon reach the limit of their operating
capacities.

Optimizing the usage of medical resources by deploying
them as early as possible and augmenting them as much as
possible are key to reducing the mortality rate. Let DT and
RI denote the two key parameters: the deployment time and
the resource input, where DT = 0 and RI = 1 represent the
actual deployment time and the available normalized amount
of resources, respectively. If the resources are deployed seven
days ahead of the actual time, we have DT = −7. Likewise,
if the resources are doubled (e.g., twice as many ICU beds
as in the actual case), we have RI = 2 (see Appendix C for
COVID-19 special medical resource deployment plans). A
virtue of our modeling framework lies in its ability to provide
a quantitative picture of the dependence of the mortalities on
the two key parameters.

To uncover the impact of deploying medical resources
on the patient mortality rate in a concrete way, we consider
the following three scenarios: (i) varying the GW resources
only, (ii) varying ICU resources only, and (iii) varying both
resources simultaneously. Some representative results are pre-
sented below (more results in Appendix D).

Figure 3(a) shows, for Wuhan, the impact of varying GW
resource deployment on the number of deaths for fixed ICU
resource deployment, where the red hexagon indicates the
true death toll under the actual resource deployment. If the
GW resources had been deployed one week in advance or if
its amount had been doubled, the death toll would have been
reduced by 10%. While remarkable, this 10% figure is about
the maximum reduction that can be achieved by varying the
GW resource deployment. For example, deploying the GW
resources earlier than one week or an increase in its invest-
ment over three times would not reduce the death toll further.
The maximum reduction in the deaths that can be achieved
is determined approximately by the contour of the actual
death toll—the curve connecting the white circles Fig. 3(a).
These results indicate that deploying the GW resources earlier
and/or augmenting them have only limited effects on reducing
the deaths.

In contrast, deploying the ICU resources earlier and/or
augmenting them can be more effective at reducing the deaths
in Wuhan, as shown in Fig. 3(b), where the GW resource
deployment is fixed. If the ICU resources had been deployed
one week ahead of the actual time or if the ICU resource
amount had been doubled, the death toll would have been de-
creased by 5% and 13%, respectively. While these figures are
similar to those that would have been achieved with the same
adjustment in the GW resources [Fig. 3(a)], deploying the
ICU beds earlier or increasing their number can have a much
more significant effect on the number of deaths. For example,
if the number of ICU beds had been tripled, the death toll
would have been reduced by about 20% in the most optimistic
scenarios. A significant reduction of about 30% in the deaths
is achieved for DT = −14 and RI = 2.5, which is close to
the maximum reduction with infinite resources. The corre-
sponding ICU overload days would have been decreased to
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FIG. 3. Impact of timing of medical resource deployment and resource input on COVID-19 mortalities. Each panel shows the ratio of the
number of deaths to the actual data (color coded) in the parameter plane of deployment time and resource input: (a) and (b) are for Wuhan,
China, and (c) and (d) are for Lombardy region, Italy. In (a) and (c), the ICU resource amount is fixed and the resource that varies is GW. In
(b) and (d), the GW resource amount is fixed and the resources that vary are ICU. The red hexagon indicates the true death toll under the actual
resource deployment, and the white circles mark the contour of the actual death toll in the parameter plane.

less than seven days (comparing with the actual 49 days for
Wuhan). Similar results are obtained for Lombardy. We find
that adjusting the GW resource deployment would have only
limited effects in reducing the death toll. For example, as
shown in Fig. 3(c), if the GW resources had been deployed
one week or two weeks earlier or if the number of GW beds
had been doubled or tripled, the reduction in the deaths would
have been only about 1%. This indicates that the deploy-
ment of the GW resources in Lombardy was timely and its
amount was appropriate, a fact that can also be seen from
the value of the GW overload days OG: to make it less than
a week, the resources would need to be deployed only five
days earlier or the number of GW beds would need to be only
1.4 times higher. In contrast, deploying the ICU resources
earlier or augmenting them would have been much more
effective at reducing the deaths. For example, the number of
ICU beds had been tripled in an ideal scenario, the death toll
would likely have been reduced by about 20%, as shown in
Fig. 3(d).

In fact, if many doctors and nurses get ill, the effective
hospital resources will be decreased. A decrease in RI would
lead to an increase in the number of deaths, as shown in Fig. 3.
Appendix C presents results on the impact of varying the GW
and ICU resource deployment simultaneously on COVID-19
death toll for both Wuhan and Lombardy.

B. Admission strategy based on age groups

To improve the efficiency of treatment and to reduce the
mortality rate, it is essential and imperative to allocate the
available resources as reasonably as possible because they
are not unlimited. For COVID-19, the hospitalization and

mortality rates of the elderly patients with underlying medical
conditions are higher than those of other patients [20]. A sim-
ple and common strategy is to divide the patients into distinct
age groups. Our modeling framework provides a rigorous way
to calculate the mortalities for different age groups.

1. Age groups

Individuals in any age group have the possibility of getting
infected by COVID-19 with certain death risk [21]. Currently
available data indicate that, in most countries, the risk of
hospitalization and death increases with age [22,23]. A direct
manifestation is that the fraction of hospitalized patients and
ICU mortality vary among the age groups.

For Wuhan, the available data divide patients into three
groups: [0-69] years old, [70-79] years old, and [80+] years
old. A similar division scheme applies to Lombardy. We use
a linear regression to obtain the estimates of the fractions of
various state transitions for each age group: PM→F , PG→W ,
PF→C , and PU→D. (Appendix D provides more details.)

We input the parameters associated with each age group
into the model and calculate the death tolls as a function of
time for Wuhan and Lombardy. Figure 4 shows that the mor-
talities obtained from the simulation agree well with those of
the actual data. Figures 4(a) and 4(c) show that the death toll
of patients over 80 years old in Wuhan is the lowest among the
age groups, while it is the highest in Lombardy: about 59%.
There are two possible reasons for this difference. First, the
aging populations in the two regions are different: the fraction
of people over 65 years old is 14.06% in Wuhan and 20% in
Lombardy [24,25]. The elderly have weak autoimmunity and
most of them have preexisting, underlying diseases, resulting
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FIG. 4. Evolution of death toll with time for different age groups. (a) Simulated evolution trend of the death toll of the three age groups
in Wuhan; (b) the actual mortality rate of each age group in Wuhan in comparison with model prediction; (c,d) the corresponding results for
Lombardy. The insets in (a) and (c) display the actual daily death toll and model predictions for Wuhan and Lombardy, respectively. In panels
(b) and (d), the light blue and pink columns represent the actual and simulated mortality rate of each group, respectively.

in an excessively high death rate in Lombardy. The second
reason is that strict containment policies protect most of the
elderly against infections in Wuhan. Nonetheless, Figs. 4(b)
and 4(d) show that the mortality rate of patients over 70 years
old is higher than that of patients under 70 for both Wuhan

and Lombardy. Especially, in Lombardy, the mortality rate of
patients over 80 years old reached 41%.

When the population is divided into nine age groups, our
model generates essentially the same phenomenon that the
risk of death increases with age (Appendix E).

FIG. 5. Dependence of death toll on weights. [(a) and (b)] Model generated death toll and its dependence on w1 and w3 for fixed w2 = 30
for Wuhan and Lombardy, respectively, where the blue and purple colors correspond to relatively fewer deaths. In the regions marked by
Roman numerals, the death toll changes slowly with weights. The insets show the distribution of the number of deaths for different weight
combinations, where the numerical values represent the differences in the number of deaths than that from the FCFS treatment strategy. [(c) and
(d)] Daily number of new deaths under different admission strategies for Wuhan and Lombardy, respectively, where red circles, gray boxes,
and blue-purple forks denote the results from the three strategies: preferential treatment for elderly patients, FCFS, and preference for young
patients, respectively. Giving priority to young patients results in the lowest daily death curve.
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2. Group weighting strategy

People of all ages have certain risk of being infected with
COVID-19. Generally, the patients without any underlying
medical conditions have a low mortality rate. Setting priority
of admission for appropriate patients can reduce the number
of deaths. In Wuhan, the ICU resources were more scarce than
GW resources, so making ICU admission policy dependent
on age is especially important for suppressing the mortality
rate. That is, the conventional FCFS admission policy is not
suitable for COVID-19 under limited ICU resources. To set
the priority of admission for different age groups, we shift the
state age of each group by a priority weight. We then change
the admission order of different age groups with the goal to
find an optimal set of weights that minimizes the number of
deaths. In particular, we set the priority weight of the ith age
group as wi and record τi as the state age of the this age group.
After weighting, the new state age τ ′

i becomes

τ ′
i = τi + wi. (1)

The state age of patients in the ith age group is increased by
wi days. The patients, after incorporating the weighted state
age, are admitted according to FCFS. It is worth noting that
this group weighting strategy does not change the order of
treatment (i.e., FCFS) for patients in the same group.

To carry out the optimization procedure, we fix the priority
weight of the second age group, i.e., the [70, 80) age group, to
be w2 = 30. As the state age of each group does not exceed
15, we implement different admission strategies for the age
groups by changing the value of w1 and w3 (see Appendix E
for a specific method).

Figure 5 shows the effect of the state age of groups 1 and 3
on the number of deaths when the weight of group 2 is fixed
at constant 30. The larger the state age, the higher priority of
admission is. When adjusting the weights of the first and third
groups, their corresponding state ages will vary and so the
admission order of each age group will change accordingly.
Different orders of treatment will lead to different death tolls.
Figure 5 reveals, in the parameter plane of (w1,w3), five
distinct death toll regions for Wuhan. For Lombardy, there
are six such regions, as shown in Fig. 5(b). The weight range
in region V in Fig. 5(a) corresponds to the ranges in regions
V and VI in Fig. 5(b), due to the relatively small fraction
of patients in the third group in Wuhan. When patients in
the first group are given the priority, whether the priority of
treatment for patients in the third group is higher than that
of the second group has little impact on the total number of
deaths in region V of Fig. 5(a). While the patients in the third
group in Lombardy have a large proportion, if the priority
weights of both the first and the second age groups are fixed,
the priority of treatment for patients in the third group will
obviously affect the total number of deaths. As the patients in
the third group have a higher mortality rate in ICU, the number
of deaths in region V with the high priority for these patients
is higher than that in region VI with the low priority.

A striking result in Fig. 5 is the occurrence of plateaued re-
gions, where a change in both w1 and w3 values does not alter
the death toll. To understand the emergence of the plateaus,
we take area III in Fig. 5(a) as an example. As can be seen
from Fig. 14 in Appendix F, we first fix the priority weight

FIG. 6. Asymptotic optimization efficiency in China, Korea,
Italy, and Spain. Shown is the steady-state efficiency E (∞) vs the
cases per ten million people. (a) The result for China based on the
parameter values from Wuhan. Inset shows the corresponding results
for Italy, South Korea, and Spain. (b) The result for China based on
the parameter values from Lombardy and the results for the other
three countries are displayed in inset.

of the second age group, whose state age range is [30, 42]. If
we give the highest priority to the elderly, i.e., the state age
of the third group is increased by w3 ∈ [40, 60], the state age
of the third group will be in the range [40, 68]. Likewise, if
the state age of the first group is increased by w1 ∈ [0, 15],
the state age of the first group will be in the range [0, 35]. The
older the state age, the earlier the treatment. This suggests that,
in region III, regardless of the variations in w1 and w3, the
priority for admission is given to group 3, followed by group
2, and finally to group 1. As a result, there is a plateau in area
III where the death toll changes little.

In area III in Fig. 5, the weighting order is w3 > w2 >

w1 and the largest death tolls are observed in Wuhan and
Lombardy, as characterized by an increase of 11% and 5.7%,
respectively, in comparison with the FCFS case. In area V in
Fig. 5(a), we have w1 > w3 > w2, and the number of deaths
in Wuhan is the lowest as represented by a decrease of 10.4%
relative to that associated with the FCFS strategy. In the same
area V for Lombardy, the corresponding decrease in the death
toll is by 5.3%, as shown in Fig. 5(b). In area VI in Fig. 5(b),
the priority ordering is w1 > w2 > w3 and there is a decrease
of 6.7% in the death toll. The implication of these results is
that giving the treatment priority to young patients will reduce
the number of deaths but giving priority to elderly patients will
increase the death toll. Due to the resource limit, this strategy
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TABLE I. State transition time delay parameter setting.

Parameter(delay) Estimate/assumption Definition Justification

μM→R Wuhan/Lombard 14d Average delay from M state to report recovery [1]
μM→F Wuhan/Lombard 5d(std=6.67) Average delay from M to F state [17]
μF→MX Wuhan/Lombard 8d(std=4.4477) Average delay from F to MX state [12]
μF→C Wuhan/Lombard 2d(std=3.7064) Average delay from F to C state [17,29]
μG→MX Wuhan/Lombard 8d(std=4.4477) Average delay from G to MX state [12]
μG→W Wuhan/Lombard 3d(std=3.7064) Average delay from G to W state [17]
μU→GU Wuhan/Lombard 8d(std=4.4477) Average delay from U to GU state [18]
μU→D Wuhan/Lombard 7d(std=5.93) Average delay from U to D state [18,19]
μC→D Wuhan/Lombard 1d(std=2.2239) Average delay from C to D state Assume
μW →D Wuhan/Lombard 3d(std=3.7064) Average delay from W to D state Assume
μGU →MX Wuhan/Lombard 8d(std=4.4477) Average delay from GU to MX state [12]
μMX →R Wuhan/Lombard 14d Average delay from MX state to report recovery [1]

is intuitively reasonable and has in fact been commonly prac-
ticed in many hospitals and healthcare facilities. Our results
provide a validation at a quantitative level.

Figures 5(c) and 5(d) demonstrate the evolution of new
deaths over time in Wuhan and Lombardy, respectively, un-
der different admission strategies. In both cases, there is no
significant difference in the number of deaths in the early
stages of the epidemic under three treatment strategies. When
the epidemic has lasted for a period of time and the death
toll increases sharply, giving priority to young patients can
significantly reduce the number of deaths. At the end of
the epidemic, the rapid decrease in the number of patients
needing ICU treatment again makes the differences among
the three treatment strategies diminish. Taken together, these
results verify that, under limited medical resources, during the
rapidly increasing phase of COVID-19 infection, admitting
and treating appropriate patients are necessary to reduce the
final death toll. It is emphasized that in implementing the
strategy, the age of a patient should not be taken as the only
criterion for judging whether he/she is an appropriate patient.
Many factors of the patient such as symptoms and underlying
medical conditions should be taken into account.

3. Optimization efficiency

When the ICU resources are in a serious shortage, medical
staff have to face the hard choice of adopting the strategy of
giving priority to treating appropriate patients with a higher
survival probability. The strategy’s effectiveness notwith-
standing, it has serious implications for medical ethics. It
is thus worth evaluating this admission/treatment strategy
further. To this end, we exploit our model to study more ex-
tensively the impacts of different strategies for four countries:

China, South Korea, Italy, and Spain. For each country, we
collect information about the numbers of GW and ICU beds
per 100 000 population and about the age distribution of pa-
tients diagnosed with COVID-19. For example, in China and
Italy, the numbers of ICU beds per 100 000 individuals are 3.6
and 12.5, respectively. (A detailed display of the information
can be found in Appendix F). We define the time-dependent
optimization efficiency as

E (t ) = VQ(t )

VY (t )
, (2)

where VQ(t ) and VY (t ), respectively, are the numbers of new
deaths per day with the FCFS and the age-selective strategy.
In the asymptotic time limit t → ∞ when the system has
reached a steady state, E (∞) characterizes the final opti-
mization efficiency. Since information about the average state
transition fractions for patients in all four countries is not
available, we use the model parameter values for Wuhan and
Lombard to calculate the value of E (∞) for four countries
versus the average daily patient size. Note that, in this case,
we assume that the number of new cases per day, M(0, t ), is
the same for all t .

Based on the per capita medical resource data of the four
countries as well as the age distribution data of confirmed
patients in each country, by making use of the relevant model
parameter values for Wuhan and Lombard, we calculate
E (∞) of the four countries versus the daily average patient
size. We assume that up to 50% of the medical resources can
be deployed to treating patients with COVID-19. Since the
average state transition fractions for patients in all four coun-
tries are not available, here we respectively use for reference
the model parameter values for Wuhan and Lombard, which

TABLE II. Parameter setting of state transition fraction.

Parameter(delay) Estimate/assumption Definition Justification
PM→F Wuhan/Lombard see Tables S3.1 and S3.2 Transition fraction from M to F state
PF→C Wuhan 23.26% (21.24%, 28.55%)

Transition fraction from F to C state
Lombard 56.45% (53.33%, 65.23%)

Fitting according to the reported death data
PG→W Wuhan 20.76% (18.15%, 24.56%) Transition fraction from G to W stateLombard 41.22% (39.24%, 55.43%)
PU→D Wuhan/Lombard 61.5% Transition fraction from U to D state [18,30]

033209-8



QUANTITATIVE ASSESSMENT OF THE EFFECTS OF … PHYSICAL REVIEW RESEARCH 4, 033209 (2022)

TABLE III. Setting of transition fraction from M to F state in five stages in Wuhan.

Date Dec 8, 2019–Jan 9, 2020 Jan 10–Jan 22 Jan 23–Feb 1 Feb 2–Feb 16 Feb 17–

PM→F (Wuhan) 53.10% 35.10% 23.50% 15.90% 10.30%
Justification [31]

does not qualitatively affect the impacts of age structures and
ICU resources per capita on E (∞).

As shown in Fig. 6, when the number of patients is below
100, the value of E (∞) for the four countries is equal to one.
In this case, there is no need to implement the age-selective
admission strategy. When the number of patients exceeds a
critical value, E (∞) for all four countries increases rapidly
as the number of patients increases through the critical value
and then reaches a peak value. In fact, for a wide range of
variation of the patient size, the values of E (∞) are high.
Note that the peak values of E (∞) for China and South
Korea are slightly below 1.3, but those for Italy and Spain
are lower than 1.2 with a relatively slow increasing rate to
reach the peak value. A plausible reason lies in the difference
in the age distribution of patients diagnosed with COVID-19
in the eastern and western countries. In particular, in China
and South Korea, less than 12% of the patients are over 70
years old, while those in Italy and Spain account for 37%
and 34%, respectively (Appendix F). For a small average
daily patient size, E (∞) = 1 means that ICU beds are fully
sufficient, but E (∞) > 1 signifies a shortage of ICU beds. If
the daily average patient size is large, we have E (∞) = 1,
which means that critically short ICU beds cannot meet the
requirement of any age group. In this case, the age-selective
admission strategy has no effect on the decrease of death toll.
Figure 6(a) reveals that, with the per capita medical resources
of South Korea, Italy, and Spain, the need for ICU of 1,000
cases per tens of millions of people per day can be met for
a long time, while the capacity of China may be less than
half of the capacity of those countries. Indeed, the number
of ICU beds per capita in China is 3.6 per 100,000 persons,
while the corresponding numbers in Italy, South Korea, and
Spain are 12.5, 10.6, and 9.7, respectively (Appendix F). We
conclude that, while the age-selective admission strategy is
more effective in countries with a younger population struc-
ture, countries with less per capita ICU medical resources
need to implement this strategy, particularly in the early stage
of the pandemic when the number of patients is relatively
small.

IV. DISCUSSION

With the resurgence of COVID-19 cases in many countries
and regions, a severe shortage of medical resources for treat-
ing the disease is inevitable, potentially leading to a significant

death toll. To study the impact of limited medical resources
on the patient mortality at a quantitative level can provide
insights into developing optimal resource allocation schemes
to reduce the number of deaths. Based on the COVID-19
data, medical resources and other relevant information, we
have developed an admission treatment model subject to
limited medical resources, which enables a quantitative and
systematic assessment of the mortality rate associated with
various resource allocation scenarios. Using empirical data
from Wuhan and Lombardy, we validate the model by demon-
strating that it can reproduce accurately the evolution of daily
death toll in both places. The validated model is then used to
assess the impact of different scenarios of medical deployment
(including deployment time and resource investment) on the
number of deaths. In general, the ICU resources have a signif-
icant impact on the mortality rate, and it is intuitively evident
that deploying the ICU resources earlier or augmenting them
will reduce the death toll. A virtue of our model is that it en-
ables an accurate quantification of such intuitive expectations.
For example, we find that, if the deployment of ICU resources
had been made one week earlier or if they had been doubled,
the death toll in Wuhan would have been reduced by 5% or
13%, and that in Lombardy by 3% and 14%, respectively. If
the number of ICU beds had been tripled, the death toll in
both Wuhan and Lombardy would have been reduced by about
20% in the most optimistic scenario. Likewise, our model is
fully capable of assessing the impacts of GW resources on
COVID-19 mortalities. In comparison with the ICU resources,
the GW resources play a less role in reducing the death
toll.

The morbidity and mortality of patients infected with
COVID-19 increase with age. We have studied the role of age
selective admission and treatment strategies in the death toll.
In general, giving admission priorities to patients in different
age groups would result in different mortality rates. In particu-
lar, if priorities had been given to the younger age groups, the
number of deaths in Wuhan and Lombardy would have been
reduced by 10.4% and 6.7%, respectively, in comparison with
that from the normal FCFS strategy. In contrast, if priority
had been given to the elderly patients, the number of deaths
would have increased by 11.5% and 5.7% for the two places,
respectively.

The optimal admission strategies also depend on the scale
of COVID-19 outbreak, the age structure of patients in the
general population, and the per capita medical resources. We

TABLE IV. Setting of transition fraction from M to F state in four stages in Lombardy.

Date Jan 28, 2020–Feb 19, 2020 Feb 20–Feb 25 Feb 26–Mar 20 1 Mar 21–

PM→F (Lombardy) 63.00% 61.00% 56.00% 32.21%(29.33%, 34.14%)
Justification [32] Fitting according to the reported death data
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have quantified these effects by defining the steady-state opti-
mization efficiency E (∞) and calculated this quantity for four
countries: China, South Korea, Italy, and Spain. We conclude
that the age-selective admission strategy is more effective in
countries with a younger age structure, while the countries
with less per capita ICU medical resources may need to imple-
ment this admission strategy in the early stage of the epidemic
when the number of patients is relatively small.

Our model provides a general evaluation framework for as-
sessing, at a quantitative level, the necessary medical resource
deployment and admission strategy. It can be used to pre-
dict and articulate, under limited medical resources, optimal
scenarios with respect to resource deployment and hospital
admission/treatment strategies to minimize the death toll for
future outbreaks of infectious diseases. In addition, our model
can be used to quantitatively evaluate the number of overload
days of medical resources and age-specific mortality over time
in cases where empirical data are not available. Our model is
based on the assumption that certain groups of patients have
a lower mortality rate. In fact, with timely and comprehensive
treatment, the vast majority of the patients without underly-
ing medical conditions can successfully recover. It should be
emphasized that the ages of patients should not be taken as
the only criterion for judging whether they should be treated
preferentially. The flexibility of our model allows for further
development in more realistic scenarios to explain phenomena
such as relapses from lessened symptoms to serious illness
and the longer time required for older patients to recover in
intensive care.
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APPENDIX A: EQUATIONS GOVERNING NON-
MARKOVIAN DYNAMICAL EVOLUTION OF STATES

Epidemic spreading in the real world depends on human
behaviors and the event occurrences cannot be simply de-
scribed as a Poisson random process. In general, the event
time is not exponentially distributed, which is characteristic
of non-Markovian dynamics [26–28]. To accurately capture
the non-Markovian nature of the dynamical evolution of the
states, we model the underlying process in terms of difference
equations over infinitesimal intervals in both time and delay.
In the following, we derive, one by one, the difference equa-
tions for all ten states in our model.

1. M state

The evolution equation of the number of M-state patients
with state age τ at time t is

M(τ + dτ ; t + dt ) = [1 − ωM→F (τ )dτ ]
PM→F

∫ +∞
τ

fM→F (τ ′)dτ ′

PM→F
∫ +∞
τ

fM→F (τ ′)dτ ′ + (1 − PM→F )
∫ +∞
τ

fM→R(τ ′)dτ ′ M(τ ; t )

+ [1 − ωM→R(τ )dτ ]
(1 − PM→F )

∫ +∞
τ

fM→R(τ ′)dτ ′

PM→F
∫ +∞
τ

fM→F (τ ′)dτ ′ + (1 − PM→F )
∫ +∞
τ

fM→R(τ ′)dτ ′ M(τ ; t ), (A1)

where M(τ ; t ) is the density function of M-state patients with state age τ at time t , so the number of nodes in the M state with
the state age in the interval (τ, τ + dτ ) is M(τ ; t )dτ . A node in the M state enters the F state (R state) at the conditional rate
ωM→F (τ )[ωM→R(τ )], which are given by

ωM→F (τ ) = fM→F (τ )∫ +∞
τ

fM→F (τ ′)dτ ′ , ωM→R(τ ) = fM→R(τ )∫ +∞
τ

fM→R(τ ′)dτ ′ ,

where fM→F (τ ) and fM→R(τ ) represent the probabilities of M-state individuals transferring to F and R states within the state
age interval (t, t + dt ), respectively, and

∫ +∞
τ

fM→F (τ ′)dτ ′ and
∫ +∞
τ

fM→R(τ ′)dτ ′ are the probabilities that M-state individuals
have not moved to F state and R state before state age τ , respectively. Since the M state can transition to two different states:
M → F and M → R, the two processes will compete with each other, so the remaining probabilities are

PM→F
∫ +∞
τ

fM→F (τ ′)dτ ′

PM→F
∫ +∞
τ

fM→F (τ ′)dτ ′+ (1 − PM→F )
∫ +∞
τ

fM→R(τ ′)dτ ′ and
(1 − PM→F )

∫ +∞
τ

fM→R(τ ′)dτ ′

PM→F
∫ +∞
τ

fM→F (τ ′)dτ ′+ (1 − PM→F )
∫ +∞
τ

fM→R(τ ′)dτ ′ ,

(A2)

respectively.
The newly increased patients enter the M state. Suppose that ZM (t ) new patients are added within (t, t + dt ), we have

M(0; t + dt ) = ZM (t ). (A3)

The state age of the newly added M-state patients is zero.
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2. F state

The evolution equation of the number of F-state patients with state age τ at time t is

F (τ + dτ ; t + dt ) = [1 − ωF→C (τ )dτ ]
PF→C

∫ +∞
τ

fF→C (τ ′)dτ ′

PF→C
∫ +∞
τ

fF→C (τ ′)dτ ′ + (1 − PF→C )
∫ +∞
τ

fF→MX (τ ′)dτ ′ F (τ ; t )

+ [1 − ωF→MX (τ )dτ ]
(1 − PF→C )

∫ +∞
τ

fF→MX (τ ′)dτ ′

PF→C
∫ +∞
τ

fF→C (τ ′)dτ ′ + (1 − PF→C )
∫ +∞
τ

fF→MX (τ ′)dτ ′ F (τ ; t ), (A4)

with notations similar in their meanings to those of the M-state equation.
After admission of patients in the C state, the remaining available GW resources are �Q′

G(t ). There are two cases: (i) the new
resources available are sufficient to accommodate all F-state patients; and (ii) new available resources can only accept some or
none of the F-state patients. In these two cases, patients in the F state are admitted according to the strategy of FCFS (first-come
first-serve). The number of F-state patients changing to the G state in (t, t + dt ) is denoted as �F→G (t ).

In the first case where the GW resources are sufficient to accommodate all current F-state patients, if

�Q′
G(t )(t ) �

∫ +∞

0
F (τ + dτ ; t + dt )dτ,

then all F-state individuals will change to the G state. We have F (τ + dτ ; t + dt ) = 0 for all τ ∈ [0,+∞), and

�F→G (t ) =
∫ +∞

0
F (τ + dτ ; t + dt )dτ.

In the second case where the GW resources can hold only some or none of the current F-state patients, if

�Q′
G(t )(t ) =

∫ +∞

τc

F (τ + dτ, t + dt )dτ,

then some F-state individuals will change to the G state. We have F (τ + dτ ; t + dt ) = 0 for τ ∈ [τc,+∞), and

�F→G (t ) = �Q′
G(t )(t ).

When the patients in the M state enter into the F state, the initial state age is set to be zero. The number of newly added F-state
patients is given by

F (0; t + dt ) =
∫ +∞

0
ωM→F (τ )

PM→F
∫ +∞
τ

fM→F (τ ′)dτ ′

PM→F
∫ +∞
τ

fM→F (τ ′)dτ ′ + (1 − PM→F )
∫ +∞
τ

fM→R(τ ′)dτ ′ M(τ ; t )dτ. (A5)

3. C state

The evolution equation of the number of C-state patients with state age τ at time t is

C(τ + dτ ; t + dt ) = [1 − ωC→D(τ )dτ ]C(τ ; t ). (A6)

To get the number of C-state patients admitted to the hospital, we note that there are two admission paths: (a) through ICU
admission II to the U state; (b) through GW admission I to the W state.

ICU admission II path. After admission of W-state patients, the remaining available ICU resources are �Q′
U (t ). There are

two cases: (i) the newly available resources are sufficient to accommodate all the C-state patients and (ii) the newly available
resources are able to accommodate some or none of the C-state patients. The number of C-state patients who switch to the U
state in (t, t + dt ) time interval is denoted as �C→U (t ).

In case (i), if

�Q′
U (t ) �

∫ +∞

0
C(τ + dτ ; t + dt )dτ,

all C-state patients will change to the U state. We have C(τ + dτ ; t + dt ) = 0 for τ ∈ [0,+∞), and

�C→U (t ) =
∫ +∞

0
C(τ + dτ ; t + dt )dτ.

In case (ii), if

�Q′
U (t ) =

∫ +∞

τc

C(τ + dτ ; t + dt )dτ,
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and 0 � τc � +∞, then the C-state individuals whose state ages are greater than τc will enter the U state. We have C(τ + dτ, t +
dt ) = 0 for τ ∈ [τc,+∞) and

�C→U (t ) = �Q′
U (t ).

The remaining C-state patients can switch to the W state through the GW admission I pathway.
GW admission I path. Considering that the remaining C-state patients are in critical conditions, when the ICU resources are

unavailable to them, they will be admitted to GW and change into the W state with the highest priority. The available resources
within the time interval (t, t + dt ) are denoted as �QG(t ). There are two cases: (i) the available GW resources are enough
to accommodate all the remaining C-state patients, and (ii) the available GW resources can accommodate some or none of the
remaining C-state patients. The number of patients in the C state who change to the W state in (t, t + dt ) is denoted as �C→W (t ).

In case (i), we have

�QG(t ) �
∫ +∞

0
C(τ + dτ ; t + dt )dτ.

The amount of the remaining available resources through F-state patients for GW admission II is

�Q′
G(t ) = �QG(t ) −

∫ +∞

0
C(τ + dτ ; t + dt )dτ.

Individuals in the C state will change to the W state, so we have C(τ + dτ ; t + dt ) = 0 for τ ∈ [0,+∞), and

�C→W (t ) =
∫ +∞

0
C(τ + dτ ; t + dt )dτ.

In case (ii), we have

�QG(t ) =
∫ +∞

τc

C(τ + dτ ; t + dt )dτ.

The amount of the remaining available resources for GW admission II is �Q′
G(t ) = 0. The C-state individuals with state ages

greater than τc will enter the W state. We have C(τ + dτ, t + dt ) = 0 for τ ∈ [τc,+∞) and

�C→W (t ) = �QG(t ).

When the F-state patients enter the C state, the initial state age is set to be zero. The number of newly added C-state patients
is

C(0; t + dt ) =
∫ +∞

0
ωF→C (τ )

PF→C
∫ +∞
τ

fF→C (τ )′dτ ′

PF→C
∫ +∞
τ

fF→C (τ )′dτ ′ + [1 − PF→C]
∫ +∞
τ

fF→R(τ )′dτ ′ F (τ ; t )dτ. (A7)

4. G state

The evolution equation of the number of G-state patients with state age τ at time t is

G(τ + dτ ; t + dt ) = [1 − ωG→W (τ )dτ ]
PG→W

∫ +∞
τ

fG→W (τ ′)dτ ′

PG→W
∫ +∞
τ

fG→W (τ ′)dτ ′ + (1 − PG→W )
∫ +∞
τ

fG→MX (τ ′)dτ ′ G(τ ; t )

+ [1 − ωG→MX (τ )dτ ]
(1 − PG→W )

∫ +∞
τ

fG→MX (τ ′)dτ ′

PG→W
∫ +∞
τ

fG→W (τ ′)dτ ′ + (1 − PG→W )
∫ +∞
τ

fG→MX (τ ′)dτ ′ G(τ ; t ). (A8)

The number of newly added G-state patients is

G(0; t + dt ) =�F→G (t ). (A9)

5. W state

The evolution equation of the number of W-state patients with state age τ at time t is

W (τ + dτ ; t + dt ) = (1 − ωW →D(τ )dτ )W (τ ; t ). (A10)

To have the number of W-state patients admitted to the hospital, we denote the available ICU resources at time t as �QU (t ).
There are two cases: (i) there are sufficient resources to accommodate all current W-state patients and (ii) the available resources
can accommodate some or none of the W-state patients. The number of W-state patients who change to the U state in (t, t + dt )
is �W →U (t ).
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In case (i), if

�QU (t ) �
∫ +∞

0
W (τ + dτ ; t + dt )dτ,

the amount of the remaining available resources is

�Q′
U (t ) = �QU (t ) −

∫ +∞

0
W (τ + dτ ; t + dt )dτ.

We have

W (τ + dτ ; t + dt ) = 0 for τ ∈ [0,+∞), �W →U (t ) =
∫ +∞

0
W (τ + dτ ; t + dt )dτ. (A11)

In case (ii), if

�QU (t ) =
∫ +∞

τc

W (τ + dτ, t + dt )dτ

and 0 � τc < +∞, the amount of the remaining available resources is �Q′
U (t ) = 0. We get

W (τ + dτ ; t + dt ) = 0 for τ ∈ [τc,+∞),�W →U (t ) = �QU (t ). (A12)

The sources of the W-state patients are the G-state patients whose conditions have deteriorated and the C-state patients admitted
through GW admission I. The number of newly added W-state patients is

W (0; t + dt ) =�C→W (t ) +
∫ +∞

0
ωG→W (τ )

PG→W
∫ ∞
τ

fG→W (τ ′)dτ ′

PG→W
∫ ∞
τ

fG→W (τ ′)dτ ′ + (1 − PG→W )
∫ ∞
τ

fG→MX (τ ′)dτ ′ G(τ ; t )dτ. (A13)

6. U state

The evolution equation of the number of U-state patients with state age τ at time t is

U (τ + dτ ; t + dt ) = [1 − ωU→D(τ )dτ ]
PU→D

∫ +∞
τ

fU→D(τ ′)dτ ′

PU→D
∫ +∞
τ

fU→D(τ ′)dτ ′ + (1 − PU→D)
∫ +∞
τ

fU→GU (τ ′)dτ ′ U (τ ; t )

+ [1 − ωU→GU (τ )dτ ]
(1 − PU→D)

∫ +∞
τ

fU→GU (τ ′)dτ ′

PU→D
∫ +∞
τ

fU→D(τ ′)dτ ′ + (1 − PU→D)
∫ +∞
τ

fU→GU (τ ′)dτ ′ U (τ ; t ). (A14)

Patients in the U state are from the W state and the admitted C-state patients. The number of newly added U-state patients is

U (0; t + dt ) =�W →U (t )+ �C→U (t ). (A15)

7. GU state

The evolution equation of the number of GU -state patients with state age τ at time t is

GU (τ + dτ ; t + dt ) = [
1 − ωGU →MX (τ )dτ

]
GU (τ ; t ). (A16)

The number of newly added GU -state patients is

GU (0; t + dt ) =
∫ +∞

0

(1 − PU→D)ωU→GU (τ )
∫ +∞
τ

fU→GU (τ ′)dτ ′

PU→D
∫ +∞
τ

fU→D(τ ′)dτ ′ + (1 − PU→D)
∫ +∞
τ

fU→GU (τ ′)dτ ′U (τ, t )dτ. (A17)

8. MX state

The evolution equation of the number of MX -state patients with state age τ at time t is

MX (τ + dτ ; t + dt ) = [
1 − ωMX →R(τ )dτ

]
MX (τ ; t ). (A18)

The sources of MX state patients are three: patients from the F, G, and GU states. The number of newly added MX -state patients
is given by

MX (0, t + dt ) =
∫ +∞

0
ωGU →MX (τ )GU (τ ; t )dτ

+
∫ +∞

0

(1 − PG→W )
∫ +∞
τ

fG→MX (τ ′)dτ ′

PG→W
∫ +∞
τ

fG→W (τ ′)dτ ′ + (1 − PG→W )
∫ +∞
τ

fG→MX (τ ′)dτ ′ ωG→MX G(τ ; t )dτ
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+
∫ +∞

0

(1 − PF→C )
∫ +∞
τ

fF→MX (τ ′)dτ ′

PF→C
∫ +∞
τ

fF→C (τ ′)dτ ′ + (1 − PF→C )
∫ +∞
τ

fF→MX (τ ′)dτ ′ ωF→MX F (τ ; t )dτ. (A19)

9. R state

The R-state patients come from the M and MX states. We have

R(t + dt ) = R(t ) +
∫ +∞

0
ωMX →RMX (τ ; t )dτ

+
∫ +∞

0

(1 − PM→F )
∫ +∞
τ

fM→R(τ ′)dτ ′

PM→F
∫ +∞
τ

fM→F (τ ′)dτ ′ + (1 − PM→F )
∫ +∞
τ

fM→R(τ ′)dτ ′ ωM→RM(τ ; t )dτ. (A20)

10. D state

The D-state patients come from C, W, and U states. We have

D(t + dt ) = D(t ) +
∫ +∞

0
ωC→DC(τ ; t )dτ +

∫ +∞

0
ωW →DW (τ ; t )dτ

+
∫ +∞

0

PU→D
∫ +∞
τ

fU→D(τ ′)dτ ′

PU→D
∫ +∞
τ

fU→D(τ ′)dτ ′ + (1 − PU→D)
∫ +∞
τ

fU→GU (τ ′)dτ ′ ωU→D(τ )U (τ ; t )dτ. (A21)

11. Calculation of available ICU resources � QU (t )

The available ICU resources are those that have been newly added, those that are released when patients go from the U to the
D state or the GU -state patients, and the resources consumed by the W-state and C-state patients. We have

�QU (t + dt ) = �QU (t ) + ZU (t ) − �W →U (t ) − �C→U (t )

+
∫ +∞

0

PU→D
∫ +∞
τ

fU→D(τ ′)dτ ′

PU→D
∫ +∞
τ

fU→D(τ ′)dτ ′ + (1 − PU→D)
∫ +∞
τ

fU→GU (τ ′)dτ ′ ωU→D(τ )U (τ ; t )dτ

+
∫ +∞

0

(1 − PU→D)
∫ +∞
τ

fU→GU (τ ′)dτ ′

PU→D
∫ +∞
τ

fU→D(τ ′)dτ ′ + (1 − PU→D)
∫ +∞
τ

fU→GU (τ ′)dτ ′ ωU→GU (τ )U (τ ; t )dτ. (A22)

12. Calculation of available GW resources �QG(t )

The available GW resources are those that have been newly added, those released when patients switch from the G to the Mx

state and from the W to the D state or the U state, and the resources consumed by the C-state and F-state patients. We have

�QG(t + dt ) = �QG(t ) + ZG(t ) − �C→W (t ) − �F→G(t ) +
∫ +∞

0
W (τ ; t )ωW →D(τ )dτ

+
∫ +∞

0

(1 − PG→W )
∫ +∞
τ

fG→MX (τ ′)dτ ′

PG→W
∫ +∞
τ

fG→W (τ ′)dτ ′ + (1 − PG→W )
∫ +∞
τ

fG→MX (τ ′)dτ ′ ωG→MX (τ )G(τ ; t )dτ. (A23)

APPENDIX B: PARAMETER ESTIMATION

1. Average delay and fraction of state transition

As shown in Table I, we assume that the time delay of
patients switching from state M to F follows the normal dis-
tribution with the average of five days [17]. The distributions
of the time delays associated with other state transitions are
also assumed to be normal. The average time delays from
the U to the D and Gu states are set as seven days [18,19]
and eight days [18], respectively, and that from the G to the
W state is three days [17]. In our model setting, the clinical
symptoms of the F-state and G-state patients are identical, and
the difference lies in whether the patients are admitted (i.e.,

occupying GW beds), and the same rule applies to the C-state
and W-state patients.

The average time delay from the F to the C state is two
days [17,29], and that from the G and F states to the MX state
is eight days [12]. The average time delays from the W and C
states to the D state are assumed to be three days and one day,
respectively.

As shown in Table II, we set the average mortality rate
of ICU patients as 61.5% [18,30]. During the epidemic, due
to the different testing methods and conditions, the fraction
of M-state patients in the F state is different in different
time periods. According to the analysis of 32583 cases of
laboratory-confirmed patients in Wuhan and reconstruction
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FIG. 7. Validation of our backtracking method. The validation
method is based on the data of early laboratory-confirmed cases
in Lombardy area (January 28–February 27, 2020). The incidence
data of patients are estimated from the laboratory reported confirmed
cases and the distribution of the time delay between the onset of
the disease and the reported confirmation. The blue dots and black
crosses represent, respectively, the incidence estimation curve and
the retrospective survey data of laboratory-confirmed cases in the
literature [37]. The light blue shaded region represents the 95%
confidence interval of the estimation.

of the epidemic trend [4,31], we divide the epidemic pro-
cess in terms of the fraction of the transition from the M
to the F state into five stages. As shown in Table III, the
time periods and the transition fractions of the five stages are
[31]: from 8 December 2019 to 10 January 2020 with the

TABLE V. Actual medical resource deployment plan for Wuhan,
China [34].

Date Beds(ICU+General ward)

2020/2/1 842
2020/2/2 842
2020/2/3 1962
2020/2/4 2234
2020/2/5 2264
2020/2/6 2515
2020/2/7 2657
2020/2/8 2911
2020/2/9 3263
2020/2/10 4307
2020/2/11 4461
2020/2/12 5873
2020/2/13 6078
2020/2/14 6636
2020/2/15 6926
2020/2/16 7035
2020/2/17 7067
2020/2/18 7225
2020/2/19 7296
2020/2/20 7560
2020/2/21 7560
2020/2/22 7844
2020/2/23 7844
2020/2/24 7936
2020/2/25 8194

TABLE VI. Actual medical resource deployment in Lombardy,
Italy [38].

Date Beds(ICU) Beds(General ward)

2020/2/24 19 76
2020/2/25 25 79
2020/2/26 25 79
2020/2/27 41 172
2020/2/28 47 235
2020/2/29 80 256
2020/3/1 106 406
2020/3/2 127 478
2020/3/3 167 698
2020/3/4 209 877
2020/3/5 244 1169
2020/3/6 309 1622
2020/3/7 359 1661
2020/3/8 399 2217
2020/3/9 440 2802
2020/3/10 466 3319
2020/3/11 560 3852
2020/3/12 605 4247
2020/3/13 650 4435
2020/3/14 732 4898
2020/3/15 767 5500
2020/3/16 823 6171
2020/3/17 879 6953
2020/3/18 924 7285
2020/3/19 1006 7387
2020/3/20 1050 7735
2020/3/21 1093 8258
2020/3/22 1142 9439
2020/3/23 1183 9266
2020/3/24 1194 9711
2020/3/25 1236 10 026
2020/3/26 1263 10 681
2020/3/27 1292 11 137
2020/3/28 1319 11 152
2020/3/29 1328 11 613
2020/3/30 1330 11 815
2020/3/31 1334 11 883
2020/4/1 1342 12 009
2020/4/2 1351 12 009
2020/4/3 1381 12 009

fraction |P|M→F (1) = 53.10%; from January 11 to January
22 with |P|M→F (2) = 35.10%; from January 23 to February
1 with |P|M→F (3) = 23.50%; from February 2 to February
16 with |P|M→F (4) = 15.90%; and after February 17 with
|P|M→F (5) = 10.30% [31].

For Lombardy, the early epidemic can be divided into
three stages [32]. We add a new time point: March 21, 2020,
leading to a division into four stages. After (including) this
date, the intervention measures in Lombardy and Italy as a
whole reached maximum [33]. As shown in Table IV, the time
periods and the fractions associated with the four stages are
from 28 January 2020 to 19 February 2020 with |P|M→F (1) =
63%; from February 20 to February 25 with |P|M→F (2) =
61%; from February 26 to March 20 with |P|M→F (3) = 56%
[32]; after March 21 with |P|M→F (4)=32.21%.
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FIG. 8. Remaining resources of GW and ICU in Wuhan after
two admission processes. The ordinate is on a logarithmic scale,
and the red and black dots indicate that the amounts of remaining
resources of Wuhan ICU and GW at time t are �QU (t ) and �QG(t ),
respectively. The missing areas of the red and blue dots represent the
period of �QU = 0 and �QG = 0, respectively.

By using the weighted least-squares method, we obtain
the optimal estimates of the parameters. In particular, for the
Wuhan scenario, we obtain the optimal set of parameters � =
(|P|F→C, |P|G→W ) by minimizing the sum of the weighted
difference squares between the reported death curve [23,34]
D(ti ) and the model fitting value F (ti, �) (i = 0, 1, . . . , n −
1), where

�̂ = argmin
∑

i

wti [F (ti, �) − D(t − i)]2. (B1)

To quantify the uncertainties of parameter estimation, we
resort to the general bootstrap method [35,36] and then ob-
tain the 95% confidence interval of the estimated parameter
values. As shown in Table II, the optimal values and 95% con-
fidence interval of the average transition fractions from G to
W state and from F to C state in Wuhan are |P|∗F→C=23.26%
(21.24%, 28.55%) and |P|∗G→W =20.76% (18.15%, 24.56%),
respectively.

FIG. 9. Effects of varying ICU deployment plan in Lombardy,
Italy. The black curve shows Lombardy’s actual ICU medical re-
source deployment plan, as displayed in Table IV. The blue and red
curves show the two cases where Lombardy’s government would
delay the deployment of ICU resources by two weeks (DT = 14 and
RI = 1) and the ICU resource is expanded by a factor of 1.5 (DT = 0
and RI = 1.5), respectively.

For Lombardy, the required optimal parameters are
� = (|P|M→F (4), |P|F→C, |P|G→W ). As shown in Tables II
and IV, the optimal values and the 95% confidence in-
tervals of the average transition fractions in Lombardy
are |P|∗M→F =32.21%(29.33%, 34.14%), |P|∗F→C=56.45%
(53.33%, 65.23%, and |P|∗G→W =41.22% (39.24%, 55.43%,
respectively.

2. Incidence dates estimated from the confirmed data

According to the average time delay from the onset date to
the diagnosis date of laboratory-confirmed cases in the litera-
ture [31,32], we determine the distributions of state transition
delay from onset to diagnosis for Wuhan and Lombardy using
a backtracking method based on non-Markov processes that
we have developed, where the incidence dates are deduced
from the confirmed cases. We designate a new state, the J
state that occurs after M state, to denote that a patient has
been confirmed. The deduction process from J to M state is
described by the following difference equations:

J (τ + dτ ; t − dt ) = [1 − ωJ→M]J (τ ; t )dτ,

ZM (t − dt ) =
∫ +∞

0
J (τ ; t )ωJ→M (τ )dτ,

J (0; t − dt ) = ZJ (t ), (B2)

where ωJ→M (τ ) is the conditional rate of transition from J to
M states with state age τ , with the specific form

ωJ→M (τ ) = fJ→M (τ )∫ +∞
τ

fJ→M (τ ′)dτ ′ ,

with fJ→M (τ ) being the probability density function of the
transition time delay from J to M state. For Wuhan and Lom-
bardy, the state transition delays are assumed to follow the
Gamma distribution with the mean value of 9.5 and 7.3 days,
respectively. The quantities ZM (t ) and ZJ (t ) are the numbers
of new patients in the M and J states in the time interval
(t, t + dt ), respectively, where the former is our estimated
value and the latter is the newly reported, daily confirmed
data. We validate the accuracy of this method using data

TABLE VII. Comparison of different medical resource deploy-
ment plans (simultaneously adjusting GW and ICU resources).

Simulated death toll

Wuhan Lombard

The actual deployment 2553 16363
Sufficient resources Decrease by 33% Decrease by 22%
Deploy 7 days in advance Decrease by 14% Decrease by 3.4%
Deploy 14 days in advance Decrease by 18% Decrease by 4%
7 days delay in deployment Increase by 36% Increase by 14%
14 days delay in deployment Increase by 57% Increase by 28%
Resource input *0.5 Increase by 43% Increase by 26%
Resource input *2 Decrease by 22% Decrease by 15%
Resource input *5 Decrease by 32% Decrease by 22%
Deploy 7 days in advance Decrease by 30% Decrease by 17%

and invest resources *2

033209-16



QUANTITATIVE ASSESSMENT OF THE EFFECTS OF … PHYSICAL REVIEW RESEARCH 4, 033209 (2022)

FIG. 10. Changes in the number of deaths and overload days for simultaneous GW and ICU resource deployment for Wuhan and Lombardy.
[(a) and (b)] Numbers of deaths in Wuhan and Lombardy, respectively. [(c) and (d)] GW ward overload days in Wuhan and Lombardy,
respectively. [(e) and (f)] ICU ward overload days in Wuhan and Lombardy, respectively.

from early laboratory-confirmed cases in Lombardy (January
28-February 27, 2020) [37], as shown in Fig. 7.

There are 50 008 laboratory/clinically confirmed cases in
Wuhan, and 93,901 such cases in Lombardy. We use the same

backtracking method to trace the onset time of the nonlabo-
ratory confirmed cases. The incidence dates of all confirmed
cases is April 15 for Wuhan and June 30 for Lombardy.

FIG. 11. Change in overload days for fixed ICU resource deployment and varying GW resource deployment. [(a) and (b)] Overload days
of GW in Wuhan and Lombardy, respectively. [(c) and (d)] Overload days of ICU in Wuhan and Lombardy, respectively.
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FIG. 12. Change in overload days for fixed GW resource deployment and varying ICU resource deployment. [(a) and (b)] Overload days
of GW in Wuhan and Lombardy, respectively. [(c) and (d)] Overload days of ICU in Wuhan and Lombardy, respectively.

3. Actual medical resource deployment

In response to an emerging public health event, the gov-
ernment usually adopts the policy of gradual deployment of
medical resources to designated hospitals. The dedicated med-
ical resources in an area typically slowly increase with time.

As shown in Tables V and VI, we collect medical resource
deployment data dedicated to COVID-19 patients in Wuhan
and Lombardy, which include GW and ICU beds [34,38].
For Wuhan, we count the number of open beds in critical
hospitals. As the official reports do not distinguish GW beds
from ICU beds, we assume that ICU beds account for 4% of
the total beds [39].

APPENDIX C: PARAMETERS OF MEDICAL RESOURCE

1. Health care system stress metrics

In addition to the final number of deaths, the load of lo-
cal special medical resources for COVID-19 patients is also
an important indicator to measure the stress of the medical
system. We simulate and obtain the full-load working days of
GW and ICU in Wuhan and Lombardy during the recovery
stage, denoted as OG and OU , respectively. When the GW or
ICU is under full load, no new patients can be admitted.

In Fig. 8, the remaining ICU resources after ICU admission
I/II at time t is denoted as � QU (t ), and the corresponding
quantity for GW is � QG(t ), which are given by

OU =
∫ Te

Ts

δ[�QU (t )]dt and OG =
∫ Te

Ts

δ[�QG(t )]dt,

(C1)

where δ(∗) is the Dirac-δ function, the integration interval is
the whole recovery stage, Ts and Te represent the starting and
ending time of the recovery stage, respectively. For example,
Ts in Wuhan is December 8, 2019 and Te is April 16, 2020.
The time interval is set to be dt = 0.01 day.

2. Deployment plan of dedicated medical
resources for COVID-19

The deployment plan of local officially dedicated medical
resources is determined by two key factors: the deployment
time DT and resource input RI, where DT is the time for local
authorities to start the deployment of the dedicated medical
resources and RI represents the financial and personnel invest-
ment of the dedicated medical resources as characterized by
the open GW and ICU beds.

Figure 9 shows the effects of varying ICU deployment
plan in Lombardy, where the black curve represents Lom-
bardy’s current dedicated ICU deployment plan. The actual
deployment time serves as the benchmark DT = 0 and the
actual resource input is RI = 1. The left blue arrow indicates
the scenario where the Lombard authorities had delayed the
deployment time by two weeks (DT = 14 and RI = 1), and
the red up arrow corresponds to the scenario where the offi-
cial resource input had been increased by 50% (DT = 0 and
RI = 1.5).

3. Effects of varying medical resource deployment on death toll

We study the impacts of varying both GW and ICU re-
sources on the number of deaths. As shown in Table VII
and Fig. 10, if resources had been deployed one week in
advance, the death toll in Wuhan and Lombardy would have
been reduced by 14% and 3.4%, respectively. If the input of
resources had been doubled, the death toll would have been
suppressed by 22% and 15%, respectively. If the deployment
had been one week ahead of the actual time and the input of
resources had been doubled, the death toll would have been
reduced by 30% and 17% in Wuhan and Lombardy, respec-
tively, indicating that varying the two factors simultaneously
can be more effective at reducing the death toll. Figure 11
demonstrates the change in the ward overload days when GW
deployment is modified while ICU deployment is unchanged.
Figure 12 displays the change in the ward overload days when
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TABLE VIII. Reference transition fraction matrix among states and age distribution of patients in M state.

Parameter(Reference matrix) Estimate/assumption Definition Justification

RM→F Wuhan [0.0953 0.2430 0.2730] Reference transformation matrix from M to F state [12]
Lombard [0.0827 0.2430 0.2730]

RF→C/G→W Wuhan [0.0982 0.1419 0.2393] Reference transformation matrix Fitting according to the
from F/G to C/W state reported death data fitting

Lombard [0.1249 0.2240 0.2393]
RU→D Wuhan/Lombard [0.2297 0.7727 0.8571] Reference transformation matrix from U to D state [19]
DM Wuhan [0.8240 0.1260 0.0500] Age group distribution matrix of M-state patients [21]

Lombard [0.6050 0.1420 0.2530]

GW deployment is unchanged but the ICU deployment plan
is modified.

APPENDIX D: ESTIMATION OF STATE TRANSITION
FRACTIONS FOR DIFFERENT AGE GROUPS

In the main text, we divide the patients in Wuhan and
Lombardy into three age groups: [0-69], [70-79] and [80+], at
intervals of actual mortality rate 10%. The transition fractions
from M to F state, from G to W state, from F state to C
state and the ICU mortality rates are different for different age
groups. We articulate a linear regression method to estimate
the state transition fractions for different age groups. Take
as an example the transition from M to F state. We first
introduce the matrix of average transition fraction, as (detailed
in Appendix B)

|P|M→F =
⎛
⎝|p|M→F

1
...

|p|M→F
1

⎞
⎠, (D1)

where |p|M→F
i represents the average transition fraction from

M to F state at stage i. The age distribution of patients in the
M state at different stages is

DM =
⎛
⎝dM

1,1 · · · dM
1,y

...
. . .

...

dM
s,1 · · · dM

s,y

⎞
⎠, (D2)

where dM
i, j is the fraction of patients in age group j among

all patients at stage i. We then define the matrix of average
transition fraction from M sto F state in different age groups
as

RM→F = [
rM→F

1 · · · rM→F
y

]
, (D3)

where rM→F
j is the average transition fraction from M to F

state in the jth age group during the whole recovery period.
The parameters can be obtained empirically. We make a

linear transformation of matrix RM→F to obtain the estima-
tion of the fraction of the M-state patients to F state whose
weighted average transition fraction is |P|M→F . The linear

FIG. 13. Mortality rate of different age groups and evolution of the number of deaths. (a) Empirical data of mortality rate of different age
groups in Wuhan versus model prediction. (b) Change in the number of deaths by age groups in Wuhan. (c) Empirical mortality data for all age
groups in Lombardy vs model prediction. (d) Number of deaths in Lombardy in each age group. In (a) and (c), the legends from top to bottom
are age [0-9] to [80]. In (b) and (d), the light blue and pink cylinders, respectively, represent the actual and simulated mortalities in each group,
where the x axis marks the groups with growing age.
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FIG. 14. Weighted state age of each age group. (a) Initial state age of the three groups of patients. (b) The state age of the second group is
translated by 30 units and fixed as a benchmark. (c) The state age of the first group is translated by 44 units, and that of the third group remains
unchanged. (d) The state age of the third group is translated by 44 units, and that of the first group remains unchanged. The width of each box
represents the maximal state age of each age group.

transformation LT of different stages is given by

LT = |P|M→F

DM · RT
M→F

, (D4)

Finally, the transition fractions from M state to F state for
different age groups are

PM→F = LT · ext(1, y) · RM→F =
⎛
⎝pM→F

1,1 · · · pM→F
1,y

...
. . .

...

pM→F
s,1 · · · pM→F

s,y

⎞
⎠,

(D5)

where the rows represent stages, the columns represent
groups, and pM→F

i, j denotes the transition fraction from M to F
state in the jth age group at stage i. ext(n, m) is an auxiliary
matrix of n rows and m columns whose elements are all one.
The patient age distribution matrix DF is

DF =
⎛
⎝pM→F

1,1 · dM
1,1 · · · pM→F

1,y · dM
1,y

...
. . .

...

pM→F
s,1 · dM

s,1 · · · pM→F
s,y · dM

s,y

⎞
⎠. (D6)

Where R and DM and | P | are known (see Tables III and
VIII.). Similarly, we can obtain the estimation of the tran-
sition fractions among other states for different age groups
at different stages. To simplify the model, we assume that
the age distribution of M-state patients at each stage is iden-
tical (dM

1, j = dM
2, j = . . . = dM

s, j, j = 1, 2, . . . , y), as shown in
Table VIII. The reference transition fraction matrix among the
states is also given in Table VIII. Finally, as shown in Fig. 13,
we divide the patient population into nine groups.

APPENDIX E: A SCHEME TO REALIZE DIFFERENT
ADMISSION STRATEGIES: TRANSLATION WEIGHTING

We have developed a translation weighting scheme to
achieve different admission strategies. We set the priority
weight of the ith age group as wi and denote τi as the state
age of the ith age group. After weighting, the new state age τ ′

i
becomes

τ ′
i = τi + wi. (E1)
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TABLE IX. Average wards per 100 000 people.

General ward beds ICU beds
Country/Resource per 100 000 people per 100 000 people

China 400 3.6
Korea 530 10.6
Italy 333 12.5
Spain 269 9.7
Justification [40]

The state age of patients in the age group i is increased by wi

units (days). The patients are then admitted according to the
weighted state age under FCFS.

We divide the patients into three age groups, which are
patients younger than 70 years old, patients between 70 and 80
years old, and patients older than 80 years. Figure 14 presents
examples of several weight combinations. For example, in
Fig. 14(b), the weights of the three age groups are w1 = 0,
w2 = 30, and w3 = 0, respectively. The state ages of the three
age groups after weighting are also illustrated.

TABLE X. Proportion of confirmed cases in each age group in
each country.

Age distribution of confirmed cases

Groups/Country China Italy Korea Spain

0–9 0.009312 0.006245 0.012344 0.002639
10–19 0.01229 0.008122 0.052919 0.005433
20–29 0.081013 0.04061 0.272823 0.05018
30–39 0.170129 0.069164 0.106507 0.096366
40–49 0.191865 0.128128 0.133589 0.150725
50–59 0.224033 0.198045 0.183732 0.186374
60–69 0.192134 0.173838 0.126316 0.165787
70–79 0.087706 0.185173 0.066411 0.158476
80+ 0.031519 0.188301 0.045359 0.18402
Justification [41]

APPENDIX F: MEDICAL RESOURCES PER CAPITA AND
THE AGE DISTRIBUTION OF CONFIRMED CASES IN

FOUR COUNTRIES

We collect data on ward resources per 100 000 people per
capita in China, South Korea, Italy, and Spain, as well as the
fractions of COVID-19 confirmed cases in each age group, as
shown in Tables IX and X.
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