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Anticipating synchronization with machine learning
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In realistic systems of coupled oscillators, it is desired to predict the onset of synchronization where the
system equations are unknown, raising the need to develop a prediction framework that is model free and fully
data driven. We show that this challenging problem can be addressed with machine learning. In particular,
exploiting reservoir computing or echo state networks, we employ a “parameter-aware” scheme to train the
neural machine using time series acquired from a small number of distinct asynchronous states in the parameter
regime prior to the onset of synchronization. The trained machine can then be used to predict the synchronization
transition through tuning the control parameter. We demonstrate the power of the machine learning-based
framework using two types of synchronization behaviors: Complete synchronization in coupled identical chaotic
oscillators and the phase synchronization in coupled nonidentical phase oscillators, which are representative of
the collective dynamics in coupled systems. In addition, we design our numerical experiments such that two
transition scenarios are covered: Smooth (second-order) and explosive (first-order) transitions that represent the
generic types of phase transition in nonlinear physical systems. A remarkable feature is that, for the network
systems exhibiting explosive (first-order) transition, the machine learning scheme is capable of predicting not
only the locations of the transition points associated with the forward and backward transition paths but also the
hysteresis between the two paths.
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I. INTRODUCTION

As a universal concept in nonlinear and complex dy-
namical systems, synchronization has attracted a great deal
of research and continuous interest over the past decades
[1–3]. Synchronization refers to the coherent motion between
coupled dynamical units, which emerges normally when the
interaction or coupling among the units is sufficiently strong.
In the study of synchronization, one of the central tasks is
to identify the critical coupling strength where the system is
transitioned from desynchronization to synchronization [1–3].
For systems of coupled identical oscillators, the critical cou-
pling for complete synchronization can be analyzed by the
method of master stability function [4–6]. For systems of non-
linearly coupled phase oscillators, e.g., the classical Kuramoto
model, the critical coupling characterizing the onset of phase
synchronization can be determined by the mean-field theory
[7,8]. Synchronization in complex network systems has also
been extensively studied [9], in which the important roles
of network structure in synchronization have been revealed.
The transition from desynchronization to synchronization can
be continuous, e.g., the synchronization error or the system
order parameter is changing continuously about the critical
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coupling. The transition can also be discontinuous and shows
the feature of first-order transition in that, near the the transi-
tion point, an infinitesimal variation in the coupling can lead
to an abrupt change in the synchronization order parameter.
This phenomenon was first observed in systems of globally
coupled oscillators [10,11] and was also reported in complex
networks [12–14] where the first-order transition occurs when
the network links are weighted according to the oscillator’s
natural frequencies [14]. This phenomenon, known as ex-
plosive synchronization [12], is the result of the interplay
between network structure and collective dynamics.

In realistic systems, such as the human brain [15], synchro-
nization has important implications to the system functions,
and a question of practical interest is whether synchronization
can be predicted before its occurrence. Different from theo-
retical studies in which the equations governing the system
dynamics are known a priori, in realistic situations the system
equations are often unknown. This raises the challenge to
predict synchronization in practical situations where only the
time series from a few asynchronous states are available, with
the goal of predicting whether the oscillators are synchro-
nizable for a given parameter change. In situations such as
this, any prediction attempt must be based on time series data
obtained before the system evolves into the synchronous state.
We are thus motivated to ask the following question: Given
that the system operates in a parameter regime where there is
no synchronization, would it be possible to predict, without re-
lying on any model, the onset of synchronization based solely
on the time series measured from the asynchronous states? In
this paper, we articulate a machine-learning framework based
on reservoir computing to provide an affirmative answer to
this question.

2643-1564/2021/3(2)/023237(10) 023237-1 Published by the American Physical Society

https://orcid.org/0000-0001-7703-0185
https://orcid.org/0000-0002-8921-1642
https://orcid.org/0000-0002-0723-733X
https://orcid.org/0000-0002-6851-0109
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.023237&domain=pdf&date_stamp=2021-06-22
https://doi.org/10.1103/PhysRevResearch.3.023237
https://creativecommons.org/licenses/by/4.0/


FAN, KONG, LAI, AND WANG PHYSICAL REVIEW RESEARCH 3, 023237 (2021)

The idea and principle of exploiting reservoir computing
for predicting the state evolution of chaotic systems were
first laid out about two decades ago [16,17]. In recent years,
model-free prediction of chaotic systems using reservoir com-
puting has gained considerable momentum [18–31]. It has
been shown that compared to the conventional prediction
techniques in nonlinear science, reservoir computing has an
advantage in both accuracy and efficiency. For instance, the
state evolution of chaotic systems can be accurately predicted
for about a half dozen or so Lyapunov times by reservoir
computing [17], which is much longer than the prediction
horizon achieved by the traditional methods of nonlinear time
series analysis. An interesting finding in these studies is that,
even though reservoir computing is unable to make long-term
predictions of the state evolution of a chaotic system, it is
still able to replicate the ergodic properties of the system [18],
namely, the “climate.” This feature makes it possible to repro-
duce the bifurcation diagram of a nonlinear dynamical system
without knowing the equations [32]. Recently, a “parameter-
aware” scheme was proposed to predict critical transitions
and system collapse in nonlinear dynamical systems [33],
in which a parameter input channel is incorporated into the
standard reservoir computing to “guide” the evolution of the
reservoir in the predicting phase. It is shown that the machine
trained in the normal functional regime can not only predict
the transition point of system collapse but also estimate the
average lifetime of the transient. (A similar scheme has also
been proposed in Refs. [34,35]). Employing the parameter-
aware scheme and treating the coupling strength as the control
parameter, in the present work we demonstrate that machine
learning can be effective at anticipating the transition from
desynchronization to synchronization in systems of coupled
oscillators. We show that the machine trained on a time se-
ries containing a handful of asynchronous states is able to
not only predict the critical couplings for synchronization
but also reproduce the transition path from desynchronization
to synchronization. Considering the model-free nature of the
prediction framework and the important implications of syn-
chronization to system functions, the findings may have broad
applications.

II. MACHINE-LEARNING METHOD

Our reservoir computing machine consists of four mod-
ules: The I/R layer (input-to-reservoir), the control module,
the hidden layer (the reservoir), and the R/O layer (reservoir-
to-output). The I/R layer is characterized by Win, a Dr ×
Din-dimensional matrix that maps the input vector uε(t ) ∈
RDin to the dynamical network in the reservoir hidden layer,
where the input vector is acquired from the target system at
time t for the specific bifurcation parameter value ε. Different
from the conventional schemes where the training data are
acquired at a fixed bifurcation parameter [18–31], here we
consider the situation of time-dependent bifurcation param-
eter, i.e., ε is a step function of time. The elements of Win are
randomly drawn from a uniform distribution within the range
[−σ, σ ]. The control module is characterized by the vector
s = η(t )b, where η(t ) is the time-dependent control parameter
and b ∈ RDr is a bias vector. In general, the control parameter
is related to the bifurcation parameter of the target system

by a smooth function, where a convenient choice is simply
η(t ) = ε(t ). Effectively, η(t ) can be regarded as an additional
input component that can be incorporated into the input vector
u(t ), where the elements of b are also drawn randomly from
a uniform distribution within the range [−σ, σ ]. The network
in the hidden layer consists of Dr nonlinear elements (nodes),
whose dynamics are governed by the rule

r(t + �t ) = (1 − α)r(t ) + α tanh[Ar(t )

+Winuε(t ) + εk (ε(t ) + εbias)b], (1)

where r(t ) ∈ RDr is the state vector of the network at time
t , �t is the time step, α is a leakage parameter, εk and εbias

are constant parameters defining a linear transformation of
ε(t ) before inputting into the reservoir, and A is a Dr × Dr-
dimensional matrix characterizing the connecting structure
of the hidden layer network. With probability 1 − p, the
elements of matrix A are set to be zero. The symmetric,
nonzero elements of A are drawn from a uniform distribution
within the range [−1, 1] and are normalized so as to make
the spectral radius of the matrix equal ρ. The output layer is
characterized by a Dout × Dr-dimensional matrix Wout, which
generates the Dout-dimensional output vector v(t ) via the rule

v(t + �t ) = Wout · f[r(t + �t )], (2)

where f (r) is the output function. Following Ref. [22], here we
set f (r) = r for the odd nodes in the reservoir and f (r) = r2

for the even nodes, so as to improve the learning performance.
As in previous studies of chaos prediction [18–31], we set
Din = Dout, such that in the predicting phase the input vector
uε(t ) can be replaced by the output vector v(t ) directly. The
elements of the output matrix are to be determined through
a training process. In particular, different from Win, the ele-
ments of Wout are not known a priori, but are to be “learned”
from the input data through a training process, with the pur-
pose to find the proper matrix Wout such that the output vector
v(t + �t ) as calculated from Eq. (2) is as close as possible
to the input vector u(t + �t ) for t = (τ + 1)�t, . . . , (L −
1)�t, L�t , where T0 = τ�t is the initial period discarded to
remove the transient behavior in the reservoir’s response to the
training signal, and L is the length of the training time series.
This can be done [18,19,22] by minimizing a cost function
with respect to Wout, which gives

Wout = UFT (FFT + λI )−1, (3)

where F is the Dr × L-dimensional state matrix whose kth
column is f{r[(τ + k)�t]}, U is the Din × L-dimensional ma-
trix whose kth column is u[(τ + k)�t], I is the identity
matrix, and λ is the ridge regression parameter.

After training, the elements in matrix Wout are fixed, and
the machine is ready for prediction. In the prediction phase,
we first set the control parameter to the values used in the
training phase and check the performance of the trained ma-
chine. The machine is regarded as successfully trained if it
is able to accurately predict the state evolution of the target
system for several Lyapunov times with relative error less than
5% for all training parameters (see Supplemental Material
for details [36]). Provided that the reservoir is successfully
trained, we then set the control parameter to a specific value
of interest (not the parameter values used in the training phase)
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FIG. 1. Predicted synchronization behavior for different values of the bifurcation parameter in coupled identical chaotic maps. The system
consists of a pair of coupled chaotic logistic maps with coupling parameter ε and respective dynamical variables x1 and x2. Top row (a1–d1):
The predicted (black dots) and true (red dots) returned maps constructed from x1 for ε = 0.2, 0.22, 0.24, and 0.26, respectively; bottom row
(a2–d2): The predicted (black) and true (red) mutual relationships between x1 and x2 for the same set of parameter values, where a diagonal
line represents complete synchronization.

and then evolve the machine according to Eq. (1) by replacing
uε(t ) with vt . Finally, by tuning ε to different values, we mon-
itor the variation of the statistical properties of the reservoir
outputs and predict the transition of the system dynamics with
respect to the control parameter ε.

The main feature of our reservoir computing is that the
input data in the training phase contain two components: (1)
The input vector uε(t ) representing the time series measured
from the target system and (2) the bifurcation parameter ε(t )
marking the condition under which uε(t ) is obtained, whereas
in the conventional scheme [18–31], only the first component
(time series from a fixed value of the bifurcation parameter)
is present. In particular, uε(t ) consists of m segments of equal
length T (i.e., L = mT ) and, for each segment, the value of the
bifurcation parameter ε(t ) is fixed so that overall, ε(t ) is a step
function of time. (The proposed scheme is equally effective
when the segments are not of equal length—see Supplemental
Material for details [36]). In the predicting phase, the input
vector uε(t ) is replaced by v(t ) as in the conventional scheme,
but the value of the bifurcation parameter ε(t ) is still needed as
an input. Since our goal is to predict synchronization among
a number of coupled oscillators, the coupling strength ε is a
natural choice for the bifurcation parameter.

III. RESULTS

A. Predicting complete synchronization in coupled chaotic maps

We consider the following system of two coupled, identical
chaotic maps:

x1,2(n + 1) = F[x1,2(n)] + ε{H[x2,1(n)] − H[x1,2(n)]}, (4)

where x1,2(n) denote the dynamical variables of the system at
the nth iteration and F(x) and H(x) are the map and coupling
functions, respectively. As an illustrative example, we choose

the one-dimensional chaotic logistic map defined on the unit
interval, F (x) = 4x(1 − x), and set the coupling function to
be H (x) = F (x). The critical coupling value for complete
synchronization can be obtained using the master stability
function [5,6], which gives that complete synchronization oc-
curs for 0.25 ≈ ε1 � ε � ε2 ≈ 0.75.

We obtain the training data from three different values of
ε: 0.2, 0.22, and 0.24, all in the desynchronization regime.
For each value of ε, we collect the state variables {u(n)} =
{x1(n), x2(n)} for T = 2 × 103 successive time steps after
disregarding a transient of 103 time steps. The time series
from the three values of ε are combined to form a single
time series which, together with the step function ε(n) of
the coupling parameter, are fed into the reservoir for training
the output matrix Wout. In this application, the hyperparame-
ters of the reservoir are chosen as (Dr, p, σ, ρ, α, εk, εbias) =
(100, 0.2, 1, 10−5, 1, 1, 0). The regression parameter for ob-
taining Wout is λ = 1 × 10−5.

To predict the synchronization transition, the trained ma-
chine must possess the ability to sense the change in the
“synchronization climate” of the target system. Figures 1(a1)–
1(d1) show the predicted return maps (black dots) constructed
from x1 for four values of ε: 0.2, 0.22, 0.24, and 0.26, re-
spectively, together with the true return maps (red dots). The
corresponding plots of the mutual relation between the two
maps are shown in Figs. 1(a2)–1(d2). The first three values
of ε are below ε1, so there is no synchronization, and the last
value is in the synchronization regime. The reservoir machine
predicts these behaviors correctly. Especially, as the value
of ε is increased from 0.2 to 0.26, the return map gradu-
ally evolves into the map function F (x) = 4x(1 − x) and the
points (x1, x2) converge to the diagonal line, which are char-
acteristics of complete synchronization. In fact, statistically
the black and red dots cannot be distinguished, indicating
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the superior power of the machine to capture the collective
dynamics and “climate” of the target system.

Note that the first three ε values (0.2, 0.22, and 0.24) are
the ones used in training. Thus it may not be surprising that
the reservoir is able to predict correctly the distinct dynamical
behaviors of the system at these training parameters, i.e., there
is no synchronization. What is remarkable is that the last value
ε = 0.26 is totally “new” to the machine, as it has never been
exposed to data from this parameter value, yet it predicts, still
quite correctly, that there is synchronization. This means that
training at different coupling parameters in the desynchroniza-
tion regime has instilled into the machine the ability for it to
“sense” the “climate” change in the collective dynamics of the
target system.

As the reservoir has been trained to capture the “climate”
of the collective dynamics in the coupled chaotic map system,
it should be able to predict the synchronization transition.
In particular, the expectation is that it would predict cor-
rectly the two ending points of the synchronization parameter
regime (ε1, ε2) at which a transition to synchronization oc-
curs depending on the direction of parameter variation. To
demonstrate the successful prediction of the transition point
ε1, we fix the output matrix Wout and increase the value of
ε systematically from 0.18 to 0.27 at the step size �ε =
1 × 10−3. For each ε value, we let the machine generate a time
series of length T = 1 × 103 and calculate the time-averaged
synchronization error �x = 〈|x1 − x2|〉T . Figure 2(a) shows
the machine-predicted �x versus ε (red circles), where �x
decreases continuously for ε � 0.2 and becomes zero for ε =
ε1 ≈ 0.25. For comparison, the true behavior of �x obtained
from direct model simulations is also shown in Fig. 2(a).
We see that the predicted results agree well with the ground
truth for ε � 0.2. At the opposite end of the synchronization
regime, the reservoir machine does an equally good job in pre-
dicting the critical coupling ε2 ≈ 0.75 as well as the transition
behavior, as shown in Fig. 2(b). In Fig. 2(b), the training data
are obtained from the coupling values ε = 0.76, 0.78, and 0.8.
The results in Fig. 2 are thus evidence that a properly trained
reservoir has the power to accurately predict the critical point
of transition to synchronization.

Note that, in Figs. 2(a) and 2(b), the good agreement
between the prediction and the ground truth holds only for
parameter values in the vicinity of the transition point. Away
from the transition, e.g., for ε < 0.2 in Fig. 2(a), the predic-
tion error increases slightly, which is found to be due to the
periodic windows that commonly arise in systems of coupled
chaotic maps [37]. In general, a more accurate machine pre-
diction can be obtained as ε approaches the critical point.

The performance of the reservoir machine in predicting the
synchronization transition is affected slightly by the number
and locations of the training parameter values. We find that,
insofar as training is done with data from at least two dis-
tinct parameter values, the synchronization transition can be
predicted; training with data from increasingly more values
of the bifurcation parameter, regardless of the order, can in
general improve the prediction accuracy; the closer the train-
ing parameter values to the critical point, the more accurate
the prediction. We also find that the machine prediction is
robust to additive noise perturbations to the system states or
the system bifurcation parameters (see Supplemental Material

FIG. 2. Predicting synchronization transition in coupled chaotic
logistic maps. (a) As the coupling is strengthened, the synchroniza-
tion error �x gradually decreases and reaches zero at about ε1 ≈
0.25. (b) The synchronization error �x starts to increase from zero
at about ε2 ≈ 0.75. The vertical dashed lines denote the coupling
parameter values used in generating the training data. The machine-
predicted results and the ground truth are represented as red circles
and black squares, respectively. The machine predicts correctly the
transitions at both ends of the synchronization parameter regime
(ε1, ε2).

for details about the effects of the number, locations, order of
the training parameter values, and noise perturbations on the
prediction performance [36]).

B. Predicting synchronization transition in coupled chaotic
Lorenz oscillators

We next consider the synchronization of two coupled iden-
tical chaotic Lorenz oscillators. The system dynamics are
governed by the equations

ẋ1,2 = μ(y1,2 − x1,2) + ε(x2,1 − x1,2),

ẏ1,2 = x1,2(β − z1,2) − y1,2 + ε(y2,1 − y1,2), (5)

ż1,2 = x1,2y1,2 − γ z1,2 + ε(z2,1 − z1,2),

where the parameter setting is (μ, β, γ ) = (10, 28, 2) for
which an isolated oscillator has a chaotic attractor [38]. Anal-
ysis based on the master stability function gives that complete
synchronization occurs for ε > εc ≈ 0.42.

We generate the training data from three distinct val-
ues of the coupling parameter in the desynchronization
regime: ε = 0.25, 0.3, and 0.35. For each parameter
value, a time series of length T = 4 × 103 is collected
at the time step �t = 0.02, after disregarding a transient
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FIG. 3. Predicting synchronization transition in coupled chaotic
Lorenz oscillators. (a1–a3) Machine-generated time evolution of x1

(black trace) and x2 (red trace) for the three training values of the con-
trol parameter adopted in the desynchronization regime: ε = 0.25,
0.3, and 0.35. (a4) Predicted synchronization behavior for ε = 0.45.
The machine has never been exposed to data from this parameter
value, yet it successfully predicts the occurrence of synchronization.
(b) Synchronization error �x versus ε. Red circles and black squares
represent the machine-predicted and true results, respectively. The
three vertical dashed lines indicate the locations of the three training
parameters.

phase of length T0 = 5 × 103. The input vector u(t ) ≡
[x1(t ), y1(t ), z1(t ), x2(t ), y2(t ), z2(t )]T and the control param-
eter signal ε(t ) are fed into the reservoir machine for training
the output matrix Wout. In this example, the hyperparam-
eters of the reservoir are set as (Dr, p, σ, ρ, α, εk, εbias) =
(2 × 103, 0.2, 0.05, 0.1, 1, 1, 0), and the regression parameter
value is set as λ = 1 × 10−8.

Figures 3(a1)–3(a3) show the predicted evolution of the
dynamical variables x1 and x2 from the two oscillators for the
three training parameters. We see that the machine predicts
correctly that there is no synchronization for these param-
eters. When the coupling parameter is set to be ε = 0.45
(in the synchronization regime), the machine indeed predicts
the synchronous behavior, as shown in Fig. 3(a4). To test if
the machine can predict the critical transition point εc for
synchronization, we increase the control parameter in the
machine from 0.2 to 0.5 systematically and calculate the time-
averaged synchronization error �x = 〈|x1 − x2|〉T over a time
period of T = 1 × 104 (after discarding a transient period

of T = 1 × 103). The dependence of �x on ε is shown in
Fig. 3(b). The machine predicts that the synchronization error
approaches zero for εc ≈ 0.42, which is in good agreement
with the true value. Similar results are obtained for alternative
coupling configurations, e.g., through a single variable or a
cross-coupling scheme (see Supplemental Material for details
[36]).

C. Predicting synchronization transition in coupled chaotic
food-chain systems

We next consider the system of two mutually coupled food
chains, each with three species [39]:

ẋ1,2 = x1,2

(
1 − x1,2

K

)
− acbcx1,2y1,2

x1,2 + x0
, (6)

ẏ1,2 = acy1,2

[
bcx1,2

x1,2 + x0
− 1

]
− apbpy1,2z1,2

y1,2 + y0

+ ε(y2,1 − y1,2), (7)

ż1,2 = apz1,2

(
bpy1,2

y1,2 + y0
− 1

)
+ ε(z2,1 − z1,2), (8)

where x1,2, y1,2, z1,2 are the population densities of
the resource, consumer, and predator species, respec-
tively. The parameters of the food chain are cho-
sen as [39] (K, ac, bc, ap, bp, x0, y0) = (0.99, 0.4, 2.009,

0.08, 2.876, 0.16129, 0.5), by which the isolated oscillator
presents chaotic motion. Using the method of master stability
analysis, we have that the critical coupling is εc ≈ 8.4 × 10−3

and complete synchronization occurs for ε > εc.
We generate the training data from three distinct val-

ues of the coupling parameter: ε = 4.5 × 10−3, 5.5 × 10−3,
and 6.5 × 10−3, all in the desynchronization regime. For
each value, we generate a time series of length T = 9600�t
with �t = 0.5 the time step, after disregarding the ini-
tial T0 = 8000 steps to remove any transient behavior. All
six dynamical variables of the coupled system as well as
the coupling strength are fed as input to the reservoir
machine. In this example, the hyperparameter values of
the reservoir machine are set as (Dr, p, σ, ρ, α, εk, εbias) =
(1000, 0.695, 2.30, 1.20, 0.27, 0.049, 1.53), and the regres-
sion parameter is λ = 3 × 10−4.

We use the trained reservoir to predict the synchroniza-
tion behaviors in the coupling range ε ∈ [0.004, 0.012] by
calculating the time-averaged synchronization error �x =
〈|x1 − x2|〉T over a time period of T = 2.4 × 104 steps for
each parameter value (after discarding transients with T0 =
4.8 × 104 steps). Figure 4 shows that the predicted error
versus ε (red circles) is quite close to the true errors (black
squares). We see that the synchronization transition point pre-
dicted by the machine agrees with the true value.

D. Predicting explosive synchronization in coupled
nonidentical phase oscillators

The route to complete synchronization treated in
Secs. III A, III B, and III C belongs to the category of
second-order phase transition [1,2], where a physical
quantity characterizing the degree of synchronization varies
continuously (albeit nonsmoothly) through the transition
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FIG. 4. Predicting synchronization transition in coupled chaotic
food chains. Shown are the true synchronization errors (black
squares) and reservoir-predicted errors (red circles) for various val-
ues of the coupling strength ε. The three vertical blue dashed lines
indicate the locations of the training parameters.

point. As demonstrated above, our machine-learning scheme
is fully capable of predicting the transition in all the cases
(similar results have been obtained for the classical Kuramoto
model, where the transition from desynchronization to
synchronization is also continuous and the transition behavior
can be predicted by the machine based on the time series
from several values of the training parameter. Details are
given in the Supplemental Material [36]). Another type of
synchronization transition that has been extensively studied
in the literature is the first-order phase transition, also known
as explosive synchronization [12–14], where the onset of
synchronization is abrupt in the sense that the underlying
characterizing quantity changes discontinuously at the
transition point. The question is whether our machine learning
scheme can predict explosive synchronization, including the
values of the critical couplings and the behavior of the
system order parameter around the transition point. Using
the paradigmatic system showing explosive synchronization
in the literature [12–14], namely, the network of coupled
nonidentical phase oscillators, here we present an affirmative
answer to this question.

For simplicity, we consider a small star-structure network
of N = 4 nodes, as shown in Fig. 5(a), where the natural
frequencies of the peripheral (leaf) nodes are identical and
those of the hub node are proportional to its degree [13]. The
network dynamics is described by

θ̇l = ω + ε sin(θh − θl ),

θ̇h = khω + ε

3∑
l=1

sin(θl − θh), (9)

where l = 1, 2, 3 denote the leaf nodes, h denotes the hub
node, ε is the uniform coupling strength, and kh = 3 is the de-
gree of the hub node. The degree of network synchronization
can be characterized by the order parameter

R =
〈∣∣∣∣∣ 1

N

N∑
j=1

eiθ j

∣∣∣∣∣
〉

T

, (10)

FIG. 5. Predicting explosive synchronization transitions in cou-
pled nonidentical phase oscillators. (a) Star-structure network model.
(b) Synchronization order parameter R versus the coupling strength
ε for the forward and backward transition paths. The true transitions
obtained from model simulations are represented by black solid
squares (forward transition) and blue solid up-triangles (backward
transition). The corresponding machine predictions are displayed as
red open circles (forward transition) and green empty down-triangles
(backward transition). The values of the coupling parameters used to
generate the training data for predicting the forward and backward
transitions are marked by the black and red arrows, respectively.

where j = 1, . . . , N is the node index, N = 4 is the network
size, | · | is the module function, and 〈·〉T denotes the time
average.

Setting ω = 1, we increase ε systematically from 0.3 to 0.8
and calculate the dependence of R on ε by simulating Eq. (9).
In numerical simulations, the initial conditions of the oscil-
lators are randomly chosen from the range (0, 2π ] and the
integration time step is �t = 0.05. Representative numerical
results are shown in Fig. 5(b) (black solid squares). It can be
seen that, at about ε f = 0.55, the value of R changes abruptly
from about 0.45 to about 0.9—the feature of a discontinuous,
first-order transition. The dynamical origin of this type of
explosive synchronization lies in the interplay between the
heterogeneity of the network structure and node dynamics,
which occurs naturally in networks where the node degree and
the natural frequency are positively correlated [14]. Our goal
is to use the reservoir machine trained by the time series from
the desynchronization states to predict the critical coupling ε f .

The data used in training consist of time series from five
values of ε, all inside the desynchronization regime: ε = 0.4,
0.425, 0.45, 0.475, and 0.5. For each ε value, we collect
time series measurements from all nodes: x j = sin(θ j ) and
y j = cos(θ j ), with j = 1, . . . , 4. The input state vector there-
fore is u = [x1, y1, x2, y2, x3, y3, x4, y4]T . The length of the
training data is 1.5 × 104, consisting of time series of five
segments, one from each value of ε. The data, together with
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the parameter function ε(t ), are fed into the machine for deter-
mining the output matrix Wout. In this example, the parameter
values of the reservoir are set as (Dr, p, σ, ρ, α, εk, εbias) =
(1000, 0.2, 1, 1.15, 1, 1, 0), and the regression parameter is
λ = 1 × 10−10.

In the predicting phase, we increase the control param-
eter ε systematically from 0.3 to 0.8 with the step �ε =
0.01 and calculate from the machine output the varia-
tion of the synchronization order parameter R with respect
to ε. In doing this, we transform the output vector u =
[x1, y1, x2, y2, x3, y3, x4, y4]T back to the original state vari-
ables [θ1, θ2, θ3, θ4]T : θi = arctan(yi/xi ) + π/2 for xi � 0 and
θi = arctan(yi/xi ) + π for xi < 0. The results predicted by the
machine are shown in Fig. 5(b) (red open circles). It can be
seen that, at about εrc

f = 0.56, the value of R changes suddenly
from about 0.38 to about 0.8—the feature of a first-order
transition.

A distinct feature of explosive synchronization transition is
that when ε is varied in the opposite direction, the variation of
R will follow a different path—the phenomenon of synchro-
nization hysteresis [12–14]. To demonstrate it, we decrease ε

from 0.8 to 0.3 and calculate R by solving Eq. (9) numerically.
To observe the hysteresis phenomenon in this context, we ap-
ply small random perturbations of amplitude 5% to the natural
frequency of the leaf nodes [13]. Figure 5(b) shows the results
(blue solid up-triangles), where the backward and forward
transition paths are identical for ε > ε f , but diverge from each
other for ε � ε f . Particularly, at ε f , we have R ≈ 0.9 for the
backward path, whereas R ≈ 0.45 for the forward path. Along
the backward path, as ε decreases from ε f , the value of R
maintains at large values until the critical coupling εb ≈ 0.51,
where R is suddenly decreased from about 0.8 to about 0.4.
Since εb < ε f , a hysteresis loop of width �ε ≡ ε f − εb thus
appears in the parameter region ε ∈ (εb, ε f ). The dynamical
mechanism for the hysteresis loop is the bistability of the syn-
chronization manifold in this region, deemed as a necessary
condition for generating a first-order phase transition [14].

We now test the power of the machine in predicting the
backward transition associated with explosive synchroniza-
tion. In this case, the training data are generated by time
series from five coupling parameter values in the strong
synchronization regime: ε = 0.65, 0.625, 0.6, 0.575, and
0.55. The input vector is constructed in the same way
as for predicting the forward transition, and the hyper-
parameters of the reservoir are (Dr, p, σ, ρ, α, εk, εbias) =
(1000, 0.2, 1, 1.15, 1, 1, 0) with the regression parameter λ =
1 × 10−7. We decrease ε systematically from 0.8 to 0.3 at the
step size �ε = 0.01. The dependence of R on ε predicted
by the machine is shown in Fig. 5(b) (open green down-
triangles). It can be seen that the machine predictions agree
well with the true behavior of the backward transition where,
at the transition point εb, the value of R decreases suddenly
from about 0.8 to about 0.4.

IV. DISCUSSION

We have articulated and tested a model-free, machine-
learning scheme to predict synchronization transition in
systems of coupled oscillators. The machine is trained with
time series collected from a small number of coupling (con-

trol) parameter values, all in the desynchronization regime,
as well as the value of the control parameter itself through
a specially designed input channel. Prediction is achieved by
feeding any desired parameter value into the input parameter
channel. We have demonstrated that a properly trained ma-
chine is able to not only reproduce, statistically, the ergodic
properties of the collective dynamics at the training parame-
ter values but also predict, quantitatively, how the collective
dynamics change with respect to the variations in the control
parameter. Examples demonstrating the predictive power of
our machine-learning scheme include complete synchroniza-
tion in coupled identical chaotic oscillators and explosive
synchronization in coupled nonidentical phase oscillators. For
complete synchronization, both the critical coupling for syn-
chronization and the variation in the degree of synchronization
about the critical point can be well predicted. For explosive
synchronization, our scheme not only predicts the forward and
backward critical couplings but also reproduces the hysteresis
loop associated with a first-order transition. Additional simu-
lations have been carried out to predict phase synchronization
in coupled chaotic Rössler oscillators [40], with the result
that the machine trained with time series in the asynchronous
states is capable of predicting the occurrence of phase syn-
chronization (Supplemental Material [36]).

Reservoir computing-based prediction of chaotic systems
is an active field of research at the boundary between non-
linear dynamics and machine learning [18–31]. Distinct from
previous studies on predicting the state evolution, the present
work focuses on predicting the collective behavior of cou-
pled oscillators. The basic underlying idea is the concept
of “climate” replication [18]. The main difference between
the current study and Ref. [18] is that the parameter-aware
scheme possesses the ability of transfer learning, i.e., the
machine trained by the the time series of the asynchronous
states is able to predict the “climates” of the synchronous
states. This feature is desired in realistic applications, as the
knowledge learned from one task (“climate” replication) can
be transferred and used to accomplish a different task (syn-
chronization prediction). The current work is also inspired
by the studies in Refs. [32–35], where it was shown that
the bifurcation behaviors of a dynamical system can be re-
constructed based on the time series from a few training
parameter values. While our work and Ref. [33] share the
same principle, there are some key differences. First, the dy-
namical phenomena treated in Ref. [33] and in our present
work are different, where the former dealt with predicting
system collapse (i.e., for a given system parameter, to predict
whether the system is in a transient regime and, if yes, how
long the average transient lifetime is), but our current study
focuses on predicting synchronization transition, i.e., for a
given coupling strength to predict whether the oscillators are
synchronizable. Prior to our work, it was not apparent if the
method in Ref. [33] would actually work for bifurcation sce-
narios that differ from crisis, especially in coupled systems.
Our present work demonstrates that, despite the different bi-
furcation mechanisms, the parameter-aware machine-learning
scheme is also effective for predicting synchronization tran-
sition in coupled oscillator systems. This result generalizes
Ref. [33] and provides useful insights into the nature of
the learning, i.e., it is the dynamics that the machine learns
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from the training data, not the mathematical expressions
describing the time series. Second, the types of dynamical sys-
tems treated in Ref. [33] and in our present work are different,
where the former are “single-component” types of nonlinear
dynamical systems, whereas the latter are coupled oscillator
systems. As a typical approach to studying the collective
dynamics in spatiotemporal systems, network models of cou-
pled oscillators are representative of many real-world systems.
Considering the important implications of synchronization to
system functions and operations, the finding of the current
study may have broad applications. Finally and most impor-
tantly, our main results differ from those in Ref. [33]. Besides
predicting the location of the transition point as reported in
Ref. [33], here we have demonstrated that the characteristics
of the transition, e.g., whether it is continuous (second order)
or discontinuous (first order), can be predicted. In particular,
in the star-network model of coupled phase oscillators, we
find that the machine is able to not only predict the critical
couplings but also reconstruct the hysteresis loop. Our current
study confirms the power of the machine-learning scheme
in predicting coupled dynamical systems and highlights the
potentials of the parameter-aware scheme in predicting more
sophisticated transitions encountered in complex dynamical
systems.

We note that there are other model-free approaches in
the literature for predicting synchronization transitions. In
Ref. [41], a method was proposed for determining the syn-
chronization domain, i.e., the Arnold tongue, of periodically
driven oscillators. It was shown that, under certain condi-
tions, the whole Arnold tongue can be reconstructed based
on the time series measured from a single asynchronous state.
The success of this technique relies on the information and
the properties of the driving force. Specifically, the ampli-
tude and frequency of the driving force are required to be
known a priori and, to predict the critical coupling, the forc-
ing amplitude should be sufficiently small. In addition, in
the implementation of this technique, it is necessary to first
estimate the coupling function by quantifying the response
of the oscillator to the external driving, which was accom-
plished via another estimation technique. In our approach of
parameter-aware reservoir computing, these restrictions are
lifted. Another model-free technique for predicting the onset
of synchronization is compressive sensing [42,43], which ap-
plies to the general networks of coupled oscillators. Yet this
technique applies to networks with sparse connections only
and requires that the equations of the nodal dynamics have a
simple mathematical structure, i.e., the equations can be rep-
resented by a small number of power series or Fourier series
terms. These limitations do not exist in our parameter-aware
machine-learning scheme.

The type of collective dynamics tested in the present work
is complete synchronization between a pair of coupled chaotic
oscillators for which the transition is of the nature of second
order, and the first order, explosive synchronization in a small
network. A possible extension of our work to other types
of collective dynamics in large complex systems, such as
partial (cluster) synchronization, chimeralike states and spiral
waves, is worth pursuing. A difficulty with large systems

is the requirement to use large reservoir networks so that
the complexity of the machine can “overpower” that of the
target system. Quantitatively, how the size of the reservoir
network should be enlarged to accommodate an increase in
the size of the target system as characterized by, e.g., a scaling
law, remains unknown at the present. With the use of large
reservoir networks come the issues of data requirement and
computation overload, as to train a large reservoir machine not
only requires massive data but also imposes a serious demand
for the computational resource. One approach to deal with this
difficulty is the parallel reservoir computing scheme [22,25].
However, a recent work revealed that the parallel scheme may
fail to sense and predict the phase coherence among a pair
of coupled, nonidentical chaotic oscillators [30]. It remains a
worthy issue to study if the parallel scheme can be exploited
to predict the collective dynamics among a large number of
coupled oscillators.

It is noteworthy that, for diffusively coupled identical oscil-
lators (e.g., the system of coupled chaotic Lorenz oscillators),
the training data must be taken from the desynchronization
regime. If the training data are from the synchronization
regime, the machine is unable to predict the transition. The
reason is that, when the oscillators are completely synchro-
nized, the coupling term becomes zero. As the time series are
independent of the coupling parameter, the control parame-
ter loses its function and the reservoir machine is unable to
“sense” the change in the dynamical “climate.” This is also the
case for the model of coupled nonidentical phase oscillators
studied in Sec. III D, in which the coupling term vanishes
if the phases of the oscillators are completely synchronized
(i.e., r = 1). In Fig. 5, the success in predicting the backward
transition relies on the slightly desynchronized nature of the
training states (i.e., r � 1).

Because of the current lack of a general theoretical (math-
ematical) understanding of the inner working mechanism of
reservoir computing, our confidence in this type of machine
learning thus lies entirely in numerical success. In fact, our
numerical experiments were designed to be as comprehensive
as possible. More specifically, we studied two types of syn-
chronization behaviors: Complete synchronization in coupled
identical chaotic oscillators and the phase synchronization
in coupled nonidentical phase oscillators, which are repre-
sentative of the collective dynamics in coupled systems. In
addition, we designed our numerical examples such that two
transition scenarios are covered: Smooth (second-order) and
explosive (first-order) transitions that represent the generic
types of phase transitions in nonlinear physical systems. In all
the cases studied, a properly trained parameter-aware machine
is capable of accurately predicting the synchronization transi-
tion. A practical limitation at the present is the system size: If
the system is too large, both the amount of required training
data as well as computation overload can be quite large.
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