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Machine learning prediction of network dynamics with privacy protection
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Predicting network dynamics based on data, a problem with broad applications, has been studied extensively
in the past, but most existing approaches assume that the complete set of historical data from the whole network
is available. This requirement presents a great challenge in applications, especially for large, distributed networks
in the real world, where data collection is accomplished by many clients in a parallel fashion. Often, each client
only has the time series data from a partial set of nodes, and the client has access to only partial time stamps of the
whole set of time series data and the partial structure of the network. Due to privacy concerns or license-related
issues, the data collected by different clients cannot be shared. Accurately predicting the network dynamics while
protecting the privacy of different parties is a critical problem in modern times. Here, we propose a solution based
on federated graph neural networks (FGNNs) that enables the training of a global dynamic model for all parties
without data sharing. We validate the working of our FGNN framework through two types of simulations to
predict a variety of network dynamics (four discrete and three continuous dynamics). As a significant real-world
application, we demonstrate successful prediction of state-wise influenza spreading in the USA. Our FGNN
scheme represents a general framework to predict diverse network dynamics through collaborative fusing of the
data from different parties without disclosing their privacy.
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I. INTRODUCTION

This paper deals with the problem of predicting complex
network dynamics from distributed data without compromis-
ing the privacy of the data sources. In particular, given a large
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network whose dynamics are unknown and given that only
local historical data or time series are available through mea-
surements conducted by different parties (clients or agents),
the objective is to accurately predict the dynamical evolution
of the network for a number of time steps under the con-
straint of no data sharing of any kind among the clients. To
paraphrase, among the clients who performed the measure-
ments, there can be no communication of any sort because of
privacy considerations. This problem of predicting network
dynamics without privacy disclosure is significantly more
challenging than previously studied inverse problems in the
field of reverse engineering of networked dynamical systems.
The main contribution of this paper is the articulation and
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validation of an effective machine-learning-based solution to
this problem.

Inferring or reconstructing the dynamical process on a net-
work based on time series data has been an active field in the
past two decades [1,2]. A diverse array of methodologies have
been proposed, including those based on the collective dy-
namics [3–7], stochastic analysis [8,9], compressive sensing
[10–15], and machine learning [16–19]. In nonlinear dynam-
ics, the research on data-based identification and forecasting
of system dynamics has an even longer history [20,21]. For
example, an earlier approach focused on approximating a non-
linear system by various linear equations in different regions
of the phase space so that the local Jacobian matrices can
be constructed [20,22,23] or the ordinary differential equa-
tions can be found to fit the data [24]. Methods based on
chaotic synchronization [25] for estimating the system param-
eters were also investigated. Of particular importance is the
approach to finding the system equations (hence the system
dynamics) from data. This “natural” approach dates back to
the original work of Crutchfield and McNamara [26], who
exploited the concept of qualitative information to deduce the
effective equations of motion of the system responsible for
the deterministic portion of the observed random behavior. An
inverse Frobenius-Perron approach to generate a dynamical
system close to the original system in the sense of the invariant
density was proposed [27]. The Kronecker product represen-
tation was also used for modeling and nonlinear parameter
estimation [28]. In the past decade, sparse optimization meth-
ods, e.g., compressive sensing [29,30], were introduced for
finding the system equations from data [10–12,15,31] for non-
linear and complex dynamical systems whose velocity fields
or mapping functions are describable by a number of fairly
elementary mathematical functions. This equation-finding ap-
proach, while appealing and satisfying from a mathematical
point of view, may not have significant practical value in
real-world applications, as the dynamical processes there of-
ten cannot be described by a collection of simple functions.
Even in cases where an approximate set of equations can be
found, sensitivity to small errors typically seen in nonlinear
and complex dynamical systems can lead to large deviations
between the dynamics as predicted by the equations and the
ground truth. In these situations, machine learning has gained
recent attention as a viable approach to predicting dynamics
from data [17,18,32–41].

To our knowledge, the increasingly critical issue of pri-
vacy has not been addressed in the literature on data-based
prediction of network dynamics. In fact, a tacit assumption
employed in the current literature on data-based prediction of
network dynamics is that the observed data are transparent
and available to all the observers, which include the network
structure and the time series data, as schematically illustrated
in Fig. 1(a). If all the data are collected by a single client,
privacy is not an issue. However, in applications, practical
limits such as the cost of observations and the timeliness
render it necessary to employ different clients to collect the
data [42]. For example, disease-related data at different times
and/or in different regions are often collected by multiple
parties, which cannot be shared due to the requirements of
data security and privacy protection, leading to the emer-
gence of so-called “data islands” [43,44]. In the era of big

⋯⋯

FIG. 1. Scenarios of multiparty data collection and the proposed
FGNN framework for predicting the network dynamics without com-
promising privacy. (a) Data collection without privacy protection.
Clients 1 and 2 are two local clients. The rectangular boxes rep-
resent the time series data of the nodes with the color of the box
indicating the data at different time stamps. In this case, each client
has complete time series data of the nodes and complete information
about the network structure; so the information possessed by either of
the clients is transparent to the other client, i.e., there is no privacy.
(b) Each client collects only partial time stamps of the time series
data with incomplete knowledge about the network structure (sce-
nario 1). (c) Each client collects only the time series data from partial
nodes but with complete knowledge about the network structure
(scenario 2). (d) Proposed FGNN framework for predicting network
dynamics without compromising privacy.

data analytics and machine learning, data have significant
commercial, security, and applied value. While the pertinent
entities are able to better accomplish their goals with more
data, privacy protection puts a limit on how many data any
individual client is able to acquire. For network dynamics,
more time series data and more information about the network
structure are certainly beneficial to achieving higher accura-
cies in predicting the dynamical evolution, but the data need to
be collected by individual clients for whom privacy may be of
great importance. A key question with practical significance is
how to coordinate the network structure and time series data
distributed in different organizations to improve the accuracy
of dynamics prediction, without compromising privacy.

Existing cooperative data-learning methods include se-
cure multiparty computing [45], multitask learning [46], and
federated learning [47]. As a distributed machine learning
technology with privacy protection where data fusion can be
achieved among the parties without leaking their private data
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[48], federated learning has gained much interest in applica-
tions such as traffic flow prediction [49] and recommendation
systems [50]. Federated learning has also been exploited for
graph representation learning [51,52] and its downstream
tasks such as node classification, link prediction, and graph
classification [53–55]. The basic principle underlying feder-
ated learning is that each client trains a local model with local
data, and a joint global model is generated by aggregating
the parameters of the local models [56]. Whether the feder-
ated learning framework can predict the network dynamics
and how to use it to predict the network dynamics based on
multiparty data have not been considered. To this end, we
set out to develop a framework based on federated graph
neural networks (FGNNs) to predict the network dynamics
from distributed time series data through jointly learning an
optimal global dynamics model without exposing the data of
each party, i.e., without compromising privacy.

The problem of predicting the network dynamics without
compromising privacy is significantly more challenging than
that of inferring the network structure, for the following three
reasons. First, different clients record only partial time series
data (partial time stamps or partial nodes) of the network
dynamics. Second, it is necessary to learn the rules of the
dynamical evolution from the data. Third, the network data
held by different clients are in general not independent and
identically distributed (iid). To make the forecasting problem
with full privacy protection addressable at the present, in this
paper we focus on two data-collection scenarios. In scenario
1, each client collects only the partial time series data of all
nodes and the partial structure of networks, as illustrated in
Fig. 1(b). In scenario 2, each client has only the time series
data from a subset of nodes, but each client has complete
knowledge about the structure of the network, as shown in
Fig. 1(c). We demonstrate that the prediction performance of
the FGNN framework far exceeds that of the local models
obtained by the individual local clients through local data. We
also show that the FGNN framework is capable of predicting
the evolution of a diverse array of discrete and continuous
network dynamical processes. Overall, the FGNN framework
represents a powerful machine-learning-based approach for
predicting the global network dynamics from only local data
with guaranteed privacy protection.

II. THE PROPOSED FGNN FRAMEWORK

In this section, the architectures of the FGNN framework
and its details are described.

A. Basic principles of the proposed FGNN framework

Let G = {V, E} denote a given network, where V = {vi|i =
1, . . . , n} and E = {ei j |i, j = 1, . . . , n} are the sets of nodes
and edges, respectively. The available time series are orga-
nized into a data matrix X , where each row corresponds to
the time series of one node and each column is associated with
one time stamp of all nodes. The data matrix X is generated by
an unknown dynamical process D on the underlying network
(in this paper, four discrete and three continuous dynamics are
considered, and a detailed description of the various dynami-
cal processes is presented in Appendix B).

Let X t be a vector that stores the states of all nodes at time
t (i.e., a column of matrix X ), and the nodal state evolution
over time t is given by

X t+1 = D(X t , G). (1)

Suppose there are K clients, a client k views the network as its
own local network structure Gk , and the available time series
data are denoted as Xk (i.e., a submatrix of X ). The time series
data of client k are expressed as Xk = {X 1

k , . . . ,X Tk
k }, where Tk

is the length of the time series recorded by client k. In scenario
1, each client has partial time stamps of the whole time series
data X , and X t

k ∈ Rn×1 denotes the states of all nodes at time
t by client k. In scenario 2, the time series data held by each
client are at the same time stamp: Tk = T , k = 1, 2, . . . , K .
Let Vk be the nodal set whose time series data can be observed
by client k, where X t

k ∈ R|Vk |×1. The state of the node i at time
t is expressed as xt

k (i) = (X t
k )i.

Each client k can train a local machine learning model Mk

to generate the network dynamics based on its own data, with
a training parameter set denoted as θk . Because of the incom-
plete observation, the learning capability of any local model in
capturing the network dynamics is limited. To overcome this
limitation, we build up an FGNN framework by combining
the information of {G1, . . . ,GK} and {X1, . . . ,XK} to train a
global model M enabling us to better learn the dynamical
process and to accurately predict the future nodal states of
nodes. In particular, we have

M(X t , G, θ ) ≈ D(X t , G), (2)

where θ denotes the parameter set of the global model.
The overall framework of FGNN is illustrated in Fig. 1(d),

and it involves four main steps.
Step 1. The central unit initializes the model parameter set

θ0 and distributes it to each client.
Step 2. At the t th iteration, each client k uses the new

parameter set θ t to update its local model Mk . Each client k
takes the current states X t

k as the input at time t and outputs at
the next time step the nodal states Ŷ t

k = Mk (X t
k , Gk, θ

t
k ) based

on its own local network structure Gk . The real states used for
training are Y k

t = X k
t+1. To train the model, the loss function of

the local model is constructed by the real states and the output
as

L
(
θ t

k

) = 1

|Vk|
∑
i∈Vk

L
(
yt

k (i), ŷt
k (i)

)
, (3)

where L(yt
k (i), ŷt

k (i)) is the loss function of node i between
the real state and the predicted output. Once the loss function
is defined, the parameter set θ t+1

k of the local models can be
updated by a standard back-propagation neural network model
(see Sec. II B for further details).

Step 3. The updated parameters of all local models are sent
to the central unit, and the parameters of the global model θ

are aggregated by the weights {θ1, . . . ,θK} expressed as

θ t+1 =
K∑

k=1

wkθ
t+1
k , (4)
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TABLE I. Neural network architectures for discrete and continuous dynamics. ReLU, rectified linear unit.

Discrete dynamics Continuous dynamics

Input layer One-hot (1, S) Linear (1,32)
Linear (S, 32) ReLU

ReLU
Hidden layer GCN (32,32) or GATN (32,32) GCN (32,32) or GATN (32,32)

ReLU ReLU
Output layer Linear (32, S) Linear (32,1)

Softmax ReLU
Loss function Cross-entropy loss Mean-square loss

where wk is the aggregation weight measuring the quality of
the data of client k; details are given in Sec. II C. The new
updated parameter set θ t+1 is sent back to each client.

Step 4. Steps 2 and 3 are repeated until the loss function
converges or a given number of training times is reached, and
the global FGNN model is the trained joint model.

B. Local model and loss functions

We use a three-layer neural network to construct the local
model. To address the fact that our framework can incorporate
different graph neural network (GNN) models, two widely
used GNNs, i.e., the graph convolutional network (GCN) and
the graph attention network (GATN), are used in the hidden
layer. The input of the model is the nodal states data matrix X .
For discrete dynamics, one-hot coding is used as the inputs.
For continuous dynamics, the continuous dynamical variables
are taken directly as the inputs. The states of the nodes are
embedded into a d-dimensional feature space through a linear
layer f1 : RS → Rd , where S denotes the dimension of the
inputs. The second layer utilizes GCN or GATN to aggregate
the information from the neighbors of a node. The model
outputs the prediction Ŷ through a linear layer.

The output of the discrete dynamics is the normalized prob-
ability vector P̂i that the node i belongs to different discrete
states, with the element p̂i,m being the prediction probability
of node i in the mth state. The state with the highest proba-
bility in the vector is taken as the predicted state ŷ(i) of node
i. The cross-entropy (CE) loss function is used for discrete
dynamics and is defined as

LCE(Pi, P̂i ) = −
∑

m

pi,mln p̂i,m, (5)

where Pi is the one-hot coding of the true state of node i and
pi,m is the mth element of the vector.

The output of the continuous dynamics ŷ is a one-
dimensional continuous variable. For continuous dynamics
prediction, we use the mean-square-error (MSE) loss func-
tion:

LMSE(y(i), ŷ(i)) = (y(i) − ŷ(i))2. (6)

The specific architectures of the neural networks for the dis-
crete dynamics and continuous dynamics are summarized in
Table I.

C. Weighted aggregation of parameters

We introduce a unified method to evaluate the quality of
the local data. Assuming that the amount of time series data
owned by each client k is |Dk| and the amount of network
structure data corresponds to the number of edges in those
data, denoted by |Ek|, we set the aggregation weight in model
k as

wk = 1

2

( |Dk|
|D1| + · · · + |DK | + |Ek|

|E1| + · · · + |EK |
)

. (7)

For scenario 1, each client k has the time series data of all
nodes at different time stamps (i.e., Tk) and the partial struc-
ture of the network (Gk). The aggregation weight in Eq. (4)
can be rewritten as

wk = 1

2

(
Tk

T1 + · · · + TK
+ |Ek|

|E1| + · · · + |EK |
)

. (8)

For scenario 2, all clients have the same network structure:
Gk = G, i = 1, 2, . . . , K , so it is not necessary to consider
the data quality. The length of time series data in all clients
is the same (the whole length of the original data), but each
client only records the time series data on a subset of nodes.
Consequently, the amount of data in each client k can be
simply denoted as |Vk|, yielding

wk = |Vk|
|V1| + · · · + |VK | . (9)

D. Evaluation metrics

For discrete dynamics, we use the accuracy index (ACC)
to measure the prediction accuracy, defined as

ACC =
∑
i∈VT

I(y(i) = ŷ(i))
|VT | , (10)

where I( · ) is an indicator function and |VT | is the number of
nodes in the test set VT . A larger value of ACC indicates a
higher prediction capability of the model.

For continuous dynamics, the differences between the true
and predicted values of the dynamical variables are taken to
be the prediction error. We choose two metrics to charac-
terize the error: the mean-square error (MSE) and the mean
absolute percentage error (MAPE). In particular, we use the
MAPE to quantify the error for the mutualistic interaction
dynamics among species in ecology (Mutualistic) and the
gene regulatory dynamics (Gene). For coupled map lattice
dynamics (CML), the values of the nodal dynamical variables

043076-4



MACHINE LEARNING PREDICTION OF NETWORK … PHYSICAL REVIEW RESEARCH 4, 043076 (2022)

TABLE II. Five-step prediction performance of the GCN model—a basic component of the FGNN—for different types of network dynamics.

ACC (discrete dynamics) σ (continuous dynamics)

SIR SIS Threshold Kirman Gene Mutualistic CML

T + 1 0.87 0.85 0.80 0.92 0.672 1.168 0.025
T + 2 0.83 0.78 0.75 0.85 0.756 1.460 0.024
T + 3 0.78 0.75 0.73 0.83 0.820 1.647 0.024
T + 4 0.82 0.71 0.74 0.79 0.963 1.740 0.033
T + 5 0.80 0.70 0.72 0.81 1.001 1.718 0.030

are in the unit interval, and y(i) is in the denominator of the
MAPE metric. The value of the MAPE can be large when y(i)
converges to zero; so we use the MSE metric for CML, where
σ is defined as

σ =
⎧⎨
⎩

1
|VT |

∑
i∈VT

|y(i)−ŷ(i)|
y(i) , Mutualistic or Gene

1
|VT |

∑
i∈VT

(y(i) − ŷ(i))2, CML.

(11)

III. PERFORMANCE CHARACTERIZATION AND
DEMONSTRATION

A. Generation of training data

First, the time series data of all nodes are generated by cer-
tain dynamics. If a dynamical process leads to a steady state,
it is not possible to uncover the network dynamics. To ensure
that sufficiently long time series data can be obtained, the
states of nodes are reinitialized after some steps of evolution
so as to prevent the states of nodes from entering any steady
state. The states of the first time stamps are stored in the data

FIG. 2. Comparison of prediction performance of FGNN, local,
and centralized models for discrete dynamics for scenario 1. Shown
are the average values of ACC from different models. The FGNN
models significantly outperform the local models and demonstrate a
similar performance level to that of the centralized model but with
the desired advantage of full privacy protection.

matrix X as the input of the model, and the next time stamps
are stored in Y as the real states of nodes. For each client,
the time series data are generated by intercepting the original
data. Specifically, in scenario 1, each client uses the data of all
nodes in different time stamps as the training set. In scenario
2, each client records the whole length of the time series data
on some nodes only, and the states of the missing nodes in
the client are set as zero. This may lead to conflicts with
the state of nodes for discrete dynamics. Our solution is to
assign continuous values to the discrete states when training a
discrete dynamics model in scenario 2. By so doing, the model
and train method are the same as for continuous dynamics.
In addition, to reflect that each client only knows the partial
structure of the original network in scenario 1, we randomly
remove some edges following a uniform distribution.

B. Simulation settings of the FGNN

To present our results in a concise and clear way, here in
the main text we include results with the GCN (results with
GATN are deferred to Appendix C). Numerical experiments
are performed on three synthetic networks (scale-free (BA)
[57], small-world (WS) [58], and Erdős-Rényi (ER) random
[59]) and six real-world networks: Word [60], Caenorhabdi-
tis elegans (Cele) [61], U.S. air transportation (USAir) [62],
Metabolic (Meta) [63], Email [62], and Tap [64] (see Ap-
pendix A for the structural information of these networks).

For dynamical processes on networks, we use a diverse
array of discrete and continuous dynamics to demonstrate
the general applicability of our FGNN framework. In par-
ticular, we test four types of discrete dynamics (susceptible-
infected-recovered (SIR) epidemic spreading dynamics [65],
susceptible-infected-susceptible (SIS) dynamics [66], thresh-
old dynamics [67], and Kirman dynamics [68]) and three
types of continuous processes (i.e., gene regulatory dynamics
(Gene) [69], mutualistic interaction dynamics among species
in ecology (Mutualistic) [70], and coupled map lattice dy-
namics (CML) [37,71,72]). Detailed descriptions of these
dynamical processes are summarized in Appendix B.

In our simulations, the number of clients is K = 3, where
each client trains a local model individually based on the
local data. The local models can be conveniently chosen
as the baseline models, which are referred to as Local_1,
Local_2, and Local_3 for the three clients, respectively. A
centralized model (referred to as Center) is trained by us-
ing the full network structure and the full time series data.
The model Center serves only the purpose of comparison;
it has no privacy protection as it utilizes all information of
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FIG. 3. Comparison of prediction performance of FGNN, local,
and centralized models for continuous dynamics for scenario 1.
Shown are the average errors σ for different models. As for the
case of discrete dynamics in Fig. 2, the FGNN models significantly
outperform the local models and present a similar performance level
to that of the centralized model but without compromising privacy.

the clients. Unless specified otherwise, the number of itera-
tions for federated aggregation in our FGNN framework is
set to be 10, and the learning rates of training the GCN and
GATN models are 0.001 and 0.0001, respectively. The test set
contains 20 time pairs (t , t + 1) of data. To reduce the statis-
tical uncertainties, the values of the results are averaged over
20 realizations.

C. Results for simulated network dynamics

In our FGNN framework, a basic component is a cen-
tralized GNN. To demonstrate that GNNs are capable of
predicting the network dynamics, we use the complete time
series data and network structure to train the parameters in the
GNNs. The length of the time series in discrete dynamics is
set as T = 200, and that for continuous dynamics is T = 100.
In the trained GNNs model, the nodal states at time T are
then taken as the inputs with the states at time T + 1 as the

prediction. Then, the predicted states at T + 1 are inputs to
the model to yield the predicted states at T + 2, and so on.
Table II presents the five-step prediction results of the GCN
model on a scale-free network for time from T + 1 to T + 5.
It can be seen that, for the four types of discrete dynamics,
when the true states of nodes are inputted at T , the value of
ACC at T + 1 is persistently larger than 80% (for the Kirman
dynamics, the value is about 92%). Subsequently, when the
predicted states are used as inputs, the ACC values somewhat
decrease, but they are still above 70% for the next five time
steps. For the continuous dynamics, Table II shows the error
σ between the predicted and true state values for times from
T + 1 to T + 5.

The results from predicting the continuous dynamics in-
dicate uniformly small prediction errors, regardless of the
specific types of processes. The results in Table II thus demon-
strate that the GCN model is capable of making accurate
short-term state predictions for different types of network
dynamical processes, paving the way for the model to be in-
corporated into our federated learning framework in which the
prediction task is accomplished by fusing data from different
clients with their privacy fully protected.

We can now present the prediction results of our FGNN
framework. For scenario 1 of data collection, each client k has
its own network structure Gk , which is not shared with others,
leading to three global prediction models (K = 3), denoted
as FGNN_k = M(X , θ, Gk ) for k = 1, 2, 3. For this case, the
sampling probabilities of edges in the three clients are set
as 80, 60, and 50%, respectively. All clients are assumed to
have the same nodal set, and the nodes without edges are
treated as the isolated nodes. For the four types of discrete
dynamics, the lengths of the time series in the three clients
are set as 50, 30, and 20, respectively. For the three types of
continuous dynamics, the lengths of time series data in the
three clients are set as 20, 15, and 15, respectively. The three
local models [Local_k = Mk (Xk, θk, Gk )] and the centralized
model (Center) serve as the baseline models for comparison.
For clarity, here we present the average results from the three
FGNNs and three local models, denoted as FGNN_av and
Local_av, respectively.

Figure 2 shows, for data scenario 1, the ACC values for
the FGNN, local, and centralized models in predicting the
discrete dynamics taking place on different networks. It can

TABLE III. For scenario 2, prediction performances of different models in terms of the MSE for four types of discrete dynamics for
synthetic and real-world networks. The best performance in each row is highlighted in bold.

Dynamic SIR SIS Threshold Kirman

method FGNN Local_av Center FGNN Local_av Center FGNN Local_av Center FGNN Local_av Center

Scale-free 1.371 1.560 1.495 0.923 1.533 1.216 0.654 4.627 1.531 0.992 5.487 4.402
Small-world 1.111 1.619 1.530 0.818 1.331 1.065 0.449 0.767 0.473 0.432 0.924 0.466
ER random 1.328 1.768 1.654 1.024 1.341 1.311 0.663 1.972 1.279 0.722 1.012 0.790
Word 2.243 3.549 2.229 1.218 2.380 1.651 0.416 0.656 0.557 0.363 0.386 0.386
Cele 1.629 2.232 1.430 1.309 2.193 1.688 0.331 0.367 0.330 0.526 0.458 0.436
USAir 1.879 3.085 1.716 1.291 1.538 1.271 0.465 0.981 0.502 0.458 0.612 0.514
Meta 1.358 1.220 1.241 1.276 1.645 1.106 0.516 0.596 0.507 0.860 1.815 0.468
Email 1.255 2.042 1.666 1.140 1.522 1.058 0.422 0.535 0.514 0.463 0.594 0.494
Tap 1.206 1.215 1.370 1.452 1.722 1.437 0.501 0.878 0.779 0.633 0.839 0.918
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TABLE IV. For scenario 2, prediction performances of different models in terms of σ for three types of continuous dynamics for synthetic
and real-world networks. The best performance in each row is highlighted in bold.

Dynamic Gene Mutualistic CML

method FGNN Local_av Center FGNN Local_av Center FGNN Local_av Center

Scale-free 1.165 1.432 1.406 1.245 1.781 1.480 0.529 0.839 0.426
Small-world 1.331 1.714 1.648 1.815 2.419 1.941 0.358 0.990 0.356
ER random 0.797 0.878 0.766 1.577 1.847 1.616 0.648 0.888 0.395
Word 0.800 1.046 0.870 1.113 1.275 1.223 0.538 0.959 0.581
Cele 0.889 1.448 0.793 1.574 2.003 2.098 0.404 0.878 0.416
USAir 1.230 1.393 1.415 1.619 2.192 2.240 0.481 0.829 0.645
Meta 1.402 1.323 1.076 1.992 1.967 1.719 0.462 0.702 0.477
Email 1.161 1.480 1.289 1.522 2.152 1.886 0.298 0.325 0.281
Tap 1.322 1.540 1.587 2.372 2.921 2.779 0.413 1.376 1.279

be seen that the FGNN models persistently outperform the
local models in terms of the ACC values and can present a
similar performance level to that of the centralized model.
Considering that there is no privacy protection in the cen-
tralized model as it requires complete time series data and
complete information about the network structure, our FGNN
models are desired as they offer full privacy protection. Fig-
ure 3 further compares the performance of different models in
predicting the continuous network dynamics in terms of the
measure σ , which again indicates that our FGNN framework
gives significantly better prediction results than those from the
local models and similar performance to that of the centralized
model. The results in Figs. 2 and 3 thus demonstrate that our
FGNN framework can effectively combine data from multiple
parties or fuse local data information to train a better global
network dynamic model without disclosing private data, re-
gardless of the types of network dynamics and structure. For
data scenario 2, different clients collect the time series data
from a subset of nodes, but each client possesses the same
global network structure, so there is only one global federated
learning model, denoted as FGNN = M(X , θ, G). For this
case, the length of the time series for the four types of discrete
dynamics is set to be 50, and the length of time series data
for the three types of continuous dynamics is set to be 20.
In addition, the percentages of the nodes with data in the
three clients are 70, 80, and 80%, respectively. As we have
mentioned in Sec. III B, for scenario 2, we treat the discrete
state as the continuous state to avoid the adverse consequence.
Therefore the MSE index is selected as the evaluation metric
for the discrete network dynamics rather than the ACC index.
Table III presents the prediction results of discrete network
dynamics in terms of the MSE from different models. It can
be seen that in most cases the prediction results of our FGNN
framework with privacy protection are better than those of
the local models. For the centralized model, in spite of its
use of the complete data, the prediction performance is not
significantly better than that of our FGNN framework. Ta-
ble IV illustrates the prediction results for the three types of
continuous dynamics from different models. Similar to the
results in Table III, our FGNN model can predict the true
nodal states better than the local models, and its performance
is close to that of the centralized model.

To further demonstrate the robustness of our FGNN frame-
work, we study the impacts of the number of clients, the length
of time series data, and the embedding dimension d in the
linear layer on the prediction performance. To be illustrative,
we consider scenario 1 and use the SIR dynamics on scale-
free networks. Figure 4(a) shows the effect of the number
of clients, for K = 3 (the sampling probabilities of edges are
80, 60, and 50%, and the lengths of the time series are 50,
30, and 20), K = 4 (the sampling probabilities of edges are
80, 60, 50, and 60%, and the lengths of the time series are
50, 30, 20, and 15), and K = 5 (the sampling probabilities
of edges are 80, 60, 50, 60, and 50%, and the lengths of
the time series are 50, 30, 20, 15, and 10). As the number
of clients increases, the performance of the local models de-
creases, as each client possesses less information, i.e., fewer
time series data points and less structural information about
the network. In contrast, with more clients, our FGNN model

FIG. 4. Impacts of the number of clients (a) and the length of
time series (b) and the embedding dimension (dim) in the linear
layer (c) on the prediction performance for different models. The
dynamical process is of the SIR type, the network is of the scale-free
type, and data collection follows scenario 1. In all cases, our FGNN
model yields significantly better results than the local models.
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FIG. 5. Performance of two types of GNNs (without privacy
protection) in predicting the evolution of the influenza spreading in
four states in the USA. The black curves are the ground truth, and the
red dash-dotted and green curves are the predicted ILI* values using
the GCN (Pre_GCN) and GATN (Pre_GAT).

yields increasingly better performance—an intrinsic feature of
federated learning in general. Figure 4(b) presents the effect
of the time series length on the prediction performance for
the case of K = 3, where the length for each client is the
same for each simulation (10, 20, 30, 40, and 50). There is
no overlapping in the data for different clients. For example,
if the total length of the time series is T = 30 and there are
three clients, we set the data length for each client to be 10.
The sampling probabilities of edges in the three clients are set
as 80, 60, and 50%, respectively. It can be seen from Fig. 4(b)
that the ACC values from our FGNN model are persistently
higher than those from the local models for all cases. For
shorter time series, the advantage of our FGNN model is more
pronounced. As expected, as the data length increases, the pre-
diction performance of the local models is improved as each
client has more data to train the neural network. Figure 4(c)
shows the impact of the embedding dimension for the case
of K = 3; that is, the embedding dimension d is set as 32, 64,
128, and 256, respectively, the sampling probabilities of edges
are 80, 60, and 50%, and the lengths of the time series are 50,
30, and 20. As demonstrated in Fig. 4(c), the performance of
the FGNN model is robust to the embedding dimensions; in
particular, its performance is always better than that of the
local model for different embedding dimensions.

D. Results for real-world network dynamics:
Predicting influenza evolution

We further apply our FGNN framework to predicting the
dynamical states for a real-world problem: the outbreak of
influenza. The time series are from the U.S. weekly influenza-
like illness (ILI) database [73] for the 5-year time period from
the 40th week of 2011 to the 39th week of 2016, which records
the weekly number of ILI-related visits to all public health
and clinical laboratories in the country by the Centers for
Disease Control and Prevention (CDC). For data preprocess-
ing, we normalize the weekly ILI-related visits in each state
to calculate the ILI ratio, i.e., the percentage of the patients
with influenza among all visiting patients in each state [74].
We then use the data values in which the percentage of the
ILI ratio is removed to represent the state of the underlying
dynamical system, recorded as ILI*. The underlying network
supporting the influenza spreading across the different states
in the USA is identified by taking advantage of the commuting
traffic data in different states in 2015 to generate a network
of the population commuting between the states [75]. The
raw data are available from the website of the U.S. Bureau
of Statistics, and the data for commuting between the states
are obtained by aggregating the raw data (a detailed descrip-
tion of data processing and the data settings is provided in
Appendix D).

As for the various cases of synthetic dynamic data treated
in Sec. III C, the first step is to validate the effectiveness of
the GNNs. For this purpose, we use the influenza data at the
previous time steps to train the GNNs. The trained GNNs and
the ILI* of nodes (i.e., states) at the current time step are the
inputs for predicting the trend of the influenza at the next time
step. Figure 5 shows the true and the predicted values in terms
of ILI* for the first four states in an alphabetic list of U.S.
states. It can be seen that the predicted values fit well the
real evolution of the influenza in these states, and the peaks
of the influenza at several representative time points (i.e.,
outbreaks) can also be predicted. The results in Fig. 5 thus
demonstrate that the predicted dynamics can fit the evolution
of the influenza to a satisfactory extent.

Having demonstrated the performance of the two GNNs,
we can proceed to test the predictive power of our FGNN
framework and that of the baseline methods with respect to
the two data scenarios. The number of clients is set to be
K = 3. For data scenario 1, partial time stamps of all nodes
are collected, and the information about the structure of the
commuting network is incomplete. For scenario 2, the time
series data of partial nodes are used. Table V shows, for sce-
nario 1, the MSE values associated with the FGNN predictions
with the GCN and GATN models, the local models, and the

TABLE V. MSE values of the global FGNN model and the baseline models under data scenario 1 in predicting the evolution of influenza
in four states in the USA.

MSE FGNN_1 FGNN_2 FGNN_3 Local_1 Local_2 Local_3 Center

GCN 1.591 1.642 1.570 1.678 1.756 1.741 1.594
GATN 0.685 0.814 0.822 1.413 1.394 1.506 1.271
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TABLE VI. MSE values from the global FGNN and the baseline
models under data scenario 2 in predicting the evolution of influenza
in four states in the USA.

MSE FGNN Local_1 Local_2 Local_3 Center

GCN 1.600 1.622 2.584 2.499 1.852
GATN 1.227 1.646 1.352 1.808 1.684

centralized model. Regardless of whether the global model
is GCN or GATN, our FGNN models of the three clients
(FGNN_1, FGNN_2, and FGNN_3) can achieve better pre-
diction performance than those of the local models (Local_1,
Local_2, and Local_3). Table VI summarizes the MSE values
for the FGNN and baseline methods for scenario 2. It can
be seen that our global FGNN model also yields significantly
better prediction results than the baseline models.

IV. DISCUSSION

In our modern times, time series data generated from net-
work dynamical processes and the underlying structure of the
network are typically owned by different parties. There are
two possible data distribution scenarios that are amenable to
simulations and analysis at the present: scenario 1, in which
different clients have the data time stamps of all nodes but
each client has only partial information about the structure
of the network, and scenario 2, in which different clients
have the data from only a subset of nodes in the network but
each client has full knowledge of the network structure. To
combine multiparty data to better predict network dynamics
while protecting the privacy of the clients is a problem of great
importance and interest. We have proposed an FGNN frame-
work to address this problem. The essence of our prediction
framework is to combine the data from different clients to
jointly train a high-quality global model without disclosing
any private data. The framework is compatible with exist-
ing GNNs to learn network dynamics and predict the states
of nodes into the near future. We have used two classical
GNN models (GCN and GATN) to demonstrate the power
and effectiveness of our FGNN framework through extensive
numerical simulations of a good number of synthetic and
real-world networks as well as a variety of discrete and con-
tinuous network dynamics. Our systematic comparison of the
performances of our global FGNN model and baseline local
and centralized models under different conditions reveals that
the global model learned through the FGNN framework has
superior accuracy in predicting the dynamical evolution of the
network and is thus capable of better capturing the complex
relationship between dynamics and network structure. The
impacts of the number of clients, the length of time series data,
and the embedding dimension on the dynamics prediction
have been investigated, revealing the general applicability and
robustness of our FGNN framework.

A practically significant contribution of our work is the
demonstration of successful prediction of the evolutionary
trend of influenza in the USA by our articulated FGNN frame-
work without compromising privacy. In particular, any state in
the USA is regarded as a node in the network which we have
reconstructed using the state-crossing commuting data, and

TABLE VII. Basic structural information of six real networks.

Network n M 〈k〉 CC H

Word 112 425 7.589 0.173 1.815
Cele 297 2148 14.465 0.292 1.801
USAir 332 2126 12.807 0.749 3.464
Metabolic 453 2025 8.940 0.647 4.485
Email 1133 5451 9.622 0.220 1.942
Tap 1373 6833 9.953 0.529 1.644

the short-term dynamical evolution of the influenza spreading
dynamics on this network has been predicted. Our results
indicate that not only is the FGNN framework capable of
reproducing the actual time evolution of the influenza in the
states, but also the outbreaks (corresponding to peaks of the
dynamical evolution) can be faithfully predicted.

The two data scenarios treated in this paper are somewhat
specific. A more general scenario is that each client has partial
time series data from a subset of nodes and incomplete infor-
mation about the network structure. To predict the dynamical
evolution of the network without compromising data privacy
under this general scenario is an open question warranting
further investigation.
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APPENDIX A: STRUCTURAL INFORMATION OF
THE NETWORKS

Experiments are performed on three synthetic networks
and six real-world networks. The sizes of the synthetic
networks are 100 nodes. In particular, the scale-free (BA)
networks are generated with m = 2, where m is the number
of edges connecting to the existing nodes at each prefer-
ential attachment step. The small-world (WS) networks are
generated with the average degree 〈k〉 = 4 and reconnection
probability p = 0.3. The Erdős-Rényi (ER) random networks
are generated with the edge connection probability p = 0.08.
The structural information of the six real-world networks is
summarized in Table VII, where n and M are the numbers of
nodes and edges of the network, respectively, CC is the clus-
tering coefficient, H = 〈k2〉/〈k〉2 is the network heterogeneity,
and 〈k2〉 is the second moment of the degree distribution.

APPENDIX B: SEVEN TYPES OF NETWORK DYNAMICS

We describe the four types of discrete and three types of
continuous networked dynamical processes used in this paper,
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TABLE VIII. Five-step dynamics prediction results of the GATN model based on complete time series data and complete network structure.

ACC (discrete dynamics) σ (continuous dynamics)

SIR SIS Threshold Kirman Gene Mutualistic CML

T + 1 0.85 0.86 0.89 0.84 0.598 0.958 0.017
T + 2 0.73 0.80 0.84 0.81 0.602 1.086 0.021
T + 3 0.81 0.75 0.81 0.82 0.609 1.276 0.024
T + 4 0.82 0.74 0.74 0.83 0.724 1.512 0.027
T + 5 0.80 0.74 0.72 0.85 0.822 1.601 0.028

which all have been well studied to gain insights into a variety
of network phenomena in natural or social sciences.

SIR dynamic model. In the SIR model [65], at any time a
node can be in one of three states: susceptible (S), infectious
(I), and recovery (R). The I-state node can infect its S-state
neighbors with the infection rate λ. If an infection event is
successful, the infected node will change its state from S to I;
otherwise it will remain in the S state. The infected nodes will
recover to the R state with the recovery rate μ, and the R-state
nodes will not be infected again. In this paper, the parameter
values are set as λ = 0.2 and μ = 0.1. The states of all nodes
are randomly initialized after every five time steps.

SIS dynamic model. In the SIS model [66], there are two
distinct dynamical states only: S and I . An I-state node can
infect its susceptible neighbors with the infection rate λ and
recover to the S state with the recovery rate μ. In this paper,
the parameter values are set as λ = 0.2 and μ = 0.1. The

states of all nodes are randomly initialized after every ten time
steps.

Threshold dynamic model. In the threshold model [67],
nodes can be in one of two states: inactive (0) or active (1).
An inactive node is activated when the fraction of its active
neighbors is greater than an activation threshold of the node,
and an active node will not be restored again. In this paper,
the activation threshold for all nodes is set to be 0.5, and the
states of all nodes are reinitialized after every five time steps.

Kirman dynamic model. In the Kirman model [68], a
node can be in one of two states: 0 or 1. The transition
between the two states is based on two transfer functions. In
particular, the transfer function of the node from 0 to 1 is
given by c1 + dm1, and that from 1 to 0 is c2 + d (k − m1),
where c1 and c2 quantify the individual behavior of the node
that is independent of the neighbors’ states, k is the nodal
degree, d describes the probability of the node replicating a

FIG. 6. GATN-based FGNN model performance. Shown are the values of ACC from the global models and the baseline methods for the
four types of discrete dynamical processes under data scenario 1.
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FIG. 7. GATN-based FGNN model performance. Shown are the prediction error σ from the global models and the baseline methods for
the three types of continuous dynamical processes under data scenario 1.

neighbor’s state, and m1 is the number of “1”-state neighbors.
In our study, the parameters are set as c1 = 0.1, c2 = 0.1, and
d = 0.08.

The continuous networked dynamics employed in this pa-
per are one-dimensional with the state variable xi(t ) ∈ R for
node i at time t . The states of all nodes at time t can be rep-
resented by the vector X (t ) = [x1(t ), . . . , xn(t )]T ∈ Rn. The
differential equations governing the three types of continuous
dynamics in this paper are as follows.

Gene regulatory dynamics (Gene). The gene regulation
dynamics are expressed by the Michaelis-Menten equation
[69]:

dxi(t )

dt
= −uixi(t ) +

n∑
j=1

Ai j
(x j (t ))h

(x j (t ))h + 1
, (B1)

where the first item controls the decay of the current node
state, ui is the decay rate, and the second term captures gene
activation characterized by the Hill coefficient h. We use ui =
1 and h = 2. The states of all nodes are reinitialized after 50
time steps.

Mutualistic interaction dynamics (Mutualistic). The dif-
ferential equations governing the evolution of mutualism in
ecological systems [70,76] are

dxi(t )

dt
= ui + xi(t )

(
1 − xi(t )

li

)(
xi(t )

zi
− 1

)

+
N∑

j=1

Ai j
xi(t )x j (t )

αi + βixi(t ) + γix j (t )
, (B2)

TABLE IX. Values of the MSE from the global and baseline models for the four types of discrete dynamics for the GATN-based FGNN
under data scenario 2.

Dynamic SIR SIS Threshold Kirman

method FGNN Local_av Center FGNN Local_av Center FGNN Local_av Center FGNN Local_av Center

Scale-free 0.843 0.867 0.865 0.177 0.434 0.261 0.413 0.450 0.427 0.249 0.320 0.259
Small-world 0.897 1.034 1.220 0.146 0.172 0.136 0.245 0.301 0.311 0.259 0.308 0.342
ER random 0.649 0.669 0.655 0.242 0.267 0.211 0.224 0.261 0.302 0.242 0.301 0.265
Word 0.699 0.826 0.791 0.249 0.339 0.249 0.295 0.416 0.341 0.251 0.269 0.271
Cele 0.496 0.507 0.478 0.270 0.277 0.257 0.301 0.360 0.316 0.254 0.294 0.317
USAir 0.699 0.770 0.716 0.246 0.320 0.252 0.401 0.501 0.419 0.251 0.321 0.250
Meta 0.681 0.767 0.735 0.232 0.264 0.250 0.311 0.387 0.290 0.251 0.307 0.283
Email 0.696 0.749 0.771 0.251 0.291 0.284 0.257 0.366 0.759 0.251 0.316 0.290
Tap 0.632 0.669 0.701 0.253 0.288 0.254 0.250 0.284 0.245 0.246 0.298 0.347
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TABLE X. Values of the prediction error from the global and baseline models for the three types of continuous dynamics for the GATN-
based FGNN under data scenario 2.

Dynamic Gene Mutualistic CML

method FGNN Local_av Center FGNN Local_av Center FGNN Local_av Center

Scale-free 1.160 1.316 1.122 1.741 1.668 1.636 0.123 0.202 0.192
Small-world 1.258 1.242 1.139 1.141 1.254 1.264 0.156 0.222 0.313
ER random 0.774 0.807 0.743 1.349 1.297 1.308 0.191 0.259 0.101
Word 0.774 1.045 0.884 1.655 1.675 1.442 0.229 0.240 0.146
Cele 0.686 0.912 0.778 1.005 1.344 1.316 0.176 0.177 0.172
USAir 0.891 1.041 0.945 1.165 1.385 1.361 0.146 0.174 0.148
Meta 0.990 1.111 1.006 1.245 1.430 1.481 0.151 0.214 0.088
Email 1.261 1.114 1.055 1.310 1.539 1.489 0.085 0.119 0.053
Tap 0.955 1.016 0.908 1.207 1.346 1.234 0.093 0.125 0.109

where the first item, ui, represents the number of migrating
individuals of species i from the adjacent habitat; the second
item, li, describes the carrying capacity of the system growth;
and zi is the cold-start threshold. When the abundance of
species i is low [i.e., xi(t ) < zi], the system is characterized
by a negative growth. The third item in Eq. (B2) describes the
interactions among the species, which take place on a network
described by the adjacency matrix A. In this paper, we use the
parameter values ui = 0.1, li = 5, zi = 1, αi = 5, βi = 0.9,
and γi = 0.1. The states of all nodes are reinitialized after
every 50 time steps.

Coupled map lattice dynamics (CML). In a coupled map-
ping lattice, the continuous state variables are updated at
discrete times [37,71,72] according to

xi(t + 1) = (1 − s) f (xi(t )) + s

ki

N∑
j=1

Ai j f [x j (t )], (B3)

where s is the coupling parameter (the system degenerates
into a set of independent mapping functions for s = 0) and
ki is the degree of node i. In this paper, we use the mapping
function f (x) = λx(1 − x) for the parameters λ = 3.5 and
s = 0.2. The states of all nodes are reinitialized after every
50 time steps.

APPENDIX C: GATN SIMULATION RESULTS

We present the detailed simulation results of the GATN-
based FGNN model and the local model of each client.
Table VIII verifies the good performance of the GATN model
in predicting the four discrete dynamics (T = 200 for GATN
training) and the three continuous dynamics (T = 100 for
GATN training) with the complete time series data and the
complete network structure (for scale-free networks). Figure 6

shows the values of ACC from the FGNN global models and
the baseline methods for the four types of discrete dynamics
under data scenario 1. Figure 7 shows the prediction results for
the three types of continuous dynamics, which also suggest
that the FGNN global models have lower prediction errors
than those of the local models. For data scenario 2, we present
the average results from the three local models, denoted as
Local_av. The results in Table IX demonstrate that the per-
formance of our FGNN method in predicting the four types
of discrete dynamics is persistently better than those of the
local models. Table X shows the results of different methods
in predicting the three types of continuous dynamics. In most
cases, the prediction results of our FGNN method are closer
to the real values than those of the local models.

APPENDIX D: INFLUENZA DATA

1. Description of influenza data

The influenzalike illness (ILI) data used in this paper are
from U.S. public health and clinical laboratories [73] and were
collected weekly from the 40th week of 2011 to the 39th week
of 2016. We standardize the weekly ILI data by using the num-
ber of visiting patients in each state in the USA to calculate
the ILI ratio [74]. In order to ensure a sufficient sample size
in the data, we assume that the states whose average weekly
ILI ratio is less than 1% are not representative. Accordingly,
14 states were removed. The remaining 37 states are listed in
Table XI. Because the small value of the ILI ratio (about 2%)
can lead to errors, we multiply the ILI ratio by a factor of 100
(labeled as ILI*) and use the resulting values for the dynamic
data. The curves of ILI* for the 37 states are shown in Fig. 8.
The population commuting between the states is the key to
spreading dynamics. We use the commuting data in the USA
by residential geography to construct the commuting network.

TABLE XI. Names of the 37 U.S. states for which data were used in this paper.

Alabama Alaska Arizona Arkansas California Connecticut Columbia
Georgia Hawaii Idaho Illinois Indiana Kansas Louisiana
Maryland Massachusetts Michigan Minnesota Mississippi Missouri Nebraska
Nevada New Jersey New Mexico New York North Carolina North Dakota Oklahoma
Pennsylvania South Dakota Tennessee Texas Utah Vermont Virginia
West Virginia Wisconsin
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FIG. 8. Real ILI* values in 37 states from the 40th week of 2011
to the 39th week of 2016.

The commuting data between the U.S. cities are from the
2015 Census report [75]. The state level commuting data are
calculated by aggregating the city data, leading to a state-level
commuting network for the 37 states. The network is di-
rected and weighted, where the nodes represent the states and
the edges are determined by the data for commuting between
the states. To prevent the network from being too dense, we
use the criterion that if the number of commuters between two
states is less than 100, the corresponding edge is removed.
The resulting network has 763 directed edges. Finally, we
use the min-max normalization procedure [77] to obtain the
weights of the edges by dividing the number of commuters
by the maximum number of commuters. The constructed
directed and weighted network can be visualized, as shown in
Fig. 9, where the thickness of the directed edges denotes the
weight.

2. Simulation settings of influenza data

Under scenario 1, the first 100 data points are selected
from a total of 260 ILI* data points. The numbers of data

FIG. 9. The directed and weighted network constructed from the
data for commuting between 37 U.S. states.

assigned to the three clients are 50, 30, and 20, respectively,
and the network structures for the three clients are generated
by sampling 90, 80, and 70% of edges from the commuting
network. The learning rates of the GCN-based FGNN and
GATN-based FGNN models are set to be 0.0001 and 0.001,
respectively. Under data scenario 2, the first 50 data points are
selected from a total of 260 ILI* data points. The percentages
of nodes with the influenza data for the three clients are 80,
70, and 60%, respectively. The learning rates of the GCN and
GATN models are set as 0.01 and 0.0001, respectively.
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