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The rapid growth of research in exploiting machine learning to predict chaotic systems has revived a recent
interest in Hamiltonian neural networks (HNNs) with physical constraints defined by Hamilton’s equations of
motion, which represent a major class of physics-enhanced neural networks. We introduce a class of HNNs
capable of adaptable prediction of nonlinear physical systems: by training the neural network based on time series
from a small number of bifurcation-parameter values of the target Hamiltonian system, the HNN can predict
the dynamical states at other parameter values, where the network has not been exposed to any information
about the system at these parameter values. The architecture of the HNN differs from the previous ones in that
we incorporate an input parameter channel, rendering the HNN parameter-cognizant. We demonstrate, using
paradigmatic Hamiltonian systems, that training the HNN using time series from as few as four parameter values
bestows the neural machine with the ability to predict the state of the target system in an entire parameter interval.
Utilizing the ensemble maximum Lyapunov exponent and the alignment index as indicators, we show that our
parameter-cognizant HNN can successfully predict the route of transition to chaos. Physics-enhanced machine
learning is a forefront area of research, and our adaptable HNNs provide an approach to understanding machine

learning with broad applications.
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I. INTRODUCTION

A daunting challenge in machine learning is the lack of
understanding of the inner working of the artificial neural
networks. As machine learning has been increasingly incorpo-
rated into many vital structures and systems that support the
functioning of the modern society, it is imperative to develop
a general understanding of the inner gears of the underlying
neural networks. For example, feed-forward neural networks
or multilayer perceptrons constitute the fundamentals of mod-
ern deep learning machines with broad applications in image,
video, and audio processing [1]. Such a neural machine typ-
ically consists of an input layer, a large number of hidden
layers, and an output layer. From the input layer on, nodes
in the same layer do not interact with each other, but they
are connected with the nodes in the next layer via a set
of weights and biases whose values are determined through
training, where the paradigmatic method of stochastic gra-
dient descent (SGD) [2] is often used. How the networks
in different layers work together to solve a specific problem
remains unknown. In another line of research, reservoir com-
puting, a class of recurrent neural networks [3-6], has gained
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considerable momentum since 2017 as a powerful paradigm
for model-free, fully data driven prediction of nonlinear and
chaotic dynamical systems [7-23]. A reservoir computing
machine consists of an input layer, a single hidden layer,
and an output layer. Differing from the network structure
of a multilayer perceptron, the network in the hidden layer
of a reservoir computing machine has a complex topology
in which the nodes are coupled with each other following
some probability distribution. Another difference is that, in
feed-forward neural networks, only the weights and biases
connecting the hidden layer and the output layer neurons are
determined by training, while in reservoir computing those
parameters as well as the weights of the complex network
in the hidden layer are predefined. A well trained reservoir
machine can generate accurate prediction of the state evolu-
tion of a chaotic system for a duration that is typically several
times longer than that which can be achieved using the tradi-
tional methodologies in nonlinear time series analysis. This
is remarkable, considering the hallmark of chaos: sensitive
dependence on initial conditions, which rules out long-term
prediction. Yet, there is little understanding of how the internal
network dynamics of reservoir computing machines behave or
“manage” to replicate accurately (for some amount of time)
the chaotic evolution of the true system.

At present, to develop a general explainable framework to
encompass various types of machine learning is not feasible.
A promising direction of pursuit is the so-called physics-
enhanced machine learning, in which the neural networks
are designed to solve specific physics problems with the
goal to enhance the learning efficiency through exploiting the
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underlying physical principles or constraints. The idea was
articulated almost three decades ago [24], when the principle
of Hamiltonian mechanics was incorporated into the design
of neural networks, leading to Hamiltonian neural networks
(HNN&s) that have recently gained renewed attention [25-29].
Comparing with traditional neural networks, in an HNN, the
energy is conserved. It has been demonstrated that an HNN
can be trained to possess the power to predict the dynamical
evolution of the target Hamiltonian system in both integrable
and chaotic regimes, provided that the network is trained with
data taken from the same set of parameter values at which
the prediction is to be made [25-29]. Recently the principle
of HNN has been generalized [30] to systems described by
the Lagrangian equation of motion [31] and a general type of
ordinary differential equations [32] or coordinate transforms
[28,33] with applications in robotics [34,35].

In this paper, we address adaptability, a fundamental issue
in machine learning, of Hamiltonian neural networks. More
precisely, we consider the situation where a target Hamilto-
nian system can experience slow drift or sudden changes in
some parameters. Slow environmental variations can lead to
adiabatic parameter drifting, while external disturbances can
lead to sudden parameter changes. We ask if it is possible
to design HNNs, which are trained with data from a small
number of parameter values of the target system, to have
the predictive power for parameter values that are not in the
training set. Inspired by the recent work on predicting criti-
cal transitions and collapse in dissipative dynamical systems
based on reservoir computing [36—40], we articulate a class
of HNNs whose input layer contains a set of channels that
are specifically used for inputting the values of the distinct
parameters of interest to the neural network. The number
of the parameter channels is equal to the number of freely
varying parameters in the target Hamiltonian system. The sim-
plest case is where the target system has a single bifurcation
or control parameter so only one input parameter channel
to the neural network is necessary. We demonstrate that, by
incorporating such a parameter channel into a feed-forward
type of HNNs and conducting training using time series data
from a small number of bifurcation parameter values (e.g.,
four), we effectively make the HNN adaptable to parameter
variations. That is, the so-trained HNN has inherited the rules
governing the dynamical evolution of the target Hamiltonian
system. When a parameter value of interest, which is not
in the training parameter set, is fed into the HNN through
the parameter channel, the machine is capable of generating
dynamical behaviors that statistically match those of the target
system at this particular parameter value. The HNN has thus
become adaptable because it has never been exposed to any
information or data from the target system at this parameter
value, yet the neural machine can reproduce the dynamical be-
havior. Using the Hénon-Heiles model as a prototypical target
Hamiltonian system, we demonstrate that our adaptable HNN
can successfully predict the dynamical behaviors, integrable
or chaotic, for any parameter values that are reasonably close
to those in the training parameter set. Remarkably, by feeding
a systematically varying set of bifurcation parameter values
into the parameter channel, the HNN can successfully predict
the transition to chaos in the target Hamiltonian system, which
we characterize using two measures: the ensemble maximum

Lyapunov exponent and the alignment index. It is worth em-
phasizing that, in the existing literature on HNNs [25-29],
training and prediction are done at the same set of parameter
values of the target Hamiltonian system, but our work goes
beyond by making the HNN significantly more powerful with
enhanced and expanded predictability.

Before presenting the details of our work, we offer four
remarks.

Remark 1. In physics, machine learning has been ex-
ploited to solve difficult problems in particle physics [41,42],
quantum many-body systems [43], inverse design in optical
systems [44], and quantum information [45,46]. However,
the working mechanisms of the underlying neural networks
remain largely unknown [47]. The physics enhanced HNNs
studied here are different from these applications, as we
focus on exploiting physical principles to enable neural net-
works with unprecedented predictive power with respect to
parameter variations.

Remark 2. The idea of physics or knowledge-based
machine-learning prediction has broad applications. For ex-
ample, in a recent paper [48], a kind of “Fourier transform”
is incorporated into the neural network, which enables turbu-
lence to be predicted to a certain extent. In another work [13],
an imperfect system close to the target system was assumed
to be known and reservoir computing was used to predict the
original system. HNNs are a type of physics-based machine
learning. While there were previous studies of HNNs, we go
beyond by articulating and delivering a comprehensive study
of a class of adaptable, parameter-cognizant HNNs that have
broader predictive power than previous HNNs.

Remark 3. Parameter-cognizant neural networks have been
studied in the literature (e.g., Refs. [38—40]). There are three
main differences between our work and the previous ones.
First, the existing parameter-cognizant methods [38—40] were
for recurrent neural networks, e.g., reservoir computing [40].
In the recurrent neural-network architecture, there is typically
a single hidden layer, in which the nonlinear dynamical pro-
cess is dissipative. In our work, the idea to make the machine
parameter-cognizant is extended to predicting the dynamical
evolution of Hamiltonian systems that arise ubiquitously in
a variety of physical situations in which the energy of the
system is conserved. In the study of nonlinear dynamical
systems, the theories and methodologies to deal with dissi-
pative and Hamiltonian systems are quite distinct. To develop
parameter-cognizant (HNNs) entails nontrivial physical con-
siderations, most notably energy conservation and symplectic
dynamics, which are not required in recurrent neural networks
hosting dissipative dynamics. Second, in a recurrent neural
network such as a reservoir computing machine, a short signal
sequence is needed to “warm up” the system to evolve the
high-dimensional dynamical network in the hidden layer. In
our feed-forward type of HNNs, a warming up is not neces-
sary. Third, for recurrent neural networks, because of the lack
of its intrinsic Hamiltonian structure, the position, momentum
and parameter can be used together as a feature vector. In our
HNN design, the position and momentum must be separated
from the parameter in order for the symplectic structure of
Hamilton’s equations of motion to be preserved.

Remark 4. A newly posted work [49] has reported success
in learning Hamiltonian dynamics by reservoir computing. It
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was demonstrated that a reservoir machine trained with time
series from a few “parameter” values can predict the short-
term state evolution and the long-term ergodic properties
of the target Hamiltonian system. The different “parameter”
values are in fact different initial conditions in a restrictive
setting. For example, for the studied two-degrees-of free-
dom Hamiltonian system, three dynamical variables are held
fixed while the remaining one is allowed to change through
a “parameter” channel. A plausible reason for choosing this
restrictive setting is that, in a Hamiltonian system, different
orbits usually correspond to different energy values but the
energy is an implicit parameter, so varying one of the dynam-
ical variables is equivalent to changing the energy. This way
information about the orbits at different energy values can be
fed into the reservoir. The Hamiltonian in their work is thus
fixed with no explicit parameter variations. In our work, the
Hamiltonian is parameter dependent and the varying param-
eter is explicit, so the corresponding channel to the HNN is
a genuine parameter channel. An advantage of HNN is that
energy is conserved by design, so orbits from arbitrary random
initial conditions can be used for training. When a properly
trained HNN predicts a specific orbit, it automatically gives
the corresponding energy value at the same time. After a
parameter change, even with the same energy, the resulting
orbit can be characteristically different. Our adaptable HNN
has the power to predict such a change.

In Sec. II, we describe the architecture of the articulated
parameter-cognizant HNNs and the method of training. In
Sec. III, we present results of predicting the dynamical behav-
ior of the Hénon-Heiles system in a wide parameter region,
including the transition to chaos based on calculating the
ensemble maximum Lyapunov exponent and the minimum
alignment index. In general, the prediction accuracy depends
on how “close” the desired parameter value is to the training
regime. In Sec. IV, we address a number of pertinent issues
such as the choosing of the training parameter values, multiple
parameter channels, and HNNs for a Hamiltonian system de-
fined by the one-dimensional Morse potential. A summarizing
discussion and speculations are offered in Sec. V.

II. PARAMETER-COGNIZANT HAMILTONIAN
NEURAL NETWORKS

The central idea for physics-enhanced machine learning is
to “force” the dynamical evolution of the neural network to
follow certain physical rules or constraints, examples of which
are Hamilton’s equations of motion [25-29], Lagrangian
equations [31], or the principle of least action [50,51]. In
particular, the structure of HNNs is such that the underlying
neural dynamical system is effectively a Hamiltonian system
for which the energy is conserved during the evolution. Dif-
ferent from previous work [25-29], the bifurcation parameter
of the target Hamiltonian system serves as an input “variable”
to the neural network through an additional input channel so
that the HNN learns to associate the input time series with the
specific value of the bifurcation parameter. Using time series
from a small number of distinct bifurcation parameter values
to train the HNN, it can gain the ability to “sense” the changes
in the dynamics (or dynamical “climate”) of the target system
with the bifurcation parameter.

H
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ol —> p(t+ At)
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FIG. 1. Structure of parameter-cognizant HNN. The input chan-
nels are denoted by the blue circles, which are connected to the first
hidden layer (purple circles). The blue circle denoted by “«” is the
parameter input channel that feeds the value of the bifurcation param-
eter of the target Hamiltonian system, together with the time series
q(?) and p(¢) through the corresponding input channels, into the first
hidden layer. There are two hidden layers. The output variables are
the partial derivatives of the Hamiltonian of the target system with
respect to the canonical coordinates and momenta, together with the
Hamiltonian, which determine the dynamical state at the next time
step.

The structure of our articulated parameter-cognizant HNN
is shown in Fig. 1, where the input contains three parts: the
position and momentum variables of the target system, and the
bifurcation parameter. To be concrete, we use two hidden lay-
ers, where each layer contains 200 artificial neurons (nodes).
The third layer is the output, which contains a single node
whose dynamical state corresponds to the Hamiltonian of the
target system. Let y denote the set of dynamical variables of
each layer. The transform from the dynamical variables in the
ith layer to those in the (i + 1)th layer follows the following
rule:

y =o'V -y +b), M

where o' is a given nonlinear activation function, W is the
weight matrix, and b’ is bias vector associated with the neu-
rons in the ith layer, which are to be determined through
training. We set the output as the spatial derivatives of the
input variables to force the dynamics of the neural network
to follow Hamilton’s equations of motion. The derivatives are
calculated through the back prorogation algorithm. Once the
output is known, the loss function defined as

oH d Preal + oH d Qreal
aq dt ap dt

can be calculated. Through the training process, we optimize
the weights and biases in Eq. (1) by minimizing the loss
function. This is done by using the standard SGD method [2].
The whole process from network construction and training to
carrying out the prediction is accomplished by using the open
source packages TENSORFLOW and KERAS [52,53].

Table I summarizes the structure and parameters of our
HNN. It has about 40 000 unknown parameters to be opti-
mally determined through training. The computation can be
quite efficient even without using parallel or GPU accelera-
tion. The anticipation is that, after training with time series
data from a small number of distinct bifurcation parameter
values, the HNN can predict the dynamical behavior of the
target Hamiltonian system in a wide parameter interval, where

L= @
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TABLE I. Specifications of HNN.

Description Values
Number of hidden layers 2
Neurons per layer 200
Optimizer Adam
Epochs 500
Activation function tanh

the parameter variations are implemented through the input
parameter channel to the HNN.

In general, there can be a variety of ways to build
parameter-cognizant neural networks. For example, a well
developed method [54] is based on nonlinear autoregressive
moving average model with exogenous inputs (NARMAX).
The basic idea is to utilize the signal several steps before
prediction, which is similar to the idea of “warming up”
with recurrent neural networks. For example, for the logis-
tic map (a dissipative map of polynomial terms up to order
2), NARMAX is quite effective. Difficulties arise when we
attempt to apply this method to parameter-cognizant HNNs.
First, NARMAX does not have a Hamiltonian structure, so
it cannot be used to predict Hamiltonian systems. Second, be-
cause NARMAX is based on polynomial fitting, for a complex
and high-dimensional network, many “warming up” steps are
needed, leading to an exponential growth in the number of
polynomial terms.

III. ADAPTABLE HAMILTONIAN NEURAL NETWORKS
FOR PREDICTING TRANSITION TO CHAOS

To test the adaptability of our parameter-cognizant HNN
for predicting state evolution and dynamical transitions in
Hamiltonian systems, we use the paradigmatic Hénon-Heiles
model [55]. It is a two-degrees-of-freedom system for in-
vestigating distinct types of Hamiltonian dynamics including
integrable, mixed, and chaotic behaviors and the transitions
among them. It was originated from the gravitational three-
body system [55], with applications in contexts such as
molecular dynamics [56-58].

A. System description

The Hénon-Heiles Hamiltonian is
H=3(pi +p3) + 5(a1 + 43) +@(gig2 — 303). 3

where ¢g; and ¢, denote the coordinates, p; and p, are the
corresponding momenta, and « > 0 is a bifurcation parameter
that sets the magnitude of the nonlinear potential function
describing, e.g., the dissociation energy in molecules [56-58].
The dynamics of system (3) depend not only on «, but also
on the energy E of the system that is conserved during the
dynamical evolution. The maximum value of the potential
function is Epax = 1/(6a?). For a = 0, Epay diverges, so all
trajectories are bounded. For « > 0, if the particle energy
exceeds Ep,x, the Hamiltonian system becomes open with
scattering trajectories that can escape to infinity. To train
the adaptable HNN, bounded trajectories are required, so we
set 0 <o <1 and E < 1/6. (For particle energy above the

(a) (b)

FIG. 2. Distinct types of dynamical behaviors in the Hénon-
Heiles system. The energy value is E = 1/6. (a)—(d) Integrable,
mixed, small, and largely chaotic dynamics for « = 0, 0.7, 0.9, and
1.0, respectively, on the Poincaré surface of a section defined by
q1 = 0.

threshold, chaotic scattering dynamics and fractal geometry
can arise [59-61].) As the value of « increases from zero
to one, characteristically different dynamical behaviors can
arise, such as integrable, mixed, and chaotic. In particular, for
a = 0, the nonlinear term in Eq. (3) disappears and the system
becomes a harmonic oscillator—an integrable system. In this
case, the entire phase space contains periodic and quasiperi-
odic orbits only, as shown in Fig. 2(a). As « increases from
zero, the system becomes nonlinear and chaotic seas amid
the Kol’mogorov-Arnol’d-Moser (KAM) islands can arise in
the phase space, giving rise to mixed dynamics, as shown in
Fig. 2(b) fora = 0.7 and E = 1/6. For « = 0.9, « = 1, and
E = 1/6, most trajectories in the phase space are chaotic, as
shown in Figs. 2(c) and 2(d).

B. Training and testing of adaptability

Our goal of training is to “instill” certain adaptable power
into the HNN. To achieve this, we choose a number of distinct
values of the bifurcation parameter «. For each o value, we
randomly choose initial conditions with energy below the
escape threshold E\,,x and numerically integrate Hamilton’s
equations of motion to generate particle trajectories in the
phase space. Because of the mixed dynamics, the training data
contain both integrable and chaotic orbits. Specifically, the
time interval of the trajectory is 0 < ¢ < 1000, which contains
hundreds of oscillation cycles, and we collect training data
using the sampling time step d¢ = 0.1. The energy associated
with the training data is maintained to be constant to within
1079,

In general, the weights and biases of the adaptable HNN
determined by the SGD method depend on the training data
set. To reduce the prediction error, an ensemble of HNNs can
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TABLE II. List of training parameters for Hénon-Heiles system.

Description Values
Neural network ensembles 20
Energy samples 7
Orbit per energy 1
Orbit length 1000
Time step 0.1

Training parameter set a €{0.2,0.4,0.6,0.8}

be used [40]. Concretely, for each value of o, we generate 20
different sets of data for training, leading to an ensemble of 20
HNNs. The parameter setting for training is listed in Table II.

After the training, all the weights and biases in Eq. (1)
are determined. The Hamiltonian and its derivatives for each
network in the HNN ensemble can be evaluated for any input,
leading to the average derivative values. To characterize the
prediction accuracy for different values of the bifurcation pa-
rameter, we use the root-mean-square error (RMSE) that can
be calculated from the difference between the HNN predicted
and the true orbits. For @ = 0, the motion is integrable so the
predicted orbit is always close to some real orbit, leading to
exceedingly small errors. In this case, we take advantage of
one feature of HNNGs that it directly yields the Hamiltonian
function, from which the potential function can be calculated.
It is thus convenient to use the relative error between the
predicted potential function and the true one to characterize
the HNN performance, which is defined as

Vored — V4
(AV) = | pred real|’ (4)

real

where the average is taken in the region of Vi < 1/6.
The predicted potential profile is given by Vjreq = Hprea — C,
where C = min(Hpreq) so that the minimum value of Vprq is
zero. Note that the average in Eq. (4) is calculated from an
integral in a two-dimensional domain in the physical space,
for which the boundary of the domain needs to be specified.
A natural choice of the criterion to set the boundary would
be V(x,y) < Enax = 1/6, but occasionally the predicted or-
bit will diverge. Numerically, there are different ways to
overcome this difficulty. For example, if the boundary is set
according to the criterion max(Vpred, Viea) < 1/6, then almost
all orbits are bounded, rendering calculable the error (AV').

We demonstrate that HNN can be used to reconstruct the
Hamiltonian of the target system. Consider phase-space points
for H(«, q1, g2, p1, p2) < 1/6 and expand the Hamiltonian
about the origin using the Taylor series

Hyea(0) = > Buisisis(@)q} 45 P} P )
it,i,i3,i4
where B’s are the expansion coefficients, and the sum is taken
according to 0 < sum(iy, iy, i3, i4) < 3, which contains in to-
tal 35 terms. Comparing with the true Hamiltonian (3), only
six terms are nonzero.

We train the HNN at four values of the bifurcation pa-
rameter: o € {0.2, 0.4, 0.6, 0.8}. For each « value, we choose
seven random initial conditions with their energies below the
threshold. Figure 3(a) shows the relative error in predicting

0 # * v vAs
0 0.2 04 0.6 0.8 1
[0
(o) 1 B20005 B02005 0020, Boooz ' ' -
Ba100 -
—3080300 -
——— Others _ - ~
05 —o—>
.27
- ’;//
>
"/v
0 -
vAs vas +* s
0 0.2 0.4 0.6 0.8 1
(6%

FIG. 3. (a) Relative error in predicting the potential function of
the Hénon-Heiles system. Shown is the error versus the bifurcation
parameter « in the unit interval. The HNN is trained with time series
data from four values of o: o € {0.2,0.4, 0.6, 0.8} (the four green
pentagons). In the shaded region that contains these four values of «,
the relative error is less than 2%, demonstrating the adaptability of
the HNN in predicting the target Hamiltonian system for parameter
values not in the training set. The adaptability extends even outside
the shaded region but with larger error (still within 8% though).
(b) Coefficients of the Taylor expansion for Hyq versus the bifur-
cation parameter o, where Bao0, Bo200, Boo20, and Boooz correspond to
the first four square terms in Eq. (3) whose true value is 1/2, and S;;00
and Posgo correspond to the two cubic terms that are proportional
to «. Other terms in the expansion do not appear in the original
Hamiltonian, among which the first two largest ones are B30 and
Bi20o that correspond to other cubic potential terms.

the potential function for @ € (0, 1). The interval in @ can
be divided into two parts: the shaded region « € [0.2, 0.8]
that contains the four values of « used in training, and the
blank regions on both side of the shaded region. In the shaded
region, the relative error is less than 2%, but the error increases
away from the shaded region. Figure 3(b) shows the expan-
sion coefficients for the predicted Hamiltonian. Comparing
with the terms in the real Hamiltonian, our HNN predicts
accurately the linear terms. For the nonlinear terms, the HNN
reproduces the behavior with the variation in the bifurcation
parameter o, where the errors are small in the shaded region
in Fig. 3(b) but relatively large outside the region.

To examine the adaptability of our parameter-cognizant
HNN in more detail, we take, for example, « = 0.7 in be-
tween the two training points & = 0.6 and @ = 0.8, for which
the vast majority of the orbits with energy E = 1/6 are
quasiperiodic, as can be seen from Fig. 2(b). Figures 4(a)
and 4(b) show the true and predicted potential functions for
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FIG. 4. Testing the adaptability of HNN for parameter values
in between two training points. (a,b) True and predicted contour
maps of the potential function for o = 0.7, respectively, where the
latter is obtained by extracting the Hamiltonian at different posi-
tions with constant momentum input with normalization. (c,d) True
and predicted orbits from the initial condition (g, q2, p1, p2] =
[0, 0, 1/+/6, 1/+/6], respectively, which are quasiperiodic. (¢) Evolu-
tion of the energies of five representative HNN predicted orbits from
random initial conditions associated with energies 1/30, 1/15, 1/10,
2/15, and 1/6, respectively, over a long time stretch. In spite of small
fluctuations, the energy is conserved, indicating that the dynamics of
the underlying neural network are conservative.

E < 1/6, respectively, which are essentially indistinguish-
able. Figures 4(c) and 4(d) show some representative true and
predicted orbits starting from the same initial condition, which
agree with each other qualitatively but differ in detail. Par-
ticularly worth emphasizing is the fact that, for the predicted
quasiperiodic orbit, the energy can be maintained at a con-
stant value. Overall, since the testing bifurcation parameter
value o = (.7 is sandwiched between two training points, our
parameter-cognizant HNN exhibits a strong adaptability.
Intuitively, since an HNN possesses the Hamiltonian dy-
namical structure by design and our adaptable HNN can
predict correctly different orbits in the target Hamiltonian
system, the HNN itself should also be a conservative system.
But is this true? To test this, we calculate the evolution of the
energy with time for different orbits in a long time stretch.

0 0.025 0.05 0.075 0.1

(b)

. |
0.125 0.15

-1 0 1 -1 0 1
q1 q1
0.2 >(e) True
AaTA S aa e e e S HNN el
= 0.1 \{—
0 i
0 10 20 4980 4990 5000

t

FIG. 5. Testing the adaptability of HNN for parameter val-
ues outside the training interval. (a,b) True and predicted contour
maps of the potential function for « = 1. (c,d) True and pre-
dicted orbits from the same initial condition [qi, g2, p1, p2] =
[0,0,1 /«/6, 1/ /6], which differ in detail but are both chaotic. (€)
Evolution of the energies of five representative HNN predicted orbits
(including chaotic orbits) from random initial conditions associated
with energies 1/30, 1/15, 1/10, 2/15, and 1/6, respectively, over
a relatively long time stretch. Small fluctuations notwithstanding,
the neural network generates orbits with constant energy (even for
chaotic orbits), indicating that the underlying network dynamics are
conservative.

Figure 4(e) shows the energy evolution for five representative
orbits from random initial conditions at energy values 1/30,
1/15, 1/10, 2/15, and 1/6, respectively. It can be seen that,
within statistical fluctuations, the energy remains constant in
all cases. This is strong indication that the HNN itself is a
conservative dynamical system.

For o = 1, with energy E = 1/6, most of the orbits are
chaotic, where the portion of the KAM islands in the phase
space becomes relatively insignificant, as shown in Fig. 2(d).
In the case, the contour map of the true potential function has a
triangular shape, as shown in Fig. 5(a). The predicted potential
contour map is shown in Fig. 5(b), which agrees reasonably
well with the true one. Figures 5(c) and 5(d) show a true and
the predicted chaotic orbits from the same initial condition.
While their details are different, the HNN predicts correctly
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that the orbit is chaotic. In fact, as will be shown in Sec. III C,
for the two quantities characterizing the statistical behavior
of the orbit, e.g, the maximum Lyapunov exponent and the
alignment index, the predicted orbit yields the same results
as those from the true orbit. In general, the closer the testing
parameter value is to one of the training points, the higher
the prediction accuracy. Figure 5(e) shows the long-time evo-
lution of the energy for five representative orbits (including
chaotic orbits). Similar to the results in Fig. 4(e), the en-
ergy associated with each HNN generated orbit is constant
within statistical fluctuations, indicating that the HNN itself is
conservative.

We have tested the method of reservoir computing [7-23]
for predicting the orbit and find that, while it typically yields
a more accurate orbit in short time (e.g., a few cycles), in the
long run the prediction error becomes large, even though the
machine is able to generate the correct statistical features of
the orbit (e.g., quasiperiodic versus chaotic). This is consistent
with the results in the very recent work [49].

C. Adaptable prediction of a Hamiltonian system

In a typical Hamiltonian system, the route of transition to
ergodicity as a nonlinearity parameter increases is as follows
[62]. In the weak nonlinear regime, the system is integrable,
where the motions are quasiperiodic and occur on tori gener-
ated by different initial conditions, as illustrated in Fig. 2(a)
for the Hénon-Heiles system. As the nonlinearity parameter
a increases, chaotic seas of various sizes emerge, leading
to a mixed phase space, as exemplified in Fig. 2(b). In the
regime of strong nonlinearity, e.g., « = 1, most of the phase
space constitutes chaotic seas with only a small fraction still
occupied by KAM islands, as shown in Figs. 2(c) and 2(d).
Here we provide strong evidence for the adaptability of our
parameter-cognizant HNN by demonstrating that it can accu-
rately predict the transition scenario, with training conducted
based on time series from only a handful values of the nonlin-
earity parameter.

Distinct from dissipative systems in which random initial
conditions in the basin of attraction of an attractor (periodic
or chaotic) lead to trajectories that all end up in the same
attractor, in Hamiltonian systems different initial conditions
typically lead to different dynamically invariant sets. Because
of this feature of Hamiltonian systems, to investigate the
transition scenario, computations from initial conditions in
the whole phase space leading to a statistical assessment and
characterization of the resulting orbits are necessary. We focus
on two statistical quantities: the largest Lyapunov exponent
and the minimum alignment index, where the former charac-
terizes the exponential separation rate of infinitesimally close
trajectories and the latter measures the relative “closeness”
of two arbitrary vectors along the trajectory (e.g., whether
they become parallel, antiparallel, or neither) [63]. For a
chaotic trajectory, an infinitesimal vector stretches or con-
tracts exponentially along the unstable or the stable direction,
respectively. As a result, a random vector will approach the
unstable direction along the trajectory and two random vectors
will align with each other quickly. In particular, given two
initial vectors u‘l) and u‘z), after i time steps, they become
u! and uj, respectively. The minimum alignment index is

defined as
y" = min(|luj + 5|, uj —ub]). (6)

When chaos sets in, the value of y? will quickly approach zero
with time.

For a properly trained HNN with its weights and biases
determined, the output contains the predicted Hamiltonian
whose partial derivatives with respect to the coordinate and
momentum vectors can be calculated directly based on the
architecture of the neural network. These partial derivatives
constitute the velocity field of the underlying dynamical sys-
tem, whose Jacobian matrix can then be determined, from
which the machine predicted Lyapunov exponents and the
alignment index can then be calculated (see the Appendix).
The true values of the Lyapunov exponents and the minimum
alignment index can be calculated directly from the original
Hamiltonian (3) of the target system.

In our calculation, we take 100 equally spaced values of
the bifurcation parameter in the unit interval: « € [0, 1]. For
each « value, we choose 200 random initial conditions and
calculate, for each initial condition, the values of the largest
Lyapunov exponent and the minimum alignment index. A
trajectory is deemed chaotic [64] if the largest exponent is pos-
itive and the minimum alignment index is less than 1073, We
denote the maximum Lyapunov exponent and the minimum
alignment index from the ensemble of 200 trajectories as Ay
and y,,, respectively, which are functions of «. Another quan-
tity of interest is the fraction of chaotic trajectories, denoted
as f,, which also depends on «. The triplet of characterizing
quantities, Ay, Y, and f,, can be calculated from the HNN
and from the original Hamiltonian as a function of a. A
comparison can then be made to assess the adaptable power
of prediction of our parameter-cognizant HNN.

Figures 6(a)-6(c) show the machine predicted and true
values of Ay, v, and f, versus o, respectively, for particle
energy E = 1/6. It can be seen that chaos arises for « = 0.7,
at which Ay becomes positive, y,, decreases to 1078, and f.
begins to increase from zero. In Fig. 6(a), the true value of Ay,
for 0 < o < 0.7 is essentially zero, but the HNN predicted
Ay is slightly positive. The remarkable feature is that both
types of Ay, value begins to increase appreciably for o > 0.7.
In fact, there is a reasonable agreement between the true and
predicted behavior of Aj,. Similar features are present in the
behaviors of y,, and f, versus «, as shown in Figs. 6(b) and
6(c), respectively. These results are strong evidence that our
parameter-cognizant HNN is capable of adaptable prediction
of distinct dynamical behaviors in Hamiltonian systems.

IV. ISSUES PERTINENT TO ADAPTABILITY
OF HAMILTONIAN NEURAL NETWORKS

We address the adaptability of HNNs by asking the fol-
lowing three questions. First, can the adaptability of HNNs be
enhanced by increasing the number of training values of the
bifurcation parameter? Second, can adaptability be achieved
with multiple parameter channels? Third, does adaptability
hold for different target Hamiltonian systems?
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FIG. 6. Test of adaptability of parameter-cognizant HNN in pre-
dicting transition to chaos in the Hénon-Heiles system. (a)—(c) The
ensemble maximum Lyapunov exponent Ay, the ensemble minimum
alignment index y,, together with the threshold 103, and the fraction
f. of chaos in the phase space versus the nonlinearity parameter «,
respectively. Transition to chaos occurs about & 2 0.7. The orange
and blue colors correspond to the true and HNN predicted results,
respectively. There is a reasonable agreement between the predicted
and true behaviors, attesting to the adaptable predictive power of the
HNN.

A. Effect of number of training parameter values

So far, we have used four distinct values of the bifurcation
parameter to train our parameter-cognizant HNN. We now
investigate if the adaptability can be enhanced by increasing
the number of training parameter values. Here by “enhance-
ment” we mean a reduction in the overall errors of predicting
the Hamiltonian in a parameter interval that contains values
not in the training set. To test this, we conduct the following
numerical experiment. We choose N > 3 training parameter
values and, for each parameter value, we train the HNN M
times using an ensemble of time series collected from M
energy values below the threshold (tem time series from ten
random initial conditions with energy below the threshold). To
make the comparison meaningful, we choose the values of M
and N such that NM is approximately constant. In particular,
for Simulation #1, we set N = 3: o« = 0.25, 0.5, and 0.75, and

15 ‘
—N =3
——N =4
——N =5
10F 1
g ¥
s
4
O 1 1 1 1
0 0.2 0.4 0.6 0.8 1

(07

FIG. 7. Effect of increasing the number N of training parameter
values on the adaptable prediction error. Shown are the ensemble
errors (AV) in predicting the potential function for the three sim-
ulation settings explained in the text. Increasing N beyond 4 does
not lead to a significant reduction in the errors, indicating that the
HNN has already acquired the needed adaptability with training at
four different values of the bifurcation parameter.

M = 9. For Simulation #2, we choose N =4: o« = 0.2, 0.4,
0.6, and 0.8, and M = 7. For Simulation #3, we have N = 5:
a=0.1,0.3,0.5,0.7, and 0.9, and M = 5. For each simula-
tion, we calculate the ensemble error (AV) in predicting the
potential function as defined in Eq. (4) for 0 < o < 1. The
results are shown in Fig. 7. It can be seen that the errors
for N = 3 are generally larger than those for N > 3, but the
errors for the two cases (N = 4 and 5) are approximately the
same, indicating that increasing N above 4 will not lead to
a significant reduction in the errors of adaptable prediction.
That is, by training with multiple time series from four values
of the bifurcation parameter, the HNN has already acquired
the necessary adaptability for predicting the system behavior
at other nearby parameter values.

B. HNNs with two parameter channels

We construct parameter-cognizant HNNs with more than
one parameter channel. For this purpose, we modify the
Hénon-Heiles Hamiltonian Eq. (3) to

1 1 o

H=>(r+p) +5(di + a3) +engi = 543 (D)
where «; and o, are two independent bifurcation param-
eters, requiring two independent parameter input channels
to the HNN. The energy threshold for bounded motions
can be evaluated numerically. We conduct training for a
number of combinations of «; and o, values: «aj,a; €
{0.2, 0.4, 0.6, 0.8}. The training data are generated as follows:
for each parameter pair, we choose five energy values below
the threshold and, for each energy value, a single time se-
ries is collected. After the training is done, we predict the
potential function for «, ap € [0, 1] with the interval 0.1 in
each direction of parameter variation. Figure 8 shows the
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FIG. 8. Prediction performance of an HNN with two input pa-
rameter channels. The target Hamiltonian system is given by the
asymmetric Hénon-Heiles system as defined by Eq. (7). Shown
is the color-coded ensemble prediction error (AV) in the (o, o)
plane. Training is conducted at the 16 points indicated by the green
pentagons. The prediction error is small (<5%) in the central region
(a1, 2) € [0.2,0.8].

color-coded ensemble prediction error (AV) in the (o, oz)
plane. For some combinations of «; and o, with a relatively
large difference in their values, the threshold energy is less
than 1/6. For such cases, the integration domain in Eq. (4)
is modified accordingly based on the threshold value. It can
be seen that, in the parameter region (o, op) € (0.2, 0.8),
the prediction error is about 5%, while the errors outside
the region tend to increase. At the two off-diagonal corners,
the errors are the largest, due to the strong asymmetry in
the potential profile. Figure 8 demonstrates that HNNs with
two parameter channels can be trained to be adaptable for
prediction.

C. HNN:s for a diatomic molecule system

We consider a different target Hamiltonian system, a sys-
tem defined by the one-dimensional Morse potential that
describes the interaction between diatomic molecule [65].
This system was previously used in the study of chaotic scat-
tering [66,67]. The Hamiltonian is given by

2 2
H=2pym=L

5 5 +[1 —exp(—a(x —xo)]* = 1, (8)

where the potential function V(x) has a minimum value at
x =xp with V(x9) = —1 and V(x — oo0) — 0. Taking the
minimum potential value as the reference point for energy E,
all orbits are bounded for E < 1. We set x, = 1 and choose a
as the bifurcation parameter. The training data are generated
from four different values of a: a = 0.5, 1.0, 2.0, and 4.0
where, for each training parameter value, an ensemble of
five values of energy is used, resulting an ensemble of 20
independent time series. The time span for each time series
is 0 < ¢ < 100 with the sampling time step Ar = 0.1.
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FIG. 9. Parameter-cognizant =~ HNN  trained  for  the
one-dimensional Morse system. (a) Shown are the predicted
potential profiles for a = 1.0, 1.5, and 2.0 (solid curves), together
with the corresponding true profiles (dashed curves). The predicted
potential function for @ = 1.5 is not the interpolation of those for
a=1.0 and a = 2.0, attesting to the adaptable predictive power
of the HNN. (b) True and predicted orbits in phase space from
[x, pl =[1, 1].

Figure 9 shows the predicted potential profile for a = 1.5,
together with those for the two training points @ =1 and
a = 2. The result is accurate for x around the minimum po-
tential point, but large errors arise when the position is far
away from the minimum point. A plausible reason is that, for
large values of x, the potential varies slowly, resulting in small
changes in the momentum. As a result, the corresponding
portions of the time series exhibit less variation, leading to
large prediction errors by the HNN. The trained HNN has
apparently gained certain adaptability, as the prediction result
for a = 1.5 is not the interpolation of those for a = 1.0 and
a=20.

V. DISCUSSION

Developing adaptable machine learning in general has
broad applications to critical problems of current interest. For
example, a problem of paramount importance is to predict
how a system may behave in the future when some key pa-
rameters of the system may have drifted, based on information
that is available at the present. As an example, suppose an
ecosystem is currently in a normal state. Due to the envi-
ronmental deterioration, some of its parameters such as the
carrying capacity and/or the species decay rates will have
drifted in the future. Is it possible to predict if the system
will collapse when a certain amount of parameter drift has
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occurred, when the system equations are not known, and
the only available information is time series data that can
be measured prior to but including the present? Adaptable
machine learning offers a possible solution. For example,
it has been demonstrated recently [40] that incorporating
a parameter-cognizant mechanism into reservoir computing
machines enables prediction of possible critical transition and
system collapse in the future for any given amount of param-
eter drift. However, the state-of-the-art reservoir computing
schemes under intensive current research [7-23] do not taken
into account physical constraints such as energy conservation.

Combining the laws of physics and traditional machine
learning has the potential to significantly enhance the perfor-
mance and predictive power of neural networks. It has been
demonstrated recently that enforcing Hamilton’s equations of
motion in the traditional feed-forward neural networks can
lead to improvement in the prediction accuracy for Hamilto-
nian systems in both integrable and chaotic regimes [25-29].
In these studies, training and prediction are conducted for the
same set of parameter values of the target Hamiltonian sys-
tem, so the underlying Hamiltonian neural networks are not
adaptable in the sense that they are not capable of predicting
the dynamical behavior of the system at a different parameter
setting.

Can parameter-cognizant reservoir computing [40] be
adapted to predicting Hamiltonian systems? Intuitively, this
may be difficult as reservoir computing typically requires the
dynamical network in the hidden layer to exhibit a single
invariant set, e.g., a chaotic attractor. As a parameter changes,
the properties of the invariant set should evolve “continu-
ously,” even at a critical transition at which a chaotic attractor
is converted into a non-attracting chaotic invariant set with
similar statistical properties. In a Hamiltonian system, differ-
ent energy values can lead to drastically different orbits, e.g.,
quasiperiodic or chaotic. The recently posted result that reser-
voir computing [49] trained with different initial conditions
can predict the statistical features of the orbit from other initial
conditions makes the issue “to what extent a reservoir comput-
ing machine can predict Hamiltonian systems” nontrivial and
interesting. Nonetheless, we wish to emphasize that HNNs
are naturally designed for Hamiltonian systems. As we have
demonstrated, our adaptable HNNs are capable of predicting
not only distinct orbits but also the global transition to chaos.

Do adaptable HNNs that we have developed have any
practical significance? From the point of view of making pre-
dictions of the future states of Hamiltonian systems subject to
parameter drifting, the answer is perhaps no. The main reason
is that HNNs require all coordinate and momentum time se-
ries. For example, one may be interested in predicting whether
a complicated many-body astrophysical system may lose its
stability and become mostly chaotic in the future, where the
only available information is the position and momentum
measurements prior to or at the present when the system is still
in a mostly integrable regime. As the laws of physics for this
system are known, the data required for training is not a lesser
burden than knowing the Hamiltonian itself. Nonetheless, our
work generates insights into the working of HNNss, as follows.

Our parameter-cognizant, adaptable HNNs have a parame-
ter input channel to the standard multilayer network with the
loss function stipulated by Hamilton’s equations of motion,

and are capable of successful prediction of transition to chaos
in Hamiltonian systems. In particular, through training with
coordinate and momentum time series from four different
values of the bifurcation (nonlinearity) parameter, the ma-
chine gains adaptability as evidenced by its successful
prediction of the dynamical behavior of the target system in
an entire parameter interval containing the training parameter
values. That is, the benefits of training are that the HNN has
learned not only the dynamical “climate” of the target Hamil-
tonian system but also how the “climate” changes with the
bifurcation parameter. Machine learning can thus be viewed as
a process by which the neural network self-adjusts its dynam-
ical evolution rules to incorporate those of the target system.

When systematically varying values of the bifurcation pa-
rameter are fed into the HNN, it can predict the transition
to chaos from a mostly integrable regime, as determined by
the ensemble maximum Lyapunov exponent and minimum
alignment index as well as the fraction of chaos as a function
of the bifurcation parameter. For a single parameter chan-
nel, the adaptable predictive power is achieved insofar as the
training parameter set contains at least three or four distinct
values. For an HNN with duplex parameter channels, the
size of the required training parameter set should be at least
4 x 4. Adaptable prediction has also been accomplished for a
different Hamiltonian system defined by the Morse potential
function. We expect the principle of designing parameter-
cognizant HNNs and the training method devised in this paper
to hold for general Hamiltonian systems.

One issue is the dependence of the energy surface on the bi-
furcation parameter. As the parameter changes continuously,
the energy surface will evolve accordingly. If we intend to
predict the system dynamics for some specific value of the
bifurcation parameter for a fixed energy value, the training
data sets should contain time series collected from a larger
energy value to cover the pertinent phase space region at the
desired energy value.

It should also be noted that using HNNs to predict the tran-
sition from integrable dynamics to chaos in the Hénon-Heiles
system was first reported in [28], which relied on using energy
E as the control parameter for a fixed value of the nonlinearity
parameter (e.g., « = 1). Here we have studied the transition
using « as the bifurcation parameter for a fixed energy value
(e.g., E = 1/6). The two routes are equivalent because the
Hénon-Heiles system (3) possesses a threefold symmetry in
the configuration space. Such an equivalence also arises in
systems whose potential function contains nonlinear square
terms, e.g., the classical ¢* or FPU model [68,69]. How-
ever, for the two-parameters Hamiltonian Eq. (7) studied in
this paper, the threefold symmetry is broken, destroying the
equivalence between varying the nonlinearity parameter and
energy. In fact, for Hamiltonian systems such as the Morse
and double-pendulum systems, the equivalence does not hold
either [65,67,70]. Our adaptable HNN does not rely on any
such equivalence, and can be effective in predicting the tran-
sition to chaos in any type of Hamiltonian systems.

Finally, we revisit Ref. [28], a particularly relevant
work, where the authors studied generalized coordinate-based
HNNs for different target Hamiltonian systems. The training
was done based on some generalized coordinate transform,
leading to improved performance over the traditional HNNs.
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In our work, an ensemble of HNNs is used, each with
fixed dynamical variables, and a system parameter is al-
lowed to change. As discussed in the preceding paragraph, for
Hamiltonian systems with some special symmetry, a coordi-
nate change is equivalent to a parameter change, but this does
not hold for systems such as the Hénon-Heiles potential with
two parameters or the Morse potential. Another difference be-
tween coordinate transform and parameter change is that, for
a Hamiltonian system, after a coordinate transform, particles
with the same energy should exhibit the same dynamics. In
our work, after a parameter change, particles with the same
energy can exhibit different dynamics.
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APPENDIX: ALGORITHM FOR CALCULATING
THE LYAPUNOV EXPONENT AND ALIGNMENT INDEX
OF HAMILTONIAN NEURAL NETWORKS

Given a dynamical system dx/dr = f(x), the Jacobi ma-
trix is given by J = 90f /0x. For a Hamiltonian system, the
dynamical variables are x = [q, p]” and

£(q.p) = o0H 0H
R FT T
For an HNN, in principle, the Hamiltonian H is given by a
sequence of operations of the neural network with the weights
and biases in Eq. (1) determined by training. An alternative
but efficient approach to calculating the Jacobian matrix J is
the finite-difference method. In particular, for a given initial
condition, we generate an orbit of N points with time interval
dt and calculate 7 at each time step. Let the sequence of Jaco-

(AD)

bian matrices be denoted as 7 (ty), J(t1), ..., J (ty), and let
V(o) be the identity matrix Z. If the phase space of the target
Hamiltonian system is D-dimensional (D = 4 for the Hénon-
Heiles system), there are D Lyapunov exponents. Let A be the
vector of the D Lyapunov exponents: A = (A1, A, ..., Ap)T
and set the initial values of the exponents to be zero: A(#y) =
(0,0,...,0)T. After N steps, we have

Yn) =T @y) - YV(in-1).

Carrying out the QR decomposition of the matrix )(ty)
with the resulting matrices denoted as Q and R, we have

Aj(ty) = Aj(tn—1) + In |Rj;],
Y(y) = Q,

where R;; is the jth diagonal element of the matrix . The
Lyapunov exponents are given by

5= lim @)
J N—oo Ndt '

The maximum Lyapunov exponent is Ay = max;(4;).

To calculate the alignment index, we introduce a matrix M
and set it to be the identity matrix at the initial time: M (#y) =
Z.Let u;(tp) =[1,0,0,0]" and uy(79) = [0, 1, 0, 0]7 be two
linearly independent vectors at the initial time. After N steps,
we have

(A2)

(A3)
(A4)

j=1,...,D. (AS)

My) = T + J(ty)dt) - M(ty_1),
uy o (ty) = M(ty) - a1 2(f).

Normalizing the vectors u; >(ty) by their respective magni-
tude to have the unit length, we obtain the minimum alignment
index as

(A6)

Vm = Nleoo min(|juy (ty) + w @yl lag(@y) — w2 (@v)|).
(A7)
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