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Current reversal and particle separation in Brownian transport
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In transport of micro- or nanosized particles through a confined structure driven by thermal fluctuations and
external forcing—a situation that arises commonly in a variety of fields in physical and biological sciences,
efficient and controllable separation of particles of different sizes is an important but challenging problem.
We study, numerically and analytically, the diffusion dynamics of Brownian particles through the biologically
relevant setting of a spatially periodic structure, subject to static and temporally periodic forcing. Molecular
dynamical simulations reveal that the mean velocity in general depends sensitively on the particle size. The
phenomenon of current reversal is uncovered, where particles larger than or smaller than a critical size diffuse in
exactly opposite directions. This striking behavior occurs in a wide range of the forcing amplitude and provides a
mechanism to separate the Brownian particles of different sizes. Besides the forcing amplitude, other parametric
quantities characterizing the forcing profile, such as the temporal asymmetry, can also be exploited to modulate
or control the transport dynamics of particles of different sizes. To gain a theoretical understanding, we exploit
the Fick-Jacobs approximation to obtain a one-dimensional description of the diffusion problem, which enables
key quantities characterizing the diffusion process, such as the mean velocity, to be predicted. In the regime of
weak forcing, a reasonable agreement between theory and numerical results is achieved. Beyond the weakly
forcing regime, the diffusion approximation breaks down, causing the theoretical predictions to deviate from the
numerical results, into which we provide physical insights. Our findings have potential applications in optimizing
transport in microfluidic devices or through biological channels.
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I. INTRODUCTION

In transport of micro- or nanosized particles through a
confined space, e.g., a restricted channel, the influence of
thermal fluctuations is predominant. The particles are thus
Brownian particles and their diffusion and transport dynamics
are relevant not only to traditional disciplines such as physics,
chemistry, biology, engineering, and medicine, but also to
recently emergent interdisciplinary fields such as nanotech-
nology and nanomedicine [1–9]. Restricted channels arise
commonly in structures such as nanopores [10–12], zeolites
[13,14], and ionic channels [15,16]. In nanomedicine, de-
signing micro-nano scale channels for separating particles of
different sizes is a fundamental problem [11]. The transport
problem is also relevant to diverse problems such as microflu-
idics based drug screening [17], ion exchange in zeolite [13],
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and potassium and sodium ions passing through ion channels
as they enter and leave cells [15].

Historically, particle diffusion through a symmetric chan-
nel was studied theoretically using the concept of “entropy
resistance” and the Fick-Jacobs type of diffusion equation
[18,19]. It was found that the entropy resistance is related
to the boundary conditions of the geometric structure in the
confined space. Later, a modified Fick-Jacobs equation was
derived [20], where the constant diffusion coefficient in the
original Fick-Jacobs equation was replaced by a diffusion
coefficient that depends on the boundary conditions stipulated
by the geometric structure of the channel. The modification
led to an equation governing the evolution of the probability
density. The classic problem of particle diffusion through a pe-
riodically constrained structure was extended to a wider range
of applications where, for example, the method of exploiting
the entropy potential effect to manipulate particle motion was
proposed [21]. In situations where the particles can achieve a
rapid equilibrium in the cross-sectional degrees of freedom of
the channel, the two-dimensional (2D) or three-dimensional
(3D) diffusion problem can effectively be reduced to one in
one dimension [22–25]. In particular, when the cross-sectional
integration is removed because of the fast achieved equilib-
rium, the effective entropy barrier due to the limited space
will appear in the diffusion equation. Using the concept of
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entropy barrier to replace the geometric constraint opens up
the possibility of harnessing the shape of the constrained re-
gion to achieve control of the particle transport dynamics [26].
In recent years, particle diffusion through a confined structure
has attracted a great deal of interest [7,27–29].

The focus of our paper is on particle diffusion dynamics
through a confined structure that is periodic in space. A spe-
cific type of structure studied previously [30] is a channel
formed via periodic contact with a series of uniformly spaced
spherical cavities connected by a series of narrow openings,
through which Brownian particles can cross the bottlenecks
into other cells. The issues that have been studied include the
diffusion coefficient [30] and the effective mobility [31] of
Brownian particles. From the point of view of entropy [32],
the phenomenon of the emergence of negative entropy val-
ues at certain parameter settings was uncovered [33] through
calculating the change in the entropy potential of the whole
periodic structure. This means that a negative migration rate
associated with the particle movement would emerge, and this
had been tested in an experiment of transport of yeast cells
through this type of periodic structure, where the phenomenon
of cell separation was observed [33]. A key assumption em-
ployed in previous theoretical studies of diffusion of Brownian
particles through a periodic structure is that the particles have
zero size, i.e., they are point particles.

In this paper, we investigate the interplay between particle
size and Brownian transport through a restricted, periodic
structure. The primary motivation of this problem is self-
evident: In real-world applications, particles do have sizes.
Intuitively, the size can have a significant effect on the trans-
port dynamics. For example, in a simple term, it would be
easier for small particles to go through but particles of suffi-
ciently large sizes will be blocked. To be concrete, we study
the paradigmatic structure of spherical cavities connected to
each other through narrow channels and apply static and tem-
porally periodic forcing in the direction of the channel. We
consider hard-sphere particles and derive an effective channel
boundary function, which is piece-wise smooth. Numerically,
we carry out molecular dynamical simulations to study the
diffusion dynamics in a systematic way. Theoretically, assum-
ing that particle diffusion in the transverse cross section can
reach an equilibrium rapidly, we invoke the concept of entropy
barrier to treat the influence of the boundary constraint of the
channel. This physical approach enables us to obtain analytic
expressions for the key quantities underlying the diffusion
dynamics such as the mean particle velocity and the effective
diffusion coefficient, and their dependence on the particle size.

The main finding of this paper is the phenomenon of
current reversal, which can be described, as follows. Our
numerical calculations and theory reveal that, for particles of
certain size, the direction of diffusion can be reversed when
the forcing amplitude or the temporal asymmetric parameter
of the forcing profile increases through a critical value that
depends on the particle size. Thus, for a fixed forcing am-
plitude or a fixed value of the asymmetric parameter in an
appropriate range, the mean diffusion velocity depends on the
particle size. This is striking because it means that, for certain
amplitude of the driving force, particles of different sizes can
diffuse in opposite directions in the channel. In fact, there
exists a critical value of the size: above which the particles

diffuse in one direction of the channel, but particles of sizes
below the critical value diffuse in the opposite direction! Be-
sides its fundamental importance in basic Brownian transport
dynamics, this phenomenon provides a potential mechanism
for separating particles of different sizes with applications in
contexts such as transport through biological channels (e.g.,
separation of DNA fragments [34] and yeast cells) and sepa-
ration of nanoparticles.

We use the term “current reversal” to refer to the situation
where, under appropriate forcing, on average small and large
particles can diffuse in opposite directions. That is, if the
particle size is treated as a parameter, then as this parameter
increases through a critical value, the direction of diffusion
will be reversed. This should be distinguished from the pre-
vious studies [35,36] in which the particles were driven by a
sinusoidal periodic force and an increase in the phase shift of
the oscillating density at high frequencies can led to a current
reversal.

II. MODEL DESCRIPTION AND PHYSICAL THEORY

A. Brownian transport system with a periodic spherical
structure

We consider a confined 2D periodic channel that is sym-
metric in the y direction, described by y = yu(x) = −yl (x),
as shown in Fig. 1. The geometric boundary functions of the
periodic channel are defined by yu(x) (the upper boundary)
and yl (x) (the lower boundary), which are given by

yu(x) =
√

R2 − (x̄ − l )2

yl (x) = −
√

R2 − (x̄ − l )2, x̄ = mod(x, L), (1)

where L = 2l = 2
√

R2 − a2 is the spatial period of the chan-
nel, x̄ = mod (x, L) is a modulo function to generate the
periodic structure, a is the half-width of the bottleneck, and
R is the radius of the semicircular structure of the upper (or
lower) boundary of the channel within a single period. The
maximum and minimum widths of the channel are 2R and 2a,
respectively. With a hard spherical particle of radius rp inside
the periodic channel, the available space from the walls for
particles depends on rp. The upper effective half-width we+(x)
is

we+(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−√
rp

2 − x̄2 + a, 0 � x̄ < Lp,√
(R − rp)2 − (x̄ − l )2, Lp � x̄ < UP,

−
√

rp
2 − (x̄ − L)2 + a,UP � x̄ < L,

(2)

where Lp = rpl/R and UP = L − Lp. The lower effective
boundary is described by we−(x) = −we+(x). The effective
channel width of a particle of radius rp at any position in the
periodic channel is

2w(x) = we+(x) − we−(x),

as shown by the dashed orange curves in Fig. 1, where the
narrower reachable space for the centers of a hard-sphere
particle of radius rp is compared to that for a point particle.
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FIG. 1. Schematic diagram of a 2D periodic transport channel
and entropic potentials. (a) Original periodic channel walls defined
by the boundary function yu(x) and yl (x) [Eq. (1)], as indicated by
the blue curves. The dashed orange curves represent the effective
boundaries given by we+(x) and we−(x) [Eq. (2)], which confine the
motion of spherical particles of radius ranging from rp = 0 to rp = a.
Particles with radii of rp = 0.1a (yellow) and rp = 0.5a (orange)
are shown in the channel. The particles are driven by static and
temporally periodic forcing. The value of the half-width parameter
defined in Eqs. (1) and (2) is a = 0.1L. (b) The effective entropic
potential for the two particle sizes depicted in (a), which is defined
as E (x) = − ln [2we+(x)].

B. Physical theory

The dynamics of a Brownian particle in a 2D periodic
channel subject to a static force fc and an oscillating force
F (t ) along the x direction can be described by the Langevin
equation. In the over-damping regime, the equation reads

γr
dx

dt
= fc + F (t ) +

√
γrkBT ξx(t ), (3)

γr
dy

dt
=

√
γrkBT ξy(t ), (4)

where (x, y) specify the position of the particle center, kB is
the Boltzmann constant, and T is the absolute temperature.
The frictional coefficient γr is given by the Stokes’ law:
γr = 6πνrp, which depends on the viscosity ν of the fluid
and the radius rp of the particle. The stochastic force ξx,y(t )
is uncorrelated in time and modeled by white Gaussian noise
with 〈ξi(t )〉 = 0 and 〈ξi(t )ξ j (t ′)〉 = 2δi jδ(t − t ′) (i, j = x, y).
In the over-damping regime, two basic assumptions hold for
the diffusion system: (i) the particles are diluted (with small
density) in the whole system and the fluid is viscous and (ii)
each channel wall can be treated as a reflecting boundary.
The two assumptions stipulate that, at low Reynolds num-
bers, all effects caused by particle-particle and wall-particle

interactions can be neglected, rendering diffusive the domi-
nant dynamical behavior of the Brownian particles.

In a previous paper [27], an adjustable rectangular wave
force F (t ) was used, where particle separation was demon-
strated. We adopt the following form of the periodic driving
force:

F (t ) =
{ 1+ε

1−ε
A, nτ � t < nτ + 1

2τ (1 − ε)
−A, nτ + 1

2τ (1 − ε) < t � (n + 1)τ
, (5)

where τ is the forcing period, A is its magnitude, n is an
integer, and ε is a temporal asymmetric parameter with −1 �
ε < 1. The temporal average of the force over one period τ

is zero. Different forms of the unbiased force can be realized
through different choices of the value of ε. For ε = −1, we
have F (t ) = 0. For ε = 0, F (t ) reduces to a square wave form.

To make the Langevin equations dimensionless, we rescale
the variables in Eqs. (3) and (4) by the characteristic spatial
period L and the diffusion time:

tD ≡ γmaxL2/(kBT ),

where γmax = 6πνa. With these characteristic parameters, we
introduce the dimensionless variables: t̃ ≡ t/tD, τ̃ ≡ τ/tD,
x̃ ≡ x/L, ỹ ≡ y/L, w̃e+ ≡ we+/L, and ã ≡ a/L. The rescaled
forces are

f̃c ≡ fcL/kBT ,

F̃ (t̃ ) ≡ F (t )L/kBT .

To simulate particles in an external electrical field, we assume
that the force depends linearly on the radius rp. Specifically,
we set f1 = fca/rp and f0 = Aa/rp. (In the following, to
simplify notation, we omit the hat in these quantities.)

The dimensionless form of the Langevin equations is

dx

dt
= f1 + F (t ) +

√
a

rp
ξx(t ), (6)

dy

dt
=

√
a

rp
ξy(t ), (7)

where the dimensionless force is given by

F (t ) =
{ 1+ε

1−ε
f0, nτ � t < nτ + 1

2τ (1 − ε)
− f0, nτ + 1

2τ (1 − ε) < t � (n + 1)τ
. (8)

The dynamics of a confined over-damped Brownian particle,
as governed by Eqs. (6) and (7), can be analyzed through
the concept of entropic potential and the corresponding
Fick-Jacobs equation[18,20,21,37]:

∂P(x, t )

∂t
= ∂

∂x

{
D(x)

[
∂P

∂x
+ V ′(x)P

]}
= −∂ j

∂x
, (9)

where P(x, t ) is the joint probability density function and
j(x, t ) is the probability flux. The free energy V (x) is defined
as

V (x) = U − T S(x) = −[ f1 + F (t )]
( rp

a

)
x − ln [2we+(x)],

(10)
where

T S(x) = ln [2we+(x)], and

U = −[ f1 + F (t )](rp/a)x
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denote the entropic and energy contributions, respectively.
The Fick-Jacobs equation (9) can be obtained from the 2D
Smoluchowski equation after eliminating the y coordinate.
The reduction entails an effective position-dependent diffu-
sion coefficient defined as

D(x) = a

rp[1 + w′
e+(x)2]

1/3 . (11)

The particle current is a key quantity characterizing the trans-
port dynamics through a periodic channel structure, which can
be derived from the Fick-Jacobs approximation. From Eq. (9),
we have

j(x, t ) = −D(x)

[
∂P

∂x
+ V ′(x)P

]
, (12)

where P(x, t ) satisfies the normalization condition∫ 1
0 P(x, t )dx = 1 and the condition of periodicity

P(x, t ) = P(x + 1, t ). After a lengthy algebraic manipulation
(Appendix A), we obtain in the adiabatic limit the mean
velocity as

〈v〉 = 1

τ

∫ τ

0
J[F (t )]dt = 1

2
(J1 + J2), (13)

where

J1 = (1 − ε)J

(
1 + ε

1 − ε
f0

)
and J2 = (1 + ε)J (− f0), (14)

and the current j( f0) is given by the Stratonovich formula
[38–40] as

J ( f0) = 1 − e−( f1+ f0 )rp/a∫ 1
0 dx eV (x)

D(x)

∫ x
x−1 dye−V (y)

. (15)

It should be noted that our theoretical approach based on
analyzing the Fick-Jacobs equation is standard in the litera-
ture. For example, a similar analysis but for a different 2D
channel was carried out by Ai [41].

III. SIMULATION OF BROWNIAN DYNAMICS

We carry out direct numerical simulations of Brownian dy-
namics based on the dimensionless Eqs. (6), (7), and Eq. (13),
and to compare the theoretical and numerical results. In partic-
ular, we use the stochastic Euler algorithm to simulate Eqs.(6)
and (7), where single-step integration is proceeded as

x(t + h) = x(t ) + [ f1 + F (t )]h +
√

2ah

rp
ξ1, (16)

y(t + h) = y(t ) +
√

2ah

rp
ξ2, (17)

with ξ1 and ξ2 being two Gaussian random numbers of unit
variance. Particle positions falling outside of the channel can
be dealt with using the reflected boundary conditions at the
channel walls, i.e., the channel boundaries constrain the parti-
cles in the system via fully elastic collisions. To improve the
accuracy and minimize the statistical errors, we use over 103

random realizations and choose the time step h = 10−4. An
initial particle distribution at t = 0 starts from the center of a
cell. The new positions for each realization along the x and

FIG. 2. Numerically obtained snapshots of the distribution of
Brownian particles at different times in the absence of external
forcing. The structure is a symmetric 2D channel with the geometric
boundary defined by Eq. (2). The six snapshot images are obtained
at t = 0, 0.01, 0.05, 0.1, 1.0, and 10. The initial distribution of the
Brownian particles start at the middle of a cell, at time t = 0 (top
panel). After diffusion within the channel geometry and in the long
time limit, the distribution reaches a steady state (bottom panel).
The value of the temporal asymmetric parameter is ε = −1. The
static force is set to f1 = 0. The number of particles is 1000. Other
parameter values are L = 1, a = 0.1L, and rp = 0.1a.

y directions are determined by Eqs. (16) and (17). The mean
particle velocity along the x direction is defined as

〈v〉 = 〈ẋ〉 = lim
t→∞

〈x(t ) − x(0)〉
t

. (18)

Figure 2 presents a series of numerically calculated snap-
shots of the particle distribution at six different time instants
to illustrate the diffusion process of the Brownian particles
in a symmetric 2D channel in the absence of any exter-
nal force. In this case, the particle diffusion dynamics are
solely determined by the random (thermal) fluctuations in the
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FIG. 3. Nondirectional diffusion in the absence of external forc-
ing. (a) Distribution of Brownian particles (1000) mapped into a
single unit cell of the 2D channel defined by Eq. (2) with L = 1,
a = 0.1L, and rp = 0.5a for six different instants of time, where the
original distributions at those time instants are shown in Fig. 2. The
number of particles is 1000. (b) Probability distribution P(x, t ) of the
Brownian particles in the x direction within a single cell at different
time instants. Note that the distributions for t = 50.0 and t = 100.0
are nearly identical, indicating that a steady state has been reached.

environment. At t = 0, the ensemble of Brownian particles
is located about the center of a single cell. Thermal noise
makes the particles diffuse randomly and the particles redis-
tribute over the available space within the channel geometry
before reaching a steady state. It is worth noting that, since
the channel is periodic and thus infinitely long, the particles
always continue to spread along the channel, i.e., there is
no equilibrium state for the whole system. However, all the
diffusive particles can be mapped into a single unit cell and
their distribution can become stable. The term “steady state”
is used to indicate that the particles have reached such a stable
distribution. Because of the absence of external driving, the
respective probabilities for the particles to spread to the left
and right are the same. As shown in Fig. 2, the Brownian
particles diffuse evenly from their initial positions to both
sides and the associated transport behavior is not directional.
During the diffusion process, the particles may cross a large
number of cells.

To better illustrate the behavior of particle diffusion and to
ascertain the emergence of a steady-state distribution, we map
the particles in the spatially periodic system into a single unit
cell. The distributions of the particles at the six time instants
are shown in Fig. 3(a). Figure 3(b) shows the correspond-
ing normalized probability distribution in the x direction (the

FIG. 4. Directional transport induced by periodic forcing.
(a) Numerically obtained density snapshots of the Brownian particles
(1000) at different instants of time in a symmetric 2D channel with
the structure defined by Eq. (2), which are mapped into a single unit
cell. The periodic forcing amplitude is f0 = 1 and the asymmetry
parameter value is ε = 0.7. In addition, Brownian particles are driven
by a constant force f1 = −1. The upper row corresponds to t = 0,
0.01, and 0.05 (left to right), and the bottom row corresponds to
t = 5.0, 50.0, and 100.0 (left to right). The number of particles is
1000. (b) Probability distribution P(x, t ) within a unit cell in the x
direction at different time instants.

direction of channel). At t = 0, the initial particle distribution
is a delta function. The distribution then broadens as time
progresses. The peak of the probability density at the center of
the distribution decreases gradually, and the probability den-
sity values on both sides gradually increase. The distribution
finally reaches a steady state. For any t > 0, the probability
distribution shown in Fig. 3(b) is symmetric with respect to
the initial position at different time, indicating lack of any
directional transport.

To assess the effect of an external force on particle dif-
fusion, we set the periodic forcing amplitude to be f0 = 1.0
and choose the value of the temporal asymmetric parameter
to be ε = 0.7. Moreover, we apply a static force in the neg-
ative direction: f1 = −1. Figure 4(a) shows the numerically
calculated density snapshots of the particles at different time
t mapped into a single unit cell. Initially at t = 0, all particles
are located about the center of a unit cell. After a short period
of time (e.g., t = 0.01 and t = 0.05), the positive part of the
periodic force governs the diffusion process, so most particles
migrate to the right half of the channel. The negative phase of
the periodic force and the negative static force then kick in,
affecting the diffusion of particles. For example, at t = 5.0,
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t = 50.0, and t = 100.0, the particle distributions have a com-
ponent in the left half of the channel, as shown in Fig. 4(b),
the normalized probability distribution. For t � 100.0, the
diffusion dynamics have reached a steady state, with the
corresponding normalized probability distribution shown in
Fig. 4(b), which is asymmetric with most particles on the left
side of the channel. We thus see that a periodic force can lead
to directional transport of Brownian particles.

IV. MAIN RESULTS: CURRENT REVERSAL AND
PARTICLE SEPARATION

Figure 4 demonstrates that Brownian particles subject to
entropic barriers and driven by static and periodic forcing
are capable of directional transport when diffusing through a
symmetric confined structure. Here we focus on a key quantity
characterizing the transport: the mean particle velocity 〈v〉,
and compare the analytic prediction [Eq. (13) in Sec. II B]
with the numerical results from simulations of Eq. (18). To
be concrete, in the following we fix all geometric parameters
of the periodic transport channel and set its spatial period to
be L = 1. In addition, we set the half width of the bottleneck
to be a = 0.1L.

A. Current reversal and particle separation

Figure 5(a) shows the numerical results of the mean ve-
locity 〈v〉 as a function of the periodic forcing amplitude f0

for five different values of rp, the particle radius. For rel-
atively small values of the amplitude (0 � f0 < 2.25), the
negative force exerted on the particles plays a dominant role
in transport, causing all particles to move toward the left. As
the amplitude increases, a mean current of the particles with
different sizes begins to rise, because the positive component
of the periodic driving force begins to offset the negative static
force. For example, for f0 = 15.0, the positive phase of the
periodic force dominates particle transport in the channel, re-
sulting in a net positive mean velocity. In this case, the average
velocity is positive for particles of all five different sizes. As
can be seen from the entire velocity curves in Fig. 5(a), the
absolute value of the average velocity |〈v〉| decreases to zero
and then increases. During this process, current reversal can
be observed. For particles of radius rp = 0.1a, the amplitude
of the periodic force is 15.0 when current reversal occurs.
For particles of radius rp = 0.9a, current reversal occurs with
f0 = 2.25. For particles of radius rp = 0.3a, 0.5a, 0.7a, the
critical amplitude of current reversal occurs between 2.25 and
15.0. For 2.25 < f0 � 15.0, the mean velocity 〈v〉 is negative
for small values of rp but positive for large values of rp, i.e.,
small particles move towards left and large particles move
towards right, realizing particle separation.

Figure 5(b) shows the mean velocity as a function of rp for
three different values of the forcing amplitude: f0 = 0, 2.0,
and 15.0. For f0 = 0 and f0 = 2.0, The current is negative
for all particles with radii between rp = 0.1a and rp = 0.9a.
In this case, all particles move toward the left of the channel,
and small particles have a large negative mean velocity. For
f0 = 15.0, the current is positive for all values of rp and
exhibits a monotonic behavior: the larger the radius of the par-
ticles, the faster the mean motion. Figure 5(c) presents three

FIG. 5. Demonstration of current reversal and particle separa-
tion. (a) Mean particle velocity 〈v〉 vs the periodic forcing amplitude
f0 for five values of the particle size. (b) Regime of relatively small
and large forcing amplitude, in which the particles diffuse in the same
direction. Shown is the mean current vs the particle radius for f0 = 0,
2.0, and 15.0. (c) Explicit demonstration of the phenomenon of
particle separation: 〈v〉 vs rp for f0 = 5.0, f0 = 8.0, and f0 = 11.0.
In each case, a critical radius emerges: particles of size smaller than
it have a negative mean velocity while those larger than it have
a positive mean velocity. The critical radius value depends on the
forcing amplitude. In all cases, the value of the temporal asymmetric
parameter is set to be ε = 0.7 and the static force is f1 = −1.

cases explicitly demonstrating the separation phenomenon for
f0 = 5.0, f0 = 8.0, and f0 = 11.0, where the direction of 〈v〉
depends on the particle radius and particles of different sizes
move in different directions on average. There is a threshold
radius rc

p: particles smaller than rc
p move to the left, whereas

particles larger than that move to the right. When the ampli-
tude is set to f0 = 5.0, the threshold radius rc

p equals 0.525a.
For f0 = 8.0 and f0 = 11.0, the threshold radii are rc

p = 0.31a
and rc

p = 0.2a, respectively. In the regime of particle separa-
tion, the critical radius depends on the forcing amplitude f0.
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FIG. 6. Current reversal and particle separation induced by
asymmetry in the external forcing. (a) Mean particle velocity 〈v〉 vs
the temporal asymmetric parameter ε for five values of the particle
size. (b) Regime of relatively small value of ε, in which particles
diffuse in the negative direction. Shown is the mean current 〈v〉 vs
the particle radius for ε = −1.0, –0.2, and 0.5. (c) Evidence for
particle separation: 〈v〉 vs rp for ε = 0.7, ε = 0.8, and ε = 0.9. In
both panels, the value of the forcing amplitude is f0 = 3 and the static
force is f1 = −1.

The direction and magnitude of particle diffusion not only
can be controlled by varying the amplitude of the external
force but can also be modulated by adjusting the temporal
asymmetric parameter ε. Figure 6(a) shows 〈v〉 vs ε for f0 = 3
and f1 = −1. Tuning the value ε enables control of the trans-
port velocity and direction. In particular, 〈v〉 is negative for
−1 � ε < 0.62 because, in this case, the unbiased external
periodic force is asymmetric and the positive phase of the
periodic driving force does not cancel out the negative phase
and the negative static force f1. For 0.62 < ε � 0.9, the mean
velocity 〈v〉 goes from negative to positive, i.e., the current
reverses its direction for some critical value of ε, where
the critical value depends on the size of the particle. For

particles with rp = 0.1a and rp = 0.3a, their mean velocity
〈v〉 is always negative over the whole range of ε values consid-
ered. For particles with rp = 0.5a, 0.7a, and 0.9a, the critical
values are εc ≈ 0.90, εc ≈ 0.75, and εc ≈ 0.62, respectively.
This indicates that the larger the particle size, the smaller the
threshold parameter ε is required for current reversal. Fig-
ure 6(a) also demonstrates that particles of different sizes will
have different diffusion directions when the temporal asym-
metric parameter ε is between 0.62 and 0.9, suggesting that
a better separation efficiency can be achieved for Brownian
particles.

As Fig. 6(a) implicates, changing the value of the temporal
asymmetric parameter ε can induce Brownian particles to
diffuse in opposite directions. This is explicitly demonstrated
in Figs. 6(b) and 6(c), which show 〈v〉 vs rp for different
values of ε. Note that the radius of the particle is set between
0.1a and 0.9a. As shown in Fig. 6(b), for ε = −1, ε = −0.2,
and ε = 0.5, we have 〈v〉 < 0, regardless of the particle size.
For these three sets of parameters, particles move in the same
direction. However, for ε = 0.7, ε = 0.8, and ε = 0.9, the
Brownian particles larger than a given critical radius diffuse
to the right, whereas particles smaller than that diffuse to the
left. As depicted in Fig. 6(c), the value of the threshold radius
depends on ε. For ε = 0.7, 0.8, and 0.9, the critical radii rc

p
are 0.79a, 0.65a, and 0.48a, respectively. This indicates that
the efficiency of distinguishing and separating particles can be
improved by properly choosing the value of ε.

Figure 7 presents a comparison between the analytic results
from the Fick-Jacobs equation (solid curves) and numerical
results from Brownian dynamical simulation (symbols). In
Fig. 7(a), the mean velocity vs f0 for 0 � f0 � 5.0 for two
particle sizes is shown. For rp = 0.7a, the agreement between
theory (blue solid curve) and the simulation results is good
for 0 � f0 < 3.0. For rp = 0.9a, the agreement is reasonable
for 0 � f0 < 2.5. For larger values of f0, the theoretical pre-
diction deviates from the numerical results. (See Sec. V for
a detailed analysis of the validity of the theory.) Figure 7(b)
shows 〈v〉 vs ε for rp = 0.7a and rp = 0.9a. Since current
reversal occurs only for positive values of ε > 0, we set its
range of variation to be [0,0.9]. For rp = 0.7a (the blue curve
and symbols), the agreement between theory and numerical
results is reasonable for 0 � ε < 0.75. For rp = 0.9a, the
range of agreement is 0 � ε < 0.65. Note that, in both cases,
current reversal occurs in the range of agreement.

B. A systematic analysis of current reversal

We carry out a systematic analysis of the phenomenon of
current reversal as demonstrated in Figs. 5 and 6. Especially,
Fig. 5(a) shows that the mean velocity changes from negative
to positive as the forcing amplitude f0 increases, and particles
of different sizes require a different value of f0 to make the
transition. Analogously, in Fig. 6(a), as the temporal asym-
metric parameter ε increases from –1 to 0.9, current reversal
occurs. These results indicate that both parameters can be
exploited to induce a change in the direction of diffusion of
Brownian particles. Another essential parameter is the particle
radius rp. To obtain a more comprehensive picture of current
reversal, we investigate the behavior of the mean velocity with
respect to systematic variations in the three parameters.
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FIG. 7. Comparison between numerical and theoretical results.
(a) Mean velocity 〈v〉 vs f0 for ε = 0.7. (b) Mean velocity 〈v〉 vs ε

for f0 = 3. In both panels, the solid lines represent the theoretical
predictions and the symbols are numerical results. Two particle sizes
are used: rp = 0.7a and rp = 0.9a. Other parameter values are f1 =
−1, L = 1.0, and a = 0.1L.

Figure 8(a) shows the numerical contour plot of the mean
velocity 〈v〉 in the (rp, f0) parameter plane. For clarity, we
divide Fig. 8(a) into two areas. In Area 1, 〈v〉 is negative for
0 < f0 < 2.25, i.e., all particles move to the left of the chan-
nel, indicating that relatively weak forcing amplitude leads to
a negative mean current. This can be understood by noting
that, while the unbiased external force is temporally periodic,
its negative component plays a key role in the transport pro-
cess aided by the static force f1. As a result, a net negative
current is produced. In Area 2, current reversal is possible. In
particular, the orange solid curve corresponds to zero current,
across which current reversal occurs. For 2.25 < f0 < 15.0,
the current is negative for small values of rp but becomes
positive for large values of rp. The critical radius rc

p for particle
separation depends on the value of f0, as represented by the
orange solid curve, which gives the threshold radius rc

p for any
given f0 in the range.

Similarly, Fig. 8(b) shows the contour of 〈v〉 in the (ε, rp)
plane, where the orange solid curve is the zero-current con-
tour. As shown in Fig. 6(a), when current reversal occurs, the
range of the temporal asymmetric parameter is 0.62 < ε �
0.9. In order to show the details of current reversal, we set
the range of the ε values to be [0,0.9] in Fig. 8(b). There are
two distinct areas. In Area 1 (0 � ε < 0.62), 〈v〉 is negative
for all particles. In Area 2 (0.62 < ε � 0.9), current inversion
can be observed. Analogously, the orange solid curve corre-
sponds to 〈v〉 = 0, across which current reversal occurs. It
is worth noting that particles with radius less than 0.48a do

FIG. 8. Contour plot of mean velocity 〈v〉. (a) Contour plot in the
parameter plane ( f0, rp) for ε = 0.7. The black dotted curves denote
the contours of 〈v〉 
= 0. The orange solid curve is the zero-current
contour, across which current reversal occurs. (b) Contour plot the
parameter plane (ε, rp) for f0 = 3. The orange solid curve represents
zero-current contour in the diagram. In both panels, the static force
is set to f1 = −1. The parameter values of the channel structure are
L = 1.0 and a = 0.1L.

not experience current reversal. For 0.62 < ε � 0.9, particles
smaller than a given threshold radius rc

p move to the left of the
channel, whereas particles larger than that move towards the
right. The threshold radius rc

p for particle separation depends
on the value of ε, as indicated by the orange solid curve (zero
currents) in Fig. 8(b).

V. APPLICABILITY OF THEORY

In the regime of weak forcing and weak asymmetry, our
numerical results in Sec. IV agree with the theoretical pre-
diction reasonably well. As our theory is approximate, it is
necessary to study the range of its applicability. The starting
point of our validity analysis is the derivation of the Fick-
Jacobs equation Eq. (9), in which equilibrium dynamics in the
direction transverse to particle transport are assumed. The re-
sulting theoretical predictions are thus expected to be accurate
when this hypothesis holds. Previously, to obtain the condi-
tions under which the equilibrium hypothesis is reasonable,
a method based on analyzing the different time scales in-
volved in confined transport was proposed [24]. In particular,
for particle diffusion in a two-dimensional periodic channel,
different characteristic processes in the axial direction can be
identified, which correspond to different time scales that can
be derived from the Langevin equations [(3) and (4)]. For
diffusion in the y direction over a distance 
y, in the absence
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FIG. 9. Comparison between the numerical and theoretical results. [(a), (b)] Mean velocity 〈v〉 vs f0 for a = 0.1L and a = 0.2L,
respectively, for ε = 0.7. Two particle sizes are used: rp = 0.7a and rp = 0.9a. For both sizes, there is a reasonable agreement between the
theoretical predictions (solid curves) and numerical results (symbols) in the weak forcing regime. For the smaller particle size, the agreement
holds approximately for the entire range of the forcing amplitude illustrated. For the larger particle size in (b), the agreement begins to
deteriorate as the forcing amplitude increases through about 8.0, due to the breakdown of the transverse equilibrium condition. [(c),(d)] Mean
velocity 〈v〉 vs ε for a = 0.1L and a = 0.2L, respectively, for f0 = 3.0. Since the forcing amplitude is relatively small, in all cases there is a
good agreement between the theory and numerical results. Other parameter values are f1 = −1 and L = 1.0.

of any external force, the characteristic time is given by

τy = 
y2

2D
, (19)

where D = kBT /γr . Similarly, the characteristic time associ-
ated with diffusion in the x direction is

τx = 
x2

2D
. (20)

In order to achieve an equilibrium in the transverse direction,
we must have τy � τx, which requires


y2


x2
∼ w′2

e+(x) � 1. (21)

The inequality (21) is a local condition under which the Fick-
Jacobs equation holds. To obtain a global condition for the
whole transport channel, we average the local criterion over
one spatial period L of the channel:

〈
w′2

e+(x)
〉 =

∫ L

0
w′2

e+(x)dx. (22)

A focal point of our work is to study the limiting effects of
the channel on particle transport to understand the complex
dynamical process in restricted channels in the real world,
which is the reason that we set the half width of bottleneck
to a = 0.1L. In this case, the value of 〈w′2

e+(x)〉 is about 1.36,
which violates the condition (21) and lead to a disagreement

between the theoretical and numerical results. Increasing the
half width will reduce the value of 〈w′2

e+(x)〉. For example,
for a = 0.15L, we have 〈w′2

e+(x)〉 ≈ 1.0. For a = 0.2L, we
have 〈w′2

e+(x)〉 ≈ 0.77 < 1, in which case a better agreement
between the theory and numerical results can be anticipated.
Note that, increasing the value of a above, e.g., 0.3L, would
effectively flatten the channel boundary and make the trans-
port dynamics trivial.

To verify that a larger value of the bottleneck width than
0.1L can result in an improved agreement between the theory
and numerical results, we calculate the the mean velocity 〈v〉
as a function of f0 and ε, for the two cases of a = 0.1L and
a = 0.2L (for comparison). The results are shown in Fig. 9,
for two representative particle sizes. Specifically, Fig. 9(a)
indicates that, for a = 0.1L, the theoretical predictions de-
viate from the numerical results as f0 exceeds the threshold
value f u

0 ≈ 3.0, but for a = 0.2L, the agreement holds until
about f u

0 � 8.0, as shown in Fig. 9(b). Similar improvement
in the agreement between the theory and numerical results is
observed when the temporal asymmetric parameter ε system-
atically increases, as shown in Figs. 9(c) and 9(d) where, for
a = 0.1L, the theoretical prediction holds until for ε = εu ≈
0.7, but for a = 0.2L, this threshold value becomes εu ≈ 0.9.

The above analysis of the deviations between numerical
and theoretical results focuses on the conditions under which
equilibrium dynamics in the direction transverse to parti-
cle transport can be achieved. For example, if the forcing
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amplitude is too large, the Brownian particles will be strongly
pulled in the x direction during some time periods so that the
particles are not able to reach the diffusion equilibrium in the y
direction fast enough for the equilibrium assumptions to hold.
Another factor that can contribute to the deviations is D(x),
the effective position-dependent diffusion coefficient that is
a basic quantity in the Fick-Jacobs equation. It is given by
the Reguera-Rubi formula in Eq. (11) that contains the spatial
derivative of the channel boundary. While the validity of this
formula has been checked in certain cases (e.g., for the chan-
nel formed by overlapping circles [42]), near the cusps where
the derivative diverges, the formula is not applicable. We
also observe from Fig. 9 that the deviations tend to increase
with the forcing amplitude, which can be due to the effects
of forcing on the diffusion coefficient. Indeed, it was shown
rigorously [43] that, for a strictly one-dimensional system,
D(x) depends on the driving force.

VI. DISCUSSION

We have studied the diffusion dynamics of finite size
Brownian particles through in a confined channel with a
spatially periodic spheroidal structure. Theoretically, the 2D
diffusive dynamics can be analyzed using the method of di-
mension reduction, leading to the paradigmatic 1D stochastic
Fick-Jacobs equation. Direct Brownian molecular dynamics
simulations of the full system in terms of a key quantity char-
acterizing the transport dynamics, the mean particle velocity,
provide strong support for the applicability of the Fick-Jacobs
equation to the diffusion system. The roles of the parameters
defining the external periodic forcing, such as its amplitude
and the temporal asymmetric parameter, as well as the particle
radius, in the transport dynamics have been studied in detail,
opening a door to controlling the diffusive dynamics of finite-
sized Brownian particles through a confined structure [26].

Our paper has unveiled two mechanisms to modulate the
transport behavior. In particular, distinct directional motions
as characterized by the mean directional current can be in-
duced by (a) varying the forcing amplitude and (b) tuning the
temporal asymmetric parameter. When only a static force is
applied in the negative direction, all particles move towards
the left. When both static and periodic forcing are present, a
net positive current can emerge in the channel. For a fixed
periodic forcing amplitude, the current depends strongly on
the particle size, enabling separation of particles of differ-
ent sizes through the differential particle velocity. Likewise,
varying the temporal asymmetric parameter can enhance or
suppress the directional transport. When this parameter value
is small, all particles follow the negative static force and move
towards the left of the channel. As the value of the parameter
increases, the mean velocity of the particles in the negative
direction gradually decreases to zero and then increases in the
positive direction, leading to the phenomenon of current rever-
sal. The critical value of the temporal asymmetric parameter
for current reversal depends on the particle size.

Our work has revealed that, under appropriate conditions,
the diffusive motions of particles of different sizes can occur
in opposite directions. Especially, a threshold in the particle
size emerges, where particles of size larger than or smaller
than the threshold value move in opposite directions. This

provides a mechanism for separating particles of different
sizes. Intuitively, varying the profile of the external force can
modulate the particle motion in general, but our work brings
forth a detailed and quantitative understanding of how the
diffusion dynamics of Brownian particles may be controlled,
and this will have applications in a variety of transport systems
that arise ubiquitously in physical and biological sciences.

The finding of the present paper is based on single-particle
trajectories, where statistical averages are obtained from many
realizations of single-particle simulation. This is an idealized
setting, which can be justified only for diluted particles (with
near zero density) in a viscous fluid. In a realistic situation,
for relatively large and dense particles, crowding and strong
correlations in the motion of particle can arise due to the
steric interactions among the particles, which can compromise
the ability of the channel to separate particles in practical
applications. To study the effects of crowding and interparticle
correlations on the collective transport of particles in a peri-
odic channel is important and warrants further investigation.

Another limitation of the present paper is that transport is
assumed to occur in a 2D channel. In fact, the 2D channel
illustrated in Fig. 1(a) can be regarded as a cross section of
a more realistic 3D periodic channel in the x direction. The
diffusive movements of particles are restricted by the channel
boundaries in the y and z directions. The static and periodic
driving forces applied on the particles are along the x direc-
tion. If these forces are reasonably strong so that the gravity
of the particles can be neglected, the equations of motion the
particles in the y and z directions are the same. This feature,
coupled with the symmetry of the spherical channel geometry,
stipulates that the average velocity of the particles in the 3D
channel be the same as that in the 2D case. Using the Fick-
Jacobs approximation to integrate out the y and z variables,
the end result is an effective 1D description based on the
Fick-Jacobs equation. Under those circumstances, significant
deviations in the diffusion dynamics in 3D from those in 2D
are not expected.
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APPENDIX: DERIVATION OF EQ. (13)

The mean velocity is a key quantity characterizing the
transport efficiency of particles through a confined space,
which can be analytically derived through the mean first pas-
sage time [38–40], the average time required for a stochastic
process x(t ) to reach the boundary or leave a specific area for
the first time. At the initial time t0, the particle position in the x
direction is x0. Since the confined space is a periodic channel
of spatial period L, the barriers across which the particles
move from one compartment to an adjacent one in the channel
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are identical. It suffices to calculate the first passage time in a
unit cell of length L, which is a random variable denoted as
t (x0 → x0 + L). The particle current is

J = L

〈T1(x0 → x0 + L)〉 , (A1)

where 〈·〉 denotes the mean first passage time. The nth mo-
ment of the first passage time is

Tn(x0 → x0 + L) := 〈t n(x0 → x0 + L)〉, (A2)

where T0(x0 → x0 + L) = 1 and T1(x0 → x0 + L) is the mean
first passage time. We have

J = L

T1(x0 → x0 + L)
. (A3)

To derive an analytic formula for J , we use the Fokker-Plank
operator � defined as

� = ∂

∂x

[
D(x)e−V (x) ∂

∂x
eV (x)

]
. (A4)

Using � in the Fick-Jacobs equation [Eq. (9)] in the main text,
we get

∂P(x, t )

∂t
= �P(x, t ), (A5)

The corresponding backward operator �+, which is the ad-
joint operator of �, is given by

�+ = eV (x) ∂

∂x

[
D(x)e−V (x) ∂

∂x

]
. (A6)

The probability function W (t ) of a realization that starts from
x0 and has not reached the absorbing boundary x0 + L at time
t is

W (t ) =
∫ x0+L

x0

P(x, t ) dx. (A7)

The probability distribution function w(t ) for the first passage
time t is then given by

w(t ) = −dW (t )

dt
= −

∫ x0+L

x0

∂P(x, t )

∂t
dx. (A8)

The mean first passage time T1(x0 → x0 + L) is the first mo-
ment of t (x0 → x0 + L). We have

T1 =
∫ +∞

0
tw(t )dt = −

∫ +∞

0

∫ x0+L

x0

t
∂P(x, t )

∂t
dxdt = −

∫ x0+L

x0

∫ +∞

0
t
∂P(x, t )

∂t
dtdx . (A9)

Carrying out the partial integration, we get

T1 =
∫ x0+L

x0

∫ ∞

0
P(x, t ) dtdx. (A10)

Applying the backward operator �+ to Eq. (A10), we get

�+T1 = eV (x) ∂

∂x

[
D(x)e−V (x) ∂

∂x

]
T1 = −1 (A11)

or

∂

∂x

[
D(x)e−V (x) ∂

∂x

]
T1 = −e−V (x). (A12)

Through integration, we get

∂

∂x
T1 = eV (x)

D(x)

[
−

∫ x

a
e−V (z)dz + K1

]
, (A13)

where a is an arbitrary point in the given domain and K1

is an integration constant. Imposing the reflecting boundary
condition at x → −∞:

∂T1

∂x
|x=−∞ = 0, (A14)

we obtain

K1 =
∫ −∞

a
e−V (z)dz. (A15)

Substituting Eq. (A15) into Eq. (A13), we get

∂

∂x
T1 = − eV (x)

D(x)

∫ x

−∞
e−V (z)dz, (A16)

so

T1 = −
∫ x

b

eV (y)

D(y)
dy

∫ y

−∞
e−V (z)dz + K2, (A17)

where b is an arbitrary point in the given domain and K2

is second integration constant. With the absorbing boundary
condition at x = x0 + L: T1(x0 + L) = 0, we get

K2 =
∫ x0+L

b

eV (y)

D(y)
dy

∫ y

−∞
e−V (z)dz. (A18)

Substituting K2 back into Eq. (A17) leads to

T1(x → x + L) =
∫ x0+L

x

eV (y)

D(y)
dy

∫ y

−∞
e−V (z)dz. (A19)

The final equation for the first moment of the first passage
time from a fixed point x0 to x0 + L is

T1(x0 → x0 + L) =
∫ x0+L

x0

eV (x)

Ds(x)
dx

∫ x

−∞
e−V (y)dy. (A20)

For clarity, we write

T1(x0 → x0 + L) =
∫ x0+L

x0

Ĩ (x)dx, (A21)

where I (x) is given by

Ĩ (x) = eV (x)

D(x)

∫ x

−∞
e−V (y)dy. (A22)

Because the restricted channel is periodic and has a
mirror symmetry, we have we+(x) = −we−(x) and
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we+(x + L) = we+(x). In addition, D(x) is periodic
[Eq. (11)]: D(x + L) = D(x). From Eq. (10), we can write the
free energy as

V (x) = U (x) − T S(x)

= −( f1 + f0)(rp/a)x − ln [2we+(x)] with

U (x) = −( f1 + f0)(rp/a)x,

which give

V (x + L) = V (x) + [−( f1 + f0)(rp/a)]L,

U (x + L) = U (x) + [−( f1 + f0)(rp/a)]L,

where we have assumed that the force on the particle is f1 +
f0 with f1 being static and f0 being controllable. Using∫ x

−∞
e−V (y)dy =

∫ x

−∞
e−[U (y)−T S(y)]dy

=
∞∑

m=0

∫ x

x−L
e−V (y)e[−( f1+ f0 )(rp/a)]Lmdy

= 1

1 − e[−( f1+ f0 )(rp/a)]L

∫ x

x−L
e−V (y)dy,

(A23)

we can simplify Ĩ (x) as

Ĩ (x) = eV (x)

D(x)(1 − e[−( f1+ f0 )(rp/a)]L )

∫ x

x−L
e−V (y)dy. (A24)

The mean first passage time T1(x0 → x0 + L) is given by

T1(x0 → x0 + L) = 1

1 − e[−( f1+ f0 )(rp/a)]L

∫ x0+L

x0

eV (x)

D(x)
dx

∫ x

x−L
e−V (y)dy. (A25)

Accordingly, the particle current J ( f0) is given by

J ( f0) = L

T1(x0 → x0 + L)
= L(1 − e[−( f1+ f0 )(rp/a)]L )∫ x0+L

x0

eV (x)

D(x) dx
∫ x

x−L e−V (y)dy
. (A26)

Since the initial position x0 is arbitrary, we set x0 = 0. In addition, we have L = 1. These lead to Eq. (13). Note that the force
exerted on the diffusion particles is time periodic. The average velocity of Brownian particles can be obtained by averaging over
a single period, which is

〈v〉 = 1

τ

∫ τ

0
J
(
F (t )

)
dt = 1

2
(J1 + J2), (A27)

where

J1 = (1 − ε)J

(
1 + ε

1 − ε
f0

)
and J2 = (1 + ε)J (− f0). (A28)
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