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Phase diagrams of interacting spreading dynamics in complex networks
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Epidemic spreading processes in the real world can interact with each other in a cooperative, competitive, or
asymmetric way, requiring a description based on coevolution dynamics. Rich phenomena such as discontinuous
outbreak transitions and hystereses can arise, but a full picture of these behaviors in the parameter space
is lacking. We develop a theory for interacting spreading dynamics on complex networks through spectral
dimension reduction. In particular, we derive from the microscopic quenched mean-field equations a two-
dimensional system in terms of the macroscopic variables, which enables a full phase diagram to be determined
analytically. The diagram predicts critical phenomena that were known previously but only numerically, such
as the interplay between discontinuous transition and hysteresis as well as the emergence and role of tricritical
points.
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I. INTRODUCTION

Spreading dynamics of diseases, behaviors, and informa-
tion in nature and human society are rarely independent
processes but interact with each other in a complex way.
Weakened immunity to other viruses due to HIV infection
[1,2] and suppression of spreading due to disease-related
information exchange on the social media [3] are known
examples. To better understand, predict, and control spreading
on networks, coevolution of epidemics must be taken into ac-
count. In network science, there has been continuous interest
in developing interacting epidemic models [1,2,4–12], which
can generate surprising behaviors that cannot be predicted by
any single-virus epidemic model. For example, spreading of
one epidemic can facilitate that of another, leading to a first-
order or explosive transition in the outbreak with significant
real-world implications [13]. Many factors can affect the
critical behaviors of interacting spreading dynamics, such as
self-evolution of each epidemic [3,14], interaction between
two epidemics [15,16], and network structure [17,18].

By now, spreading dynamics of a single epidemic
on complex networks have been well studied [8,19–21].
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For interacting spreading dynamics, the special case of
well-mixed populations has been treated [22,23]. A study
based on the quenched mean field for two competing
pathogens [24] showed that, when simultaneous infection by
the two pathogens is not possible (full mutual exclusion), the
phase diagram is independent of the spectral radius of the
network. There were also theories based on percolation [25],
annealed mean field [26], and pair approximations [17] to
study the effect of network structure on interacting spreading,
leading to a qualitative understanding of critical phenomena.
There are difficulties with these theories. For example, the an-
nealed mean-field theory takes into account only the nodal de-
grees and is not applicable to quenched networks (especially
networks with a high clustering coefficient and modularity).
For such networks, quenched mean-field theories [27] such
as those based on Markov chains [28] and the N-intertwined
method [29] is needed. A deficiency of such a theory is that
it uses a large number of nonlinear differential equations,
with two difficulties: (a) high computational overload for large
networks and (b) lack of any analytic insights. Such a theory,
due to its heavy reliance on numerics, can lead to inconsistent
or even contradicting predictions [30,31]. To our knowledge, a
general analytic theory capable of providing a more complete
understanding of interacting spreading dynamics is lacking.

In this paper, we develop an analytic theory for inter-
acting spreading dynamics on complex networks through
the approach of dimension reduction for complex networks
[32–34]. From the quenched mean-field equations, we derive
a two-dimensional (2D) system that is capable of analyti-
cally yielding the full phase diagrams underlying interacting
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spreading dynamics on any complex network, from which
the conditions for various phase transitions can be derived.
The analytic model predicts critical phenomena that were
previously known numerically, such as the interplay between
discontinuous outbreak transitions and hystereses as well as
the emergence of tricritical points, providing a solid the-
oretical foundation for understanding interacting spreading
dynamics and articulating optimal control strategies.

II. MODEL, METHOD OF SPECTRAL DIMENSION
REDUCTION, AND REDUCED MODEL

A. Model

We consider the susceptible-infected-susceptible (SIS)
model of interacting spreading dynamics on complex net-
works. In the classic SIS model, a single epidemic spreads
in the network and a node can be either in the susceptible or
in the infected state. Susceptible nodes are infected by their
infected neighbors at rate λ and infected nodes recover at rate
γ . For interacting SIS dynamics, two epidemics, say 1 and 2,
spread simultaneously and interact with each other. Each node
infected by a ∈ {1, 2} transmits the infection to neighbors
that are susceptible for both epidemics with probability λa.
If a neighbor is susceptible for a but infected by the other
epidemic, then the infection will be transmitted with rate λ†

a.
All the nodes infected by a recover to being susceptible with
rate γa. Without loss of generality, we set γa = 1 for both a ∈
{1, 2}. In general, the nature of the interacting SIS dynamics
depends on the interplay between the rates λa and λ†

a. In
particular, for λ†

a > λa, the two epidemics tend to facilitate
each other, leading to cooperative SIS dynamics, whereas if
λ†

a < λa, infection with one epidemic will suppress infection
with the other, giving rise to competitive SIS dynamics. For
λ†

a > λa but λ
†
b < λb for a, b ∈ {1, 2} with b �= a, the interac-

tions are asymmetric.

B. Spectral dimension reduction

The interacting SIS model represents a paradigm to study
rich dynamical behaviors such as first-order outbreak transi-
tions and hystereses [35]. The foundation of our study of this
model is the quenched mean-field theory (QMF) [36]. While
in QMF the dynamical correlations among the neighbors are
assumed to be negligible, the theory has been demonstrated
to generate reliable prediction of the phase transitions [37].
Since our goal is to analytically map out the complete phase
diagram, using the QMF suffices. Let pa,i be the probability
that node i ∈ {1, · · · , N} is infected by a ∈ {1, 2} at time t . In
the first-order mean-field analysis [27], the evolution of pa,i

on a network with adjacency matrix G is governed by

d pa,i

dt
= −pa,i + λ†

a(1 − pa,i )pb,i

∑
j

Gi j pa, j

+ λa(1 − pa,i )(1 − pb,i )
∑

j

Gi j pa, j (1)

for a ∈ {1, 2} and i ∈ {1, · · · , N}. The first term on the right
side of Eq. (1) is the rate of recovery from epidemic a for
node i, while the second (third) term corresponds to the rate
of infection for epidemic a with (without) i already infected

by b �= a. For a network of size N , the number of equations
in Eq. (1) is 2N . To derive an analytic model, we exploit
the technique of spectral dimension reduction (SDR) [33]
to arrive at an equivalent description of the original system
in terms of two macroscopic observables—one for each epi-
demic. In particular, let α be a vector with nonnegative entries
and normalized as

∑
i αi = 1. The entries of α represent the

nodal weights. We define linear observables as ψa = αT pa for
a ∈ {1, 2}. Since the entries of α are summed to unity, ψa is
a weighted average. The evolution of ψa is determined by the
equation

dψa

dt
=

N∑
i=1

αi
d pa,i

dt
. (2)

Applying the SDR method, we have that the right-hand side of
Eq. (2) can be written in terms of the macroscopic observables
ψa only.

C. Reduced model

We apply the SDR method to Eq. (2). Microscopic vari-
ables pa,i fluctuate about the macroscopic observables ψa,
which can be decomposed as

pa,i = ρaψa + δpa,i,

pb,i = μaψb + δpb,i, (3)

pa, j = νaψa + δpa, j,

where ρa, μa, and νa are parameters to be determined,
and δpa,i, δpb,i, and δpa, j are correction terms. Substituting
Eqs. (1) and (3) into Eq. (2) gives

dψa

dt
= −ψa + λ†

aα̂μaνa(1 − ρaψa)ψbψa

+ λaα̂νa(1 − ρaψa)(1 − μaψb)ψa + Ra, (4)

where α̂ = ∑
i, j αiGi j and Ra is the remainder term that can

be decomposed as

Ra = Ra,1 + Ra,2 + Ra,3, (5)

with Ra,1, Ra,2, and Ra,3 containing the first-, second-, and
third-order terms in the corrections {δpa,i}, respectively. Let
K be the diagonal matrix with Kii being the degree of node i,
the first-order correction Ra,1 is given by

Ra,1 = [
(
λa − λ†

a

)
μaνaψbψa − λaνaψa]αT Kδpa

+ (λ†
a − λa)νa(1 − ρaψa)ψaα

T Kδpb

+ (1 − ρaψa)(λ†
aμaψb + λa − λaμaψb)αT Gδpa, (6)

where δpa is a vector with δpa,i in the ith entry and δpb is
defined analogously. The second-order remainder term is

Ra,2 = (λ†
a − λa)(1 − ρaψa)

N∑
i=1

N∑
j=1

Gi jαiδpb,iδpa, j

+ [(λa − λ†
a)μaψb − λa]

N∑
i=1

N∑
j=1

Gi jαiδpa,iδpa, j

+ (λa − λ†
a)νaψa

N∑
i=1

N∑
j=1

Gi jαiδpa,iδpb,i (7)
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and the third-order remainder term is

Ra,3 = (λa − λ†
a)

N∑
i=1

N∑
j=1

Gi jαiδpa,iδpb,iδpa, j . (8)

From Eq. (6), the dominant remainder term Ra,1 vanishes if
the following equations hold

αT K pa = α̂ρaψa,

αT K pb = α̂μaψb, (9)

αT Gpa = α̂νaψa,

where pa is a vector with pa,i in the ith entry and pb is defined
similarly.

In general, the equations cannot be satisfied simultane-
ously. An application of the SDR method in Ref. [33] advo-
cates choosing α as the eigenvector associated with the lead-
ing eigenvalue ω of G. For connected undirected networks,
the eigenvector associated with the leading eigenvalue ω of
G has positive entries. The third equation in Eqs. (9) implies
ωψa = α̂νaψa and, hence, ω = νaα̂. Using the definition α̂ =
1T Gα = ω, we have νa = 1. The remaining two parameters,
ρa and μb, are chosen such that the first two equations in
Eqs. (9) are satisfied. The quantities ρa and μb can be chosen
by minimizing the following squared vector norm

ρ∗
a = μ∗

a = argmin
x

‖Kα − xα̂α‖2
2,

which yields

μ : = 1

ω

αT Kα

αT α
= ρ∗

a = μ∗
a. (10)

A justification of the parameter choices was given in Ref. [33].
With the parameters chosen, Ra,1 can be made as small as
possible and can be neglected, so can the higher-order terms
Ra,2 and Ra,3. Substituting the values of ρa, μa, and νa into
Eq. (4), we get

dψa

dt
= − ψa + λ†

aωμ(1 − μψa)ψbψa

+ λaω(1 − μψa)(1 − μψb)ψa + Ra.

(11)

The first term on the right side of Eq. (11) accounts for
the rate of recovery and the second (third) term represents
the rate of infection for epidemic a with (without) being
infected by b �= a. The quantity Ra in Eq. (11) characterizes
the fluctuations of the microscopic observables pa,i about the
macroscopic observables ψa, which is small in comparison to
other terms on the right side of Eq. (11) due to α’s being the
leading eigenvector. Since, for finding the phase diagram, it
is necessary to analyze the mean-field equations that depend
on the macroscopic observables ψa only, it is justified to
drop Ra from the analysis. As we will verify numerically,
this approximation will not affect the accuracy of the phase
diagram as the resulting errors near the phase boundaries are
quite insignificant.

In Eq. (1), the order parameters are 〈pa,i〉 for a ∈ {1, 2},
where 〈·〉 is the unweighted average over the nodes. In
Eq. (11), the order parameters can be chosen to be ψa = αT pa,
a weighted average over the nodes. Since α is the eigenvec-
tor associated with the leading eigenvalue of G, its entries

are strictly positive. As a result, ψa = 0 (ψa > 0) implies
〈pa,i〉 = 0 (〈pa,i〉 > 0). When crossing a phase boundary, at
least one of ψa for a ∈ {1, 2} becomes either zero or nonzero,
guaranteeing that the corresponding 〈pa,i〉 becomes either zero
or nonzero, respectively. We have that 〈pa,i〉 and ψa give
the same phase diagram, which can be obtained analytically
through the 2D mean-field system.

III. MAIN RESULT: PHASE DIAGRAM OF
REDUCED SYSTEM

The reduced mean-field equations are amenable to analytic
treatment. As the derivations are lengthy, we provide a brief
sketch of the results from analyzing the reduced system.

The analyses of the 2D mean-field system are performed
in the following steps. First, for each point in the parameter
space (λ1, λ

†
1, λ2, λ

†
2), we determine the equilibrium points

of Eq. (11) (Sec. III A) and their stability (Sec. III B). The
the equilibrium points have to further satisfy the probability
constraint 1 � ψa � 1 to be physical meaningful. A detailed
analysis of the stability and probability constraints of the
equilibrium points leads to the following functions of λa

and λ†
a:

sa,0 = λb + λ†
a − λa − ωλbλ

†
a,

sa,1 = λ
†
b − λb − λ†

a + λa + 2ωλbλ
†
a − ωλ†

aλ
†
b,

sa,2 = λ
†
b − λb, sa,3 = λa − ω−1,

s
 = (λ†
1 − λ1 + λ

†
2 − λ2 − ωλ

†
1λ

†
2)2,

− 4(λ†
1 − λ1)(λ†

2 − λ2). (12)

for a, b ∈ {1, 2} and a �= b. Whether an equilibrium point
is physical or stable is determined by the signs of these
functions.

Calculating the equilibrium points (Sec. III A) and ana-
lyzing their stability (Sec. III B) enable us to obtain the full
phase diagram of the reduced system and the equations for the
phase boundaries (Sec. III C). Based on the numbers of stable
and unstable equilibrium points as well as the relationships
among them, we can divide the parameter space into distinct
regions, where a boundary crossing between two neighboring
regions gives rise to a phase transition. A region either can
have a unique stable equilibrium point or can have two stable
equilibrium points with one unstable point in between, where
crossing the latter will result in a hysteresis. We discuss the
types of phase transitions crossing the various boundaries
and study the interplay between the transitions and the phe-
nomenon of hysteresis (Sec. III D). Finally, we derive the
conditions under which a hysteresis can arise (Sec. III E).

The analytical results of the full phase diagram are sum-
marized and discussed in Sec. III F. Readers who are not in-
terested in the technical details of analyzing the 2D mean-field
system can skip Secs. III A to III E and check Sec. III F for the
results. For convenience, for the rest of the paper, we use the
convention that, if variables indexed by a, b ∈ {1, 2} (e.g., ψa

and ψb) appear together in an equation or an inequality, then
the assumption is a �= b.
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A. Equilibrium points of the reduced system

The equilibrium points are obtained by setting the right
side of Eq. (11) to zero:

− ψa + λ†
aωμ(1 − μψa)ψbψa

+ λaω(1 − μψa)(1 − μψb)ψa = 0
(13)

for a, b ∈ {1, 2} and a �= b. Further, the physical solutions
have to satisfy the probability constraints 0 � ψa � 1. Be-
cause of the appearance of terms such as (1 − μψa) in
Eq. (11), it is necessary to impose the physical condition
(1 − μψa) � 1. It can be proved that μ given by Eq. (10)
satisfies μ � 1 (see the Appendix for a proof), and it can
also be verified that any point with ψ1 = μ−1 or ψ2 = μ−1

cannot be an equilibrium point. These, together the probability
constraints, imply that all the equilibrium points must satisfy
the inequality 0 � ψa < μ−1 for a ∈ {1, 2}.

We are now in a position to discuss the types of equilibrium
points of the reduced mean-field equations.

(i) Epidemic free. The trivial solution (ψ1, ψ2) = (0, 0) is
always an equilibrium point.

(ii) Partial infection of epidemic 1. For ψ1 �= 0 and ψ2 = 0,
Eqs. (13) become

−1 + λ1ω(1 − μψ1) = 0, (14)

which gives

ψ1 = λ1ω − 1

μλ1ω
. (15)

The solution further has to satisfy the probability constraint
0 < ψ1 � μ−1. The first inequality ψ1 > 0 is satisfied when
λ1ω > 1, while the second inequality ψ1 � μ−1 always holds.

(iii) Partial infection of epidemic 2. Similar to case (ii), we
have the equilibrium point:

(ψ1, ψ2) =
(

0,
λ2ω − 1

μλ2ω

)
. (16)

(iv) Coexistence. If ψa �= 0 for both a ∈ {1, 2}, then
Eqs. (13) become

λ
†
1ωμ(1 − μψ1)ψ2 + λ1ω(1 − μψ1)(1 − μψ2) = 1, (17a)

λ
†
2ωμ(1 − μψ2)ψ1 + λ2ω(1 − μψ2)(1 − μψ1) = 1. (17b)

Rearranging the second equation, we get

ψ2 = μ−1 − 1

(λ†
2 − λ2)μ2ωψ1 + λ2μω

. (18)

Substituting this relation into Eq. (17), we get an equation
that depends on ψ1 only. Similarly we can obtain the equation
that determines ψ2. The two equations for ψ1 and ψ2 have the
following symmetric form:

ga,2ψ
2
a + ga,1ψa + ga,0 = 0 (19)

for a ∈ {1, 2}, where

ga,2 = ω2μ3λ†
a(λ†

b − λb),

ga,1 = ωμ2(λ†
b − λb − λ†

a + λa + 2ωλbλ
†
a − ωλ†

aλ
†
b),

ga,0 = ωμ(λb + λ†
a − λa − ωλbλ

†
a) (20)

for b ∈ {1, 2} and b �= a.

If λ†
a �= λa holds for a ∈ {1, 2}, then ga,2 �= 0 and Eq. (19)

will be quadratic, leading to two solutions,

ψ±
a =

−ga,1 ±
√

g2
a,1 − 4ga,2ga,0

2ga,2
. (21)

The solutions for a ∈ {1, 2} are paired as

(ψ1, ψ2) = (ψ+
1 , ψ+

2 ), (ψ1, ψ2) = (ψ−
1 , ψ−

2 ). (22)

If λ†
a = λa for one or both a ∈ {1, 2}, then we have

ψa = −ga,0

ga,1
. (23)

To discuss the probability constraints of the equilibrium
points, we consider the following cases.

(iv.1) If ga,2 = 0 for one of a ∈ {1, 2}, i.e., λ
†
b = λb, then

there is a unique solution given by

ψa = μ−1 − λb

μ(λa − λ
†
a + ωλbλ

†
a)

, ψb = μ−1 − 1

μωλb
.

(24)
The probability constraints imply

λa − λb − λ†
a + ωλbλ

†
a > 0, ωλb > 1. (25)

Further, if we have λ†
a = λa, then the two epidemics will

become independent of each other with the solution

ψa = μ−1 − 1

ωμλa
, ψb = μ−1 − 1

ωμλb
. (26)

(iv.2) Suppose λ†
a > λa for both a ∈ {1, 2}. In this case

there are two solutions, as shown in Eqs. (22).
Consider the solution

(ψ1, ψ2) = (ψ+
1 , ψ+

2 ).

First, it is necessary to have g2
a,1 − 4ga,2ga,0 � 0 for a ∈ {1, 2}

to make the solutions real. Because of the condition ga,2 > 0,
the probability constraints 0 < ψa < μ−1 imply

ga,1 <

√
g2

a,1 − 4ga,2ga,0 < 2μ−1ga,2 + ga,1 (27)

for a ∈ {1, 2}. The second inequality can be written as

μ−2ga,2 + μ−1ga,1 + ga,0 > 0. (28)

Substituting these into Eqs. (20), we have

ga,0 + μ−1ga,1 + μ−2ga,2 = μωλ
†
b > 0, (29)

indicating that the second inequality always holds.
It remains to consider the first inequality in Eq. (27).

Suppose ga,0 < 0, then both the first and the inequality g2
a,1 −

4ga,2ga,0 � 0 hold. Otherwise, suppose ga,0 > 0, it is neces-
sary to have ga,1 < 0 and g2

a,1 − 4ga,2ga,0 � 0.
Combining the discussions above, we have that (ψ+

1 , ψ+
2 )

is a physical solution either for ga,0 < 0 or for ga,0 > 0, ga,1 <

0, g2
a,1 − 4ga,2ga,0 � 0 for both a ∈ {1, 2}.

We now consider the solution (ψ1, ψ2) = (ψ−
1 , ψ−

2 ). For
the solution to be meaningful, it has to be guaranteed
that g2

a,1 − 4ga,2ga,0 � 0 for a ∈ {1, 2}. The probability con-
straints give

ga,1 < −
√

g2
a,1 − 4ga,2ga,0 < 2μ−1ga,2 + ga,1. (30)
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The first inequality implies ga,1 < 0 and ga,0 > 0. Consider
the second inequality. If 2μ−1ga,2 + ga,1 > 0, then the second
inequality will be satisfied. Else, if 2μ−1ga,2 + ga,1 � 0, then
the second inequality can be written as

μ−2ga,2 + μ−1ga,1 + ga,0 � 0. (31)

Substituting these into Eqs. (20) we have

ga,0 + μ−1ga,1 + μ−2ga,2 = μωλ
†
b > 0, (32)

which leads to a contradiction. It is thus necessary to have
2μ−1ga,2 + ga,1 � 0 for a ∈ {1, 2}. In fact, the inequalities
ga,1 < 0 and ga,0 > 0 are sufficient to guarantee the condition
2μ−1ga,2 + ga,1 � 0. For g1,1 + g2,1 < 0, we have

λ
†
1 + λ

†
2 − ωλ

†
1λ

†
2 < 0. (33)

We then have

2μ−1g1,2 + g1,1 = ωμ2(λ†
2 − λ2 − λ

†
1 + λ1 + ωλ

†
1λ

†
2)

> ωμ2(2λ
†
2 − λ2 + λ1) > 0.

(34)

Similarly, we obtain 2μ−1g2,2 + g2,1 > 0.
Combining the conditions discussed above, we have that

the solution (ψ1, ψ2) = (ψ−
1 , ψ−

2 ) is physical for ga,2 > 0,
ga,1 < 0, ga,0 > 0, and g2

a,1 − 4ga,2ga,0 > 0 for a ∈ {1, 2}.
Comparing with the conditions for (ψ1, ψ2) = (ψ+

1 , ψ+
2 ), we

see that, for ga,0 < 0, only one physical solution is possible.
(iv.3) Suppose λ†

a < λa for a ∈ {1, 2} and λ
†
b > λb for b ∈

{1, 2} and b �= a. We have ga,2 > 0 and gb,2 < 0. Consider the
solution (ψ1, ψ2) = (ψ+

1 , ψ+
2 ). The probability constraints

imply

ga,1 <

√
g2

a,1 − 4ga,2ga,0 < 2μ−1ga,2 + ga,1, (35a)

gb,1 >

√
g2

b,1 − 4gb,2gb,0 > 2μ−1gb,2 + gb,1. (35b)

From Eq. (35) we must have either ga,0 < 0 or ga,0 >

0, ga,1 < 0, g2
a,1 − 4ga,2ga,0 > 0. The first inequality in

Eq. (35b) implies gb,1 > 0 and gb,0 < 0. Now consider the
second inequality in Eq. (35b). For 2μ−1gb,2 + gb,1 � 0, the
second inequality in Eq. (35b) holds. Otherwise, if 2μ−1gb,2 +
gb,1 > 0, then the second inequality implies

cb,0 + μ−1cb,1 + μ−2cb,2 > 0, (36)

which always holds since the left side of the above inequality
equals μωλ†

a.
Recall that, from Eq. (35), we can have either ga,0 < 0 or

ga,0 > 0, ga,1 < 0, g2
a,1 − 4ga,2ga,0 > 0. We can show that the

latter case contradicts with the conditions gb,1 > 0 and gb,0 <

0. In particular, from

gb,0 = ωμ[λa(1 − ωλ
†
b) + λ

†
b − λb] < 0, (37)

we have 1 − ωλ
†
b < 0 and similarly

ga,0 = ωμ[λb(1 − ωλ†
a) + λ†

a − λa] > 0, (38)

implying 1 − ωλ†
a > 0. Since

ga,1 = ωμ2(λ†
b − λb − λ†

a + λa + 2ωλbλ
†
a − ωλ†

aλ
†
b)

= ωμ2[(λ†
b − λb)(1 − ωλ†

a) + λa − λ†
a(1 − ωλb)],

(39)

then ga,1 < 0 implies

λa − λ†
a(1 − ωλb) < 0. (40)

As a result, we have (1 − ωλb) > λa/λ
†
a > 1 and ωλb < 0,

leading to a contradiction.
Summarizing the above discussions about the equilibrium

points, we have that (ψ1, ψ2) = (ψ+
1 , ψ+

2 ) is physical for
ga,0 < 0, gb,0 < 0 and gb,1 > 0. Note that gb,1 > 0 is implied
by the other two. Since

gb,1 + μgb,0 = ωμ2[λ†
a + ωλ

†
b(λa − λ†

a)] > 0, (41)

we have that gb,1 > 0 always holds given gb,0 < 0. Together,
it is sufficient to have ga,0 < 0 and gb,0 < 0.

We consider the solution (ψ1, ψ2) = (ψ−
1 , ψ−

2 ). The prob-
ability constraints imply

ga,1 < −
√

g2
a,1 − 4ga,2ga,0 < 2μ−1ga,2 + ga,1, (42a)

gb,1 > −
√

g2
b,1 − 4gb,2gb,0 > 2μ−1gb,2 + gb,1. (42b)

From Eq. (42b) we have 2μ−1gb,2 + gb,1 < 0, giving

gb,0 + μ−1gb,1 + μ−2gb,2 < 0, (43)

which cannot hold since its left side equals μωλ†
a. Thus, in this

region, no physical solution of (ψ1, ψ2) = (ψ−
1 , ψ−

2 ) exists.
(iv.4) Suppose λ†

a < λa for a ∈ {1, 2}, then ca,2 < 0. For
the solution (ψ1, ψ2) = (ψ+

1 , ψ+
2 ), we must have ga,1 > 0 and

ga,0 < 0 for a ∈ {1, 2}. Similar to the discussions in the case
(iv.3), we have that the sufficient condition for an equilib-
rium point is ga,0 < 0 for a ∈ {1, 2}. The solution (ψ1, ψ2) =
(ψ−

1 , ψ−
2 ) is nonphysical—see the discussion in (iv.3).

B. Stability analysis

The starting point to study the stability of the equilibrium
points is the Jacobian matrix J of the 2D mean-field system,
whose entries are

J11 = −1 + λ
†
1ωμ(1 − 2xψ1)ψ2

+ λ1ω(1 − 2μψ1)(1 − μψ2),

J12 = ωμ(λ†
1 − λ1)(1 − μψ1)ψ1,

J21 = ωμ(λ†
2 − λ2)(1 − μψ2)ψ2,

J22 = −1 + λ
†
2ωμ(1 − 2μψ2)ψ1

+ λ2ω(1 − 2μψ2)(1 − μψ1). (44)

We analyze the stability of the different classes of equilibrium
points as discussed in Sec. III A.

(i) Epidemic free. For (ψ1, ψ2) = (0, 0), the Jacobian ma-
trix is

J =
(−1 + λ1ω 0

0 −1 + λ2ω

)
. (45)

The equilibrium point is stable for λa < ω−1 for a ∈ {1, 2}.
(ii) Partial infection of epidemic 1. In this case, we have

(ψ1, ψ2) =
(

λ1ω − 1

μλ1ω
, 0

)
(46)
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and J21 = 0, so the Jacobian is upper triangular, whose eigen-
values are simply the diagonal entries:

J1,1 = 1 − λ1ω,

J2,2 = −1 + λ2

λ1
+ λ

†
2

λ1ω − 1

λ1
. (47)

The equilibrium point is stable for J1,1 < 0 and J2,2 < 0, i.e.,

λ1 > ω−1,

λ2 − λ
†
2 − λ1 + ωλ1λ

†
2 < 0. (48)

(iii) Partial infection of epidemic 2. For this type of equi-
librium point, we have

(ψ1, ψ2) =
(

0,
λ2ω − 1

μλ2ω

)
. (49)

It is stable under the following conditions:

λ2 > ω−1,

λ1 − λ
†
1 − λ2 + ωλ2λ

†
1 < 0. (50)

(iv) Coexistence. Suppose we have ψa �= 0 for a ∈ {1, 2}.
Substituting Eqs. (17) into Eqs. (44), the Jacobian matrix has
entries

J11 = μψ1/(μψ1 − 1),

J12 = ωμ(λ†
1 − λ1)(1 − μψ1)ψ1,

J21 = ωμ(λ†
2 − λ2)(1 − μψ2)ψ2,

J22 = μψ2/(μψ2 − 1). (51)

A necessary and sufficient condition for a two-dimensional
matrix to have two negative eigenvalues is to have a nega-
tive trace (tr(J ) < 0) but a positive determinant (det(J ) > 0).
Since μψa − 1 < 0, the negativity of the trace always holds.
The stability of a equilibrium point in this class is fully
determined by the determinant. It is stable when det(J ) > 0
and unstable when det(J ) > 0. The stable condition from the
determinant is

det(J ) = μ2ψaψb

(1 − μψa)(1 − μψb)

−ω2μ2(λ†
a − λa)(λ†

b − λb)

× (1 − μψa)(1 − μψb)ψaψb > 0. (52)

Let z = (1 − μψa)(1 − μψb), the inequality can be written as

1

z
> ω2(λ†

a − λa)(λ†
b − λb)z. (53)

Equations (17) can be rearranged as

λ
†
1ω(1 − μψ1) = 1 + (λ†

1 − λ1)ωz, (54a)

λ
†
2ω(1 − μψ2) = 1 + (λ†

2 − λ2)ωz. (54b)

Multiplying the above two equations, we get

d2z−2 + d1z−1 + d0 = 0, (55)

where

d2 = 1,

d1 = ω(λ†
1 − λ1 + λ

†
2 − λ2 − ωλ

†
1λ

†
2),

d0 = ω2(λ†
1 − λ1)(λ†

2 − λ2). (56)

Multiplying both sides of Eq. (55) by z and substituting the
result into Eq. (53), we obtain

1

z
> −d1

2
. (57)

That is, an equilibrium point is stable if and only if Eq. (57)
holds and is unstable otherwise. It remains to find the solutions
of Eq. (55) to verify whether Eq. (57) is satisfied.

If the condition λ
†
b = λb holds for one or both values of

b ∈ {1, 2}, then d0 = 0. In this case, we have z−1 = −d1/d2

and Eq. (53) implies the solution is stable for d1 < 0.
For λ†

a �= λb for any a ∈ {1, 2}, from Eq. (55), we see that
1/z has two solutions

(
1

z

)±
=

−d1 ±
√

d2
1 − 4d2d0

2d2
. (58)

Since we have a pair of solutions for (ψ1, ψ2) as in Eq. (22),
the following hold:(

1

z

)+
= 1

(1 − μψ+
a )(1 − μψ+

b )
,

(
1

z

)−
= 1

(1 − μψ−
a )(1 − μψ−

b )
.

(59)

Substituting Eq. (58) into Eq. (57), we have

±
√

d2
1 − 4d2d0 � 0. (60)

We see that, given d2
1 − 4d2d0 > 0, the solution (ψ+

a , ψ+
b ) is

always stable, while (ψ−
a , ψ−

b ) is always unstable. It remains
to check the validity of the inequality d2

1 − 4d2d0 > 0. After
some algebra, we have

d2
1 − 4d2d0 = g2

1,1 − 4g1,2g1,0 = g2
2,1 − 4g2,2g2,0

= ωμ2(λ†
1 − λ1 + λ

†
2 − λ2 − ωλ

†
1λ

†
2)2

− 4ωμ2(λ†
1 − λ1)(λ†

2 − λ2). (61)

Thus, the inequalities d2
1 − 4d2d0 > 0 and g2

a,1 − 4ga,2ga,0 >

0 are equivalent to each other for a ∈ {1, 2}.

C. Phase diagrams

With full knowledge about the equilibrium points and their
stability, we can obtain the phase diagram of the reduced
mean-field system. Define the following set of functions:

sa,0 = λb + λ†
a − λa − ωλbλ

†
a,

sa,1 = λ
†
b − λb − λ†

a + λa + 2ωλbλ
†
a − ωλ†

aλ
†
b,

sa,2 = λ
†
b − λb, sa,3 = λa − ω−1, (62)

s
 = (λ†
1 − λ1 + λ

†
2 − λ2 − ωλ

†
1λ

†
2)2

− 4(λ†
1 − λ1)(λ†

2 − λ2),
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for a, b ∈ {1, 2} and a �= b. The distinct phase regions can be
defined via various inequalities among these functions.

(i) Epidemic free. The solution (ψ1, ψ2) = (0, 0) is stable
for sa,3 < 0 for both a ∈ {1, 2}.

(ii) Partial infection of epidemic 1. The phase has a stable
equilibrium point

(ψ1, ψ2) =
(

λ1ω − 1

μλ1ω
, 0

)
. (63)

Combining the probability constraints and the stability analy-
sis, we obtain the phase region as

s2,0 > 0, s1,3 > 0. (64)

(iii) Partial infection of epidemic 2. The phase is character-
ized by

(ψ1, ψ2) =
(

0,
λ2ω − 1

μλ2ω

)
. (65)

The phase region is given by

s1,0 > 0, s2,3 > 0. (66)

(iv) Coexistence. In this region, there is an equilibrium
point with both ψ1 and ψ2 nonzero, corresponding to the case
of double epidemic outbreaks. For cooperative coevolution,
i.e., λ†

a > λa for a ∈ {1, 2}, a point in the parameter space
belongs to this phase if

sa,0 > 0, sa,1 < 0, sa,2 > 0, s
 > 0, (67)

or

sa,0 < 0, sa,2 > 0, (68)

for both a ∈ {1, 2}. When coevolution is not cooperative, the
coexistence region is given by

sa,0 < 0 (69)

for both a ∈ {1, 2}. We have verified that the case of λa = λ†
a

for one or both a ∈ {1, 2} is well covered by this inequality.
(i ∩ iv). Hysteresis region 1. A hysteresis region appears

when there are two stable equilibrium points and one unstable
equilibrium point in between. The stability analysis indicates
that the solution (ψ+

1 , ψ+
2 ) is always stable while (ψ−

1 , ψ−
2 ) is

unstable. In addition to these two equilibrium points, a third
stable solution is necessary for a hysteresis to arise. This is
only possible when region (iv) overlaps with regions (i), (ii),
and (iii). Checking the equilibrium points and their stability,
we find that a hysteresis region exists only when the inequality
λ†

a > λa holds for a ∈ {1, 2}. The region where (i) and (iv)
overlap is

sa,0 > 0, sa,1 < 0, sa,2 > 0, sa,3 < 0, s
 > 0, (70)

where the first inequality sa,0 > 0 can in fact be implied by
the other inequalities. Since g1,1 + g2,1 < 0, we have

λ
†
1 + λ

†
2 − ωλ

†
1λ

†
2 < 0, (71)

which further implies ωλ
†
1 > 1 and ωλ

†
2 > 1. Since sa,3 < 0,

we have

sa,0 = λb(1 − ωλ†
a) + λ†

a − λa > ω−1 − λa > 0. (72)

Altogether, the region is given by

sa,1 < 0, sa,2 > 0, sa,3 < 0, s
 > 0 (73)

for a ∈ {1, 2}.
(ii ∩ iv). Hysteresis region 2. This region is where (ii) and

(iv) overlap, which is bounded by the inequalities

sa,0 > 0, sa,1 < 0, sa,2 > 0, s1,3 > 0, s2,3 < 0, s
 > 0
(74)

for a ∈ {1, 2}.
(iii ∩ iv). Hysteresis region 3. Similarly, the region where

(iii) and (iv) overlap is bounded by

sa,0 > 0, sa,1 < 0, sa,2 > 0, s1,3 < 0, s2,3 > 0, s
 > 0
(75)

for a ∈ {1, 2}.

D. Types of phase transition

A phase transition occurs when a point in the parameter
space crosses a boundary between two neighboring phase
regions. Depending on different combinations of phase-region
pairs, the resulting phase transitions can be characteristically
distinct. To be concrete, we focus on the phase transitions
in the λ1-λ2 plane with fixed values of λ

†
1 and λ

†
2. Both

continuous and discontinuous phase transitions can arise, as
we will show below.

(i) � (ii): We have that the equations s1,0 = 0 and s2,0 = 0
intersect at the point (λ1, λ2) = (ω−1, ω−1), so the two phases
are separated by the line s1,3 = 0 in the λ1-λ2 plane. When
approaching the line s1,3 = 0 from phase (ii), the equilibrium
point

(ψ1, ψ1) =
(

λ1ω − 1

μλ1ω
, 0

)
(76)

approaches (ψ1, ψ1) = (0, 0). As a result, a continuous phase
transition arises.

(i) � (iii): Similar to the preceding case, the phase transi-
tion is continuous.

(ii) � (iv)\(ii ∩ iv): The two phases are separated by the
line s2,0 = 0. When the stable equilibrium point (ψ+

1 , ψ+
2 ) in

Eq. (21) approaches the line, for s2,1 > 0 we have

(ψ+
1 , ψ+

2 ) →
(

λ1ω − 1

μλ1ω
, 0

)
, (77)

generating a continuous phase transition. Otherwise (s2,1 <

0), we have

(ψ+
1 , ψ+

2 ) →
(

−g1,2 + g2,1

g1,2
,−g2,1

g2,2

)
, (78)

so the phase transition is discontinuous. It remains to discuss
the sign of s2,1. Substituting s2,0 = 0 into s2,1, we get

s2,1 = λ
†
1 + ωλ1λ

†
2 − ωλ

†
1λ

†
2. (79)

First consider the case where the coevolution dynamics are
not cooperative, i.e., λa � λ†

a for at least one of a ∈ {1, 2}. In
this case, the region (ii ∩ iv) is empty. Suppose λ1 � λ

†
1, it

can be immediately seen that s2,1 > 0. For λ2 � λ
†
2, we have

s2,0 > 0, implying ω2λ
†
2 � 1 and consequently s2,1 > 0.
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Now consider the case of cooperative coevolution dynam-
ics, where a point in the region (ii ∩ iv) satisfies s2,1 < 0.
Further, we can prove that, if a point is in the region (iv)\(ii ∩
iv), then s2,1 > 0. This is accomplished by showing that if a
point has s2,1 < 0 then it must be in the region (ii ∩ iv). Notice
that the equations s2,1 = 0, ss2,0 = 0, and s
 = 0 intersect at
the point

(λ1, λ2) =
(

λ
†
1 − λ

†
1

ωλ
†
2

, 2λ
†
1 + λ

†
2 − ωλ

†
1λ

†
2 − λ

†
1

ωλ
†
2

)
(80)

in the λ1-λ2 plane. Since s2,1 is an increasing function of λ1

along s2,0 = 0, as can be seen from Eq. (79), we have that, if
a point in the line defined by s2,0 = 0 in the λ1-λ2 plane has
λ1 < λ

†
1 − λ

†
1/ωλ

†
2, it will satisfy s2,1 < 0. Furthermore, since

λ1 > ω−1, the inequality λ1 < λ
†
1 − λ

†
1/ωλ

†
2 implies

λ
†
1 + λ

†
2 < ωλ

†
1λ

†
2. (81)

Along the line s2,0 = 0, s1,0 can be written as

s1,0 = (
ωλ

†
1λ

†
2 − λ

†
1 − λ

†
2

)
λ1 + λ

†
1 + λ

†
2 − ωλ

†
1λ

†
2, (82)

which is an increasing function of λ. Since the curves s1,0 = 0
and s2,0 = 0 intersect at the point (λ1, λ2) = (ω−1, ω−1), we
have s1,0 = 0. We thus have s1,0 > 0 for λ1 > ω−1. Similarly,
along the line s2,0 = 0, we have

s1,1 = −λ
†
1 + ωλ1λ

†
2 + 2ωλ2λ

†
1 − ωλ

†
1λ

†
2

< −2λ
†
1 + 2ωλ2λ

†
1 < 0.

(83)

The first inequality is the result of λ1 < λ
†
1 − λ

†
1/ωλ

†
2 and the

second inequality is due to the fact λ2 < ω−1 along the line
s2,0 = 0 for λ1 > ω−1. Last, a point in region (ii) can always
make s
 > 0 if it is sufficiently close to the line s2,0 = 0.

To summarize, if a point in region (ii) has s2,1 < 0 near the
phase boundary s2,0 = 0, then all the conditions under which
the point is in region (ii ∩ iv) hold. Thus, if the point is in the
region (iv)\(ii ∩ iv), then we have s2,1 > 0, which makes the
phase transition continuous.

(iii) � (iv)\(iii ∩ iv). Following a similar treatment to the
preceding case, we have that the phase transition is continu-
ous.

(ii ∩ iv)→(iv). The two phase are separated by the line
s2,0 = 0. As discussed in the case of the (ii) � (iv)\(ii ∩
iv) transition, since s2,1 < 0 holds near the phase boundary,
the behavior of the coexistence solution is determined by
Eq. (78) when approaching the phase boundary, resulting in
a discontinuous phase transition.

With discussions similar to those in the (ii ∩ iv) → (iv)
case, we find that all transitions as a result of entering or
leaving the hysteresis region are of the discontinuous type,
due to the fact that, in the hysteresis region, the inequality
sa,1 < 0 holds. The discontinuous transitions include (ii ∩ iv)
→ (iv), (iii ∩ iv) → (iv), (i ∩ iv) → (iv), (ii ∩ iv) → (ii)\(ii ∩
iv), (iii ∩ iv) → (iii)\(iii ∩ iv) and (i ∩ iv) → (i)\(i ∩ iv).

The tricritical points that separate the continuous from the
discontinuous transition lie in the boundaries of the hysteresis
region where qa,1 = 0 holds for either a ∈ {1, 2}. One such
point is given by Eq. (80). The second tricritical point can be

obtained similarly as

(λ1, λ2) =
(

2λ
†
2 + λ

†
1 − ωλ

†
1λ

†
2 − λ

†
2

ωλ
†
1

, λ
†
2 − λ

†
2

ωλ
†
1

)
. (84)

E. Conditions on λ†
a for hysteresis

For fixed values of λ
†
1 and λ

†
2, a hysteresis can arise in the

λ1-λ2 plane. To determine these values, we first note that a
hysteresis is possible only when the coevolution dynamics are
cooperative, i.e., λ†

a > λa for both a ∈ {1, 2}. A point in the
hysteresis region must satisfy the inequality g1,1 + g2,1 < 0.
Consequently, we have

λ
†
1 + λ

†
2 − ωλ

†
1λ

†
2 < 0, (85)

which provides a necessary condition for a hysteresis to arise.
We can show that this is also sufficient to guarantee the
occurrence of a hysteresis. In particular, suppose inequality
Eq. (102) holds. Since s1,0 = 0 and s2,0 = 0 intersect at
(λ1, λ2) = (ω−1, ω−1) in the λa-λb plane, there is a neighbor-
hood near (ω−1, ω−1) in which the inequalities s1,0 > 0 and
s2,0 > 0 hold. At the point (λa, λb) = (ω−1, ω−1), we have

s1,1 = s2,1 = λ
†
1 + λ

†
2 − ωλ

†
1λ

†
2 < 0. (86)

It remains to check whether the inequality s
 > 0 holds. Let
ωλ†

aλ
†
b = λ†

a + λ
†
b + ε, where ε > 0 is a constant. Then at the

point (λa, λb) = (ω−1, ω−1), we have

s
 = (2ω−1 + ε)2 − 4(εω−1 + ω−2) = ε > 0. (87)

We thus have that a hysteresis region exists in the λ1-λ2 plane
if and only if Eq. (85) holds.

F. Summary of the phase diagrams

Based on the results of the above analysis, we obtain the
structure of the analytically predicted phase diagram, which
can be described, as follows.

(i) Epidemic free region. In this region, Eq. (11) has
the equilibrium point (ψ1, ψ2) = (0, 0), indicating extinction
of both epidemics. The solution is stable for sa,3 < 0 (a ∈
{1, 2}). The phase boundary λa = ω−1 is also the outbreak
threshold for the classic SIS model with a single epidemic.

(ii) Partial infection of epidemic 1. In this phase, an out-
break occurs for the epidemic 1 but not for 2. The equilibrium
point is given by

(ψ1, ψ2) =
(

λ1ω − 1

μλ1ω
, 0

)
, (88)

which is stable for s2,0 > 0 and s1,3 > 0, where the latter gives
λ1 > ω−1, indicating that epidemic 1 can have an outbreak
independently. Similarly, s2,0 > 0 implies λ2 < λ1 and

λ
†
2 < (λ1 − λ2)/(ωλ1 − 1), (89)

stipulating that λ
†
2 cannot be too large, such that the outbreak

of epidemic 1 result in an outbreak in epidemic 2.
(iii) Partial infection of epidemic 2. Analogous to (ii), this

phase is defined by

(ψ1, ψ2) =
(

0,
λ2ω − 1

μλ2ω

)
, (90)

which is stable for s1,0 > 0 and s2,3 > 0.
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(iv) Coexistence. In this region the reduced system has
a stable equilibrium point with both ψ1 and ψ2 nonzero,
leading to a simultaneous outbreak of two epidemics. The
stable equilibrium points are

(ψ1, ψ2) =
(

−s1,1 ± √
s


2μωλ
†
1s1,2

,
−s2,1 ± √

s


2μωλ
†
2s2,2

)
. (91)

For cooperative coevolution, i.e., λ†
a > λa for a ∈ {1, 2}, we

have sa,2 > 0. A point in the parameter space belongs to this
phase if it further satisfies either

sa,0 > 0, sa,1 < 0, s
 > 0, (92)

or

sa,0 < 0 (93)

for a ∈ {1, 2}. The former case is where region (iv)overlaps
with regions (i), (ii), and (iii). As a result, hystereses can arise.
For competitive or asymmetric coevolution, the coexistence
region is given by sa,0 < 0 for a ∈ {1, 2}.

Now we discuss the conditions for observing the coexis-
tence phase in more detail to get an intuitive picture. For the
cooperative case, the boundaries of the coexistence region are
relatively complex, and we consider the degenerate case of
λ1 = λ2 and λ

†
1 = λ

†
2. For sa,0 < 0, we have ωλ1 = ωλ2 > 1

so that both epidemics are able to have an outbreak by them-
selves. On the contrary, for sa,0 > 0 so that neither epidemic
can have an outbreak by itself, we have sa,1 < 0 and λ

†
1 > 2λ1.

The condition s
 > 0 requires

(ωλ
†
1)2 > 4(ωλ

†
1 − ωλ1), (94)

and λ
†
1 > 2λ1, leading to the necessary condition ωλ

†
1 > 2.

In this case, the interaction transmission rate must at least
double the threshold value of classic SIS outbreak to have
coexistence.

For the competitive case, since sa,0 < 0, we have

s1,0 + s2,0 = λ
†
1(1 − ωλ2) + λ

†
2(1 − ωλ2) < 0. (95)

The above inequality implies that at least one of λa, say λ1,
must satisfy ωλ1 > 1. Actually, we must also have ωλ2 > 1
to observe the coexistence phase. Suppose ωλ2 < 1, from
ωs1,0 < 0, we have

ωλ1 − ωλ2 + ωλ
†
2(1 − ωλ1) < 0

⇒ ωλ
†
2 >

ωλ2 − ωλ1

1 − ωλ1
> 1 > ωλ2,

(96)

which contradicts with the assumption that the model is
competitive. Consequently, to observe the coexistence of two
epidemics for the competitive case, a necessary condition is
that each of the two epidemics can have an outbreak by itself.
In addition, sa,0 < 0 implies

λ†
a >

λa − λb

1 − ωλb
. (97)

That is to say, to have the coexistence phase, the suppression
effect from the other epidemic cannot be too strong. For
networks with a larger value of ω, the conditions Eq. (97)
and ωλa > 1 both can be readily satisfied. As a result, the

coexistence phase is more likely to be observed in networks
with a larger leading eigenvalue ω.

It is also interesting to note that, when the two epidemics
have fully mutual exclusion (i.e., λ†

a = 0), the condition sa,0 <

0 can never be satisfied simultaneously for both a ∈ {1, 2}. In
other words, the coexistence phase can never be observed with
fully mutual exclusion, and this phenomenon agrees with the
prediction in Ref. [38].

(i ∩ iv) Hysteresis region 1. A hysteresis arises when there
are two stable equilibrium points and one unstable equilibrium
point in between, which occurs when region (iv) overlaps with
regions (i), (ii) and (iii). Our analysis reveals that a hysteresis
region emerges only for cooperative coevolution. The region
where (i) and (iv) overlap is bounded by the inequalities

sa,1 < 0, sa,2 > 0, sa,3 < 0, s
 > 0 (98)

for a ∈ {1, 2}.
(ii ∩ iv) Hysteresis region 2. This is where (ii) and (iv)

overlap. Besides the cooperative condition sa,2 > 0, the region
is nonempty if the inequalities

sa,0 > 0, sa,1 < 0, s1,3 > 0, s2,3 < 0, s
 > 0 (99)

hold for a ∈ {1, 2}.
(iii ∩ iv) Hysteresis region 3. Similarly, for cooperative

coevolution with sa,2 > 0, the region where (iii) and (iv)
overlap is bounded by

sa,0 > 0, sa,1 < 0, s1,3 < 0, s2,3 > 0, s
 > 0 (100)

for a ∈ {1, 2}.
The types of phase transitions that occur when crossing

a phase boundary are determined by further checking if the
stable solution varies continuously (see Sec. III D). We find all
possible phase transitions as a result of crossing a hysteresis
region are discontinuous, whereas other transitions are contin-
uous. A result revealed by our analysis of the phase diagrams
is that the precursor of a discontinuous transition with an
abrupt outbreak of at least one epidemic is a hysteresis.
Continuous and discontinuous phase transitions are separated
by two tricritical points in the λ1-λ2 plane:

(λ1, λ2) =
(

λ
†
1 − λ

†
1

ωλ
†
2

, 2λ
†
1 + λ

†
2 − ωλ

†
1λ

†
2 − λ

†
1

ωλ
†
2

)
,

(λ1, λ2) =
(

2λ
†
2 + λ

†
1 − ωλ

†
1λ

†
2 − λ

†
2

ωλ
†
1

, λ
†
2 − λ

†
2

ωλ
†
1

)
. (101)

The phase diagram also makes it possible to obtain the con-
ditions in the interaction strengths λ

†
1 and λ

†
2 for a hysteresis

to occur. In Sec. III E, we obtain the necessary and sufficient
condition

λ
†
1 + λ

†
2 − ωλ

†
1λ

†
2 < 0, (102)

where there is a hysteresis region with λ1 < λ
†
1 and λ2 < λ

†
2.

IV. NUMERICAL VERIFICATION

We provide a numerical illustration of the analytic predic-
tion on the interplay between discontinuous transitions and
hystereses with an Erdős-Rényi graph of size N = 100 and
average degree 〈k〉 = 4. The inequality Eq. (102) divides the
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FIG. 1. Phase diagrams of interacting SIS dynamics. For Erdős-Rényi type of random graph of size N = 100 and average degree 〈k〉 =
4, (a) the condition for interactive transmission rates λ†

1 and λ†
2 for hysteresis in the λ1-λ2 plane. The red dashed and dashed-dotted lines

correspond, respectively, to λa = ω−1 and λa = 2ω−1 for a ∈ {1, 2}. (b, c) Phase diagrams with λ†
1 and λ†

2 corresponding to points b and c in
(a), respectively. The solid and dashed lines between different phase regions indicate continuous and discontinuous transitions, respectively.
The two white circles in panel (c) are the tricritical points separating discontinuous from continuous transitions.

λ
†
1-λ†

2 plane into two regions, as shown in Fig. 1(a). Above the
curve defined by

λ
†
1 + λ

†
2 − ωλ

†
1λ

†
2 = 0,

a hysteresis region appears while it is absent below. In the
limit λ†

a → ∞, the curve approaches λ
†
b = ω−1, as shown

by the orange dashed lines in Fig. 1(a). Note that the curve
avoids the dashed lines for finite λ†

a. Since ω−1 is also the
outbreak threshold of the classic SIS model for a single
epidemic, a necessary condition for a hysteresis is that λ†

a
must be larger than the classic threshold. A special case is
λ

†
1 = λ

†
2, where Eq. (102) implies that, for a hysteresis to

arise, the inequality λ
†
1 = λ

†
2 > 2ω−1 must hold. That is, the

interactive transmission rate must at least twice the classic SIS
threshold for a hysteresis to arise, suggesting that networks
with a larger leading eigenvalue are more prone to hystereses.
Two representative phase diagrams in the λ1-λ2 plane with
fixed values of λ

†
1 and λ

†
2 are shown in Figs. 1(b) and 1(c),

corresponding to the points b and c in Fig. 1(a), respectively.
For point b, no hysteresis can arise for any values of (λ1,
λ2) and the phase transitions between different neighboring
phase regions are continuous, as indicated by the solid lines
in Fig. 1(b). For point c that is slightly above the hysteresis
boundary, region (iv) overlaps with regions (i), (ii), and (iii),
where a hysteresis can arise. Crossing into region (iv) from
any one of the phase regions (i ∩ iv), (ii ∩ iv), and (iii ∩
iv), a discontinuous outbreak transition occurs with some ψa

changing abruptly from zero to a nonzero value. Along the
path (i ∩ iv) → (i), (ii ∩ iv) → (ii), and (iii ∩ iv) → (iii),
the system displays a discontinuous transition to extinction at
which at least one epidemic changes abruptly from a nonzero
value to zero. All the phase boundaries with discontinuous
transitions are indicated by the dashed lines in Fig. 1(c),
where the two tricritical points separating continuous from
discontinuous transitions are marked (white circles).

Are the phase diagrams obtained from the reduced mean
field equations accurate in comparison with those from the
original mean field equations? In the presence of the fluctu-

ation terms Ra, Eq. (11) are exactly equivalent to Eqs. (1).
Consider a system of dimension 2N + 2, which consists of
Eqs. (1) and (11). A stable equilibrium point (p1,i, p2,i )1�i�N
of the subsystem Eqs. (1) is also one for the 2N + 2 system
with ψa = αT pa. Consider a stable equilibrium point with
which neither epidemic has an outbreak. Substituting pa,1 =
· · · = pa,N = 0 and ψa = 0 into the remainder term (with full
expression in Sec. II B), we have Ra = 0 for a ∈ {1, 2}. In
this case the remainder terms can be ignored. Since a zero
stable equilibrium point of Eqs. (1) implies the existence of
exactly such a point of Eq. (11) (with no remainder terms)
and vice versa, any outbreak transition threshold from phase
(i) is expected to be exact for Eqs. (1).

There are two cases where the remainder terms do not van-
ish and can lead to inaccuracies of the analytic prediction. The
first case is when Eqs. (1) exhibit a stable equilibrium point
at which there is an outbreak for epidemic 1 but extinction
for epidemic 2: R1 = 0 and R2 �= 0. The second case is when
Eqs. (1) have a stable equilibrium point with an outbreak for
both epidemics: Ra �= 0 for a ∈ {1, 2}. Since the remainder
terms are small by construction, they lead to corrections that
can be neglected, which have been verified numerically. Espe-
cially, for the Erdős-Rényi network in Fig. 1, we solve Eqs. (1)
numerically and compare the solutions with the analytic phase
diagram obtained from Eq. (11). The values of ψa obtained
from Eqs. (1) in the λ1-λ2 plane are shown in Figs. 2(a)–
2(d), for λ

†
1 = 3.5ω−1 and λ

†
2 = 2.5ω−1 [so that (102) is

satisfied, guaranteeing a hysteresis]. Since in the hysteresis
region there are two stable equilibrium points for each ψa,
we plot separately the two solutions for ψ1 in Figs. 2(a) and
2(b), and those for ψ2 in Figs. 2(c) and 2(d), respectively.
The phase diagram from original Eq. (11) is also shown in
Fig. 2 by the orange solid and dashed lines for continuous and
discontinuous transitions, respectively. Our analytical phase
diagram predicts accurately all outbreak transitions: (i) → (ii),
(i) → (iii), (i ∩ iv) → (iv), (ii ∩ iv) → (iv), and (iii ∩
iv) → (iv). However, quantitatively, the predicted extinction
transitions (i ∩ iv) → (i), (ii ∩ iv) → (ii), and (iii ∩ iv) →
(iii) are less accurate, due to the nonzero remainders R1 and R2
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FIG. 2. Validation of analytic predictions. Shown is comparison of the analytically predicted phase diagram with that obtained from the
original mean field equations: equilibrium points for color-coded (a, b) ψ1 and (c, d) ψ2 values; color-coded values of the remainder terms
R1 (e, f) and R2 (g, h). The orange lines are the analytically predicted phase boundaries, with solid and dashed lines denoting continuous and
discontinuous transitions, respectively.

as a result of the loss of stability of an equilibrium point with
an outbreak for both epidemics. The values of the remainders
R1 and R2 at equilibrium are shown in Figs. 2(e)–2(h). The
value of R1 for the two solutions of ψ1 are shown in Figs. 2(e)
and 2(f), respectively. Similarly, R2 for the two solutions of ψ2

are shown in Figs. 2(g) and 2(h), respectively. The predictions
are qualitatively correct.

Next we consider tests and validation of our analytic
prediction from Eq. (11) for a variety of networks, including
synthetic networks with strong and weak degree heterogene-
ity, and real-world networks. For synthetic networks, we have
already shown the results for an ER network. Here we also
consider networks generated from the uncorrelated config-
uration model (UCM) with a power-law degree distribution
p(k) ∼ k−β . Specifically, we consider three networks with
different degree exponents: (1) PL-2.3 with β = 2.3, (2) PL-3
with β = 3, and (3) PL-4 with β = 4. For empirical networks,
we have (4) Dolphins [39], a social network of bottle-nose
dolphins; (5) HIV [40], a network of sexual contacts between
people involved in the early spread of the human immunodefi-
ciency virus (HIV); (6) Highschool [41], a friendship network
between boys in a small high school, and (7) Jazz [42], a
collaboration network between Jazz musicians. The networks
are downloaded from Ref. [43].

Basic features and parameters of the networks considered
are listed in Table I. Note that Highschool is a directed and
weighted network. Here we simply take it as undirected by
assuming that there is an undirected edge between node i and
j if there is at least a directed edge between the two nodes in
either direction, with the edge weights ignored.

For all the networks, we set λ
†
1 = 3.5ω−1 and λ

†
2 = 2.5ω−1

to guarantee the emergence of a hysteresis region. To have an
idea of the size of the correction terms Ra, we show the values
of Ra at equilibrium. The results of (1) PL-2.3, (2) PL-3, (3)
PL-4, (4) Dolphins, (5) HIV, (6) Highschool, and (7) Jazz are

shown in Figs. 3–9, respectively. In each figure, subfigures (a)
and (b) correspond to the values of ψ1, while (e) and (f) are the
corresponding values of R1. Similarly, (c) and (d) correspond
to the values of ψ2, while (g) and (h) are the corresponding
values of R2. We see that, for all the networks tested, the ana-
lytic phase diagram predicts quantitatively and accurately the
outbreak transitions, while the predicted extinction transitions
are qualitatively correct. The values of correction terms Ra are
near zero for the outbreak transitions, while have relatively
larger magnitudes near extinction transitions.

V. DISCUSSION

We have analytically predicted the phase diagram of in-
teracting SIS spreading dynamics using the technique of
spectral dimension reduction and provided numerical vali-
dation. The analytic phase diagram elucidates the interplay

TABLE I. Basic topological features of seven real networks: N
and M are the number of nodes and edges, respectively, C is the
clustering coefficient [44], r is the assortative coefficient [45], 〈k〉
is the average degree, H is the degree heterogeneity which defined as
H = 〈k2〉/〈k〉2, and 〈d〉 is the average shortest distance.

N M C r kmax 〈k〉 H 〈d〉
ER 100 200 0.025 0.027 9 4 1.228 3.436
PL-2.3 100 234 0.040 −0.077 10 4.680 1.162 3.095
PL-3 100 216 0.042 −0.005 10 4.320 1.164 3.239
PL-4 100 185 0.033 0.022 10 3.700 1.108 3.709
Dolphins 62 159 0.259 −0.043 12 5.130 1.327 3.357
HIV 40 41 0.042 −0.279 8 2.050 1.512 4.474
Highschool 70 274 0.465 0.083 19 7.829 1.190 2.640
Jazz 198 2742 0.618 0.021 100 27.697 1.396 2.236
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FIG. 3. Validation of analytic predictions for the power-law network with degree exponent β = 2.3. The parameters of the spreading model
are set as λ†

1 = 3.5ω−1 and λ†
2 = 2.5ω−1.

between discontinuous transitions and hystereses as well as
the emergence of tricritical points. This method can also
be applied to study other interacting epidemic models. For
general epidemic models, a one-dimensional description of
each epidemics is not sufficient [33]. Determining the number
of macroscopic observables required for general epidemic
models needs further exploration.

Previous theoretical methods for interacting spreading dy-
namics such as QMF theory [36] employ 2N equations, where
N is the network size. For large networks, it is computa-
tionally demanding to solve the equations to determine the
stability of the fixed points, as this requires manipulating
the 2N × 2N Jacobian matrix. It is thus infeasible to use the

QMF to map out the phase diagram for interacting spreading
dynamics on complex networks, preventing us from gaining a
full understanding of the interplay between network topology
and the spreading dynamical process as a full phase diagram
would reveal. The same difficulty arises with a naive appli-
cation of the SDR method [33] to obtain the phase diagram
for interacting spreading dynamics. In contrast, our approach
gives a full picture of the phase diagram on large complex
networks with an arbitrary topology through an effective two-
dimensional system, revealing rich phenomena that have not
been systemically investigated. While many previous studies
employed the mean-field theory to study different types of
spreading dynamics on complex networks [46–48], our work

FIG. 4. Validation of analytic predictions for the power-law network with degree exponent β = 3. The parameters of the spreading model
are set as λ†

1 = 3.5ω−1 and λ†
2 = 2.5ω−1.
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FIG. 5. Validation of analytic predictions for the power-law network with degree exponent β = 4. The parameters of the spreading model
are set as λ†

1 = 3.5ω−1 and λ†
2 = 2.5ω−1.

is not a simple application of the mean-field theory. In fact,
we go way beyond by obtaining, for the first time to our
knowledge, a global phase diagram laying out a clear picture
of all possible dynamical states and the transitions among
them through a comprehensive stability analysis—both at an
unprecedented level of details.

Taken together, our work gives a full picture of the depen-
dence of phase transition on network topology and spreading
parameters for SIS dynamics, and thus lays a foundation for
intervening or harnessing this type of interacting spreading
processes. For instance, our phase diagram gives possible

routes for controlling the type of phase transition through
perturbations to the network structure or for controlling one
spreading process through manipulating another interacting
process. It should be cautioned that, while the SIS model
provides phenomenological insights into relatively simply
spreading processes and is thus a conceptually useful paradig-
matic model, it may be too simplistic to describe spreading
processes in the real world which can be significantly more
complicated. To apply our analytic approach to irreversible
epidemic processes beyond the SIS dynamics is possible but
remains to be studied.

FIG. 6. Validation of analytic predictions for the Dolphins network. The parameters of the spreading model are set as λ†
1 = 3.5ω−1 and

λ†
2 = 2.5ω−1.
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FIG. 7. Validation of analytic predictions for the HIV network. The parameters of the spreading model are set as λ†
1 = 3.5ω−1 and λ†

2 =
2.5ω−1.
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APPENDIX: PROOF FOR μ � 1

To prove μ � 1, we rewrite Eq. (10) as

μ−1 = αT Gα

αT Kα
. (A1)

FIG. 8. Validation of analytic predictions for the Highschool network. The parameters of the spreading model are set as λ†
1 = 3.5ω−1 and

λ†
2 = 2.5ω−1.
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FIG. 9. Validation of analytic predictions for the Jazz network. The parameters of the spreading model are set as λ†
1 = 3.5ω−1 and λ†

2 =
2.5ω−1.

Since K is positive definite, it can be decomposed as K =
K1/2K1/2, where K1/2 is a diagonal matrix whose entries are
the square root of the degrees. Let y = K1/2α. We have α =
K−1/2y. Substituting this back to μ−1 gives

μ−1 = yK−1/2GK−1/2y

yT y
, (A2)

which is the Rayleigh quotient of matrix K−1/2GK−1/2 and,
hence, we have μ−1 � δ1, where δ1 is the largest eigenvalue

of the matrix K−1/2GK−1/2. Recall that the symmetric nor-
malized Laplacian matrix of G is defined as

Lsym = I − K−1/2GK−1/2, (A3)

which has a smallest eigenvalue ζn = 0. As a result, we have
δ1 = 1 − ζn = 1, which gives μ � 1.
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