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Scaling law of transient lifetime of chimera states under dimension-augmenting perturbations
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Chimera states arising in the classic Kuramoto system of two-dimensional phase-coupled oscillators are
transient but they are “long” transients in the sense that the average transient lifetime grows exponentially
with the system size. For reasonably large systems, e.g., those consisting of a few hundred oscillators, it is
infeasible to numerically calculate or experimentally measure the average lifetime, so the chimera states are
practically permanent. We find that small perturbations in the third dimension, which make system “slightly”
three dimensional, will reduce dramatically the transient lifetime. In particular, under such a perturbation, the
practically infinite average transient lifetime will become extremely short because it scales with the magnitude
of the perturbation only logarithmically. Physically, this means that a reduction in the perturbation strength over
many orders of magnitude, insofar as it is not zero, would result in only an incremental increase in the lifetime.
The uncovered type of fragility of chimera states raises concerns about their observability in physical systems.
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I. INTRODUCTION

A research frontier in complex and nonlinear dynamical
systems is chimera states [1–58], a phenomenon of sponta-
neous symmetry breaking in spatially extended systems in
which coherent and incoherent groups of oscillators coexist
simultaneously. The phenomenon was first observed three
decades ago in a numerical study of the system of coupled
nonlinear Duffing oscillators [1], which was later rediscovered
[2], analyzed, and coined with the term “chimera” [3,4].
Chimera states have been studied in diverse systems such
as regular networks of phase-coupled oscillators with a ring
topology [2,3,5], networks hosting a few populations [6,10],
two-dimensional (2D) [4,11] and three-dimensional (3D) lat-
tices [37], torus [16,28], and systems with a spherical topol-
ogy [38]. Phenomena such as traveling-wave type of chimera
[35] and amplitude chimera [42,45] have also been uncovered
and studied.

In the Kuramoto model with 2D rotational dynamics, a
previous study [13] demonstrated that the chimera states are
typically transient. These states were deemed “long transient”
because their average lifetime increases exponentially with
the system size. For systems of size greater than, say, 60,
it is already infeasible to numerically calculate the average
transient time. For larger systems consisting of, e.g., a few
hundred oscillators, the average transient lifetime is practi-
cally infinite. The questions to be addressed in this paper are
whether the practically infinitely long transient will become
short so that the chimera states are actually transient from the
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standpoint of numerical computations or physical experiments
when external perturbations are applied to the system, and
how. Previous work focused mostly on perturbations to the
structure of the underlying lattice or networks [24,54,59],
revealing that chimera states are robust against structural per-
turbations. For example, when some links are removed from
an originally globally coupled (all-to-all) network, coherent
and incoherent regions still simultaneously arise in the state
space, giving rise to a generalized type of chimera states [24].
Quite recently, it was found that a chimera state can respond
to perturbations to achieve robustness through the mechanism
of self-organization and adaptation [58].

In this paper, we report an unexpected type of fragility of
chimera states in the presence of perturbations to the phase-
space dimension of the oscillators in the network. We start
from the paradigmatic Kuramoto model of globally coupled
2D phase oscillators [2,3]. In this model, each oscillator is
a 2D rotor characterized by a single dynamical variable,
the angle of planar rotation. We invoke arbitrarily small
perturbations that make the oscillator “slightly” 3D. Specif-
ically, consider 3D rotation represented by the movement
of a point on the surface of a unit sphere S2, where 2D
rotation of the unperturbed phase oscillator is confined to
movements on the equator. We find that any infinitesimal
deviation from the equator in the oscillator dynamics makes
the long-transient chimera state extremely short. In particular,
let δ be the strength of this kind of “dimension-augmenting”
perturbation. We find that, regardless of how infinitesimal
δ is, insofar as its value is not zero, the average transient
lifetime 〈τ 〉 of the chimera states becomes extremely short as
it depends only logarithmically on δ: 〈τ 〉 ∼ − ln δ, even for
large systems for which the average transient lifetime in 2D
is practically infinite. The physical significance is that, when
the strength of the perturbation is reduced by many orders of
magnitude, the average transient lifetime would incur only
an incremental increase. Considering that in many existing
studies of chimera states, whether it be physical, chemical, or
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biological, a description based on Kuramoto type of 2D rotors
is only approximate and perturbations that alter the 2D picture
are inevitable, our finding raises concerns about the physical
observability of chimera states.

It should be noted that, in this paper, an N-dimensional
chimera state for N � 3 is defined as one that emerges in the
full N-dimensional phase space as the result of dimension-
augmenting perturbations. Because the focus of our study
is on the transient nature of such high-dimensional chimera
states, we set the initial condition to be a chimera state in two
dimensions as in the classical Kuramoto model and examine
how long the state can survive under such perturbations. This
is done for two cases: the perturbations are such that the
local phase space of each oscillator becomes three or four
dimensional, respectively. We also note that a previous work
[60] revealed a logarithmic dependence of the average lifetime
of transient chimera states on the intensity of Gaussian white
noise, indicating a dramatic reduction of the chimera lifetime
under noise. Our finding of a similar scaling law but with
respect to deterministic, dimension-augmenting perturbations
is further indication of the fragility of chimera states.

II. MODEL

A. General consideration

We begin with the following D-dimensional Kuramoto
model [61–64]:

dσ i

dt
= K

N

N∑
j=1

[σ j − (σ j · σ i )σ i] + W · σ i, (1)

where the D-dimensional unit vector σ i represents the state
of the ith oscillator, W is a real D × D antisymmetric matrix
characterizing the natural rotation of the oscillator, N is the
system size (the number of coupled oscillators), and K is
the coupling strength between different oscillators. The state
of each node has (D − 1) degrees of freedom. For D = 2,
the system reduces to the classic Kuramoto model with the
variable substitution σ i = (cos θi, sin θi ). In Eq. (1), global
(all-to-all) coupling is assumed. To make chimera states pos-
sible, we adopt a coupling which is neither global nor local.
We thus consider the following generalized model:

dσ i

dt
= 1

N

N∑
j=1

G(i − j){T · σ j − [(T · σ j ) · σ i]σ i} + W · σ i,

(2)

where G(i − j) is a coupling function of a finite range, e.g.,

G(i − j) = 1

2π

(
1 + A cos

[
2π

(i − j)

N

])
,

and T is a D × D isometric matrix taking into account phase
lag. The oscillators can be visualized to be located on a ring
and the coupling strength between a pair of nodes decreases
with their distance according to G(i − j). The state vector σ i

is now a high-dimensional unit vector. Let the starting point
of σ i be the origin so its ending point is on the surface of
the high-dimensional unit sphere. In 3D the system can be
conceived as a “pearl necklace,” as shown in Fig. 1(a), where
σ i of each oscillator moves on the surface of its pearl and all
the pearls are located on the ring.

FIG. 1. System illustration and transient chimera states in 3D.
(a) The system can be conceived as a “pearl necklace” with each
oscillator oscillating on the surface of its 3D “pearl” and all the pearls
being located on a ring. (b) Time evolution of g0(t ). The time interval
in which the relative size g0(t ) of the coherent region in space is
approximately constant indicates the existence of a chimera state.
Variations in g0(t ) arise for t > 459, signifying the disappearance of
the 2D-like chimera state. (c) Evolution of Var(γ ), the variance of
γ , which increases approximately exponentially during the transient
2D-like chimera state and reaches a plateau a short time before the
collapse of the 2D-like structure. (d) Time evolution of the space-
averaged dimensionality measure 〈χi〉 in Eq. (8). For t � 400, the
value of 〈χi〉 remains at one, indicating that the network dynamics are
essentially of the 2D Kuramoto type. Parameter values are N = 400,
T33 = −1, δ = 0.0001, A = 0.995, and α = π/2 − 0.05. We use this
pair of values of A and α because the basin of the 2D chimera state
is relatively large, facilitating numerical simulations.

In 2D, the isometric matrix T reduces to the standard
rotation matrix of angle α as

T =
[

cos α sin α

− sin α cos α

]
. (3)

While acting on a vector, T alters its direction while
preserving its length, thus serves as a phase lag. Given
an isometry in d dimensions, there exists a reference
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framework in which T can be written in the form

T =

⎡
⎢⎢⎢⎢⎢⎣

PR1

PR2

. . .

PRk

RFm

Id−2k−m

⎤
⎥⎥⎥⎥⎥⎦

, (4)

where PRi (i = 1, 2. . . . , k) is the proper rotation matrix in
2D:

PRi =
[

cos αi sin αi

− sin αi cos αi

]
, (5)

Id−2k−m is the (d − 2k − m) × (d − 2k − m) identity matrix,
and RFm is the m × m reflection matrix with all the diagonal
elements −1 and all the off-diagonal elements zero: RFm =
−Im. We can use the three non-negative integers above, d , k
and m, to classify all different types of isometry subject to the
constraint d � 2k + m. We impose another constraint k � 1,
to ensure a finite phase lag.

For d = 2, the only choice is k = 1 and m = 0, which
is simply the 2D proper rotation matrix. For d = 3, it is
necessary to choose k = 1, and m can be either 1 or 0. We
study both cases. For d = 4, we have four different choices:
(1) k = 2 and m = 0, (2) k = 1 and m = 0, (3) k = 1 and
m = 1, and (4) k = 1 and m = 2.

With the following space- and time-dependent order pa-
rameter ρi = N−1 ∑N

j=1 G(i − j)σ j , we rewrite our general-
ized D-dimensional Kuramoto model as

dσ i/dt = Tρi − (Tρi · σ i )σ i + Wσ i. (6)

B. Articulation of dimension-augmenting perturbations

To be concrete, we focus on perturbations that make the
system 3D. To investigate the lifetime of chimera states, we
articulate a scheme such that the 2D chimera states are a
natural solution of the system. We then perturb this solution
into 3D and determine whether or not it is still a long transient.
[It should be emphasized that, without any perturbation, given
the symmetry of the system about the (x, y) plane, the system
would remain 2D, and all the results would be the same as for
the 2D system.]

More specifically, for vector rotation on a sphere, there
are two independent dynamical variables: the longitudinal and
latitudinal angles. For a network of size N , the phase-space
dimension is thus 2N . For oscillator i, let 0 � θi < 2π and
−π/2 � γi � π/2 be the longitudinal and latitudinal angles,
respectively. To make the N-dimensional subspace defined by
γi = 0 (i = 1, . . . , N) an invariant subspace of the system,
we choose a frame in which the initial 2D plane is the plane
containing the equator and set the z axis of the frame to be the
axis of the proper rotation component of T. In this frame, the
isometric matrix T is

T =
⎡
⎣ cos α sin α 0

− sin α cos α 0
0 0 T33

⎤
⎦. (7)

According to our definition of T in Sec. II A, T33 can be either
1 or −1, corresponding to whether a reflection symmetry is
excluded or included, respectively. For T33 = 1, no chimera

state can arise because the system dynamics are such that
all oscillators quickly synchronize to the fixed points of the
transformation T: (0, 0,±1) (in the Cartesian coordinates).
We thus focus on the case T33 = −1 here and treat the case
T33 = 1 in Sec. V.

We make the natural rotation W about the z axis, so the
system degenerates to 2D in the absence of any perturbation.
In this case, W plays no role in the dynamics since it can be
removed by setting the reference frame to one rotating about
the z axis at the same frequency. These considerations lead
us to rewrite the general system equation (6) in the spherical
coordinate as

dθi

dt
= −Ri

cos 	i

cos γi
sin (θi − 
i + α), (8)

dγi

dt
= −Ri × [cos (θi − 
i + α) sin γi cos 	i

− T33 cos γi sin 	i], (9)

where 
i, 	i and Ri are the longitudinal angle, latitudinal
angle, and the length of the order parameter ρi at the lo-
cation of the ith oscillator, respectively. Note that, in 2D,
the equation for the single dynamical variable θi is dθi/dt =
−Ri sin (θi − 
i + α). Comparing this with Eq. (8), we see
that the extra factor in 3D is

χi ≡ cos 	i/ cos γi, (10)

which we name as the dimensionality measure. For γi = 0
(i = 1, . . . , N), we have 	i = 0 and χi = 1, so Eq. (8) reduces
to the 2D form, meaning that the 2D chimera states are an
invariant solution of the 3D system.

III. SCALING RESULTS

A. Logarithmic scaling of average transient lifetime of chimera
states with dimension-augmenting perturbation in 3D

A previous study [13] of the 2D version of Eq. (6) indi-
cated the existence of transient chimera states with a long
lifetime. The transient time increases exponentially with the
system size N , making numerical simulations infeasible to
observe the collapse of the chimera state for, e.g., N > 60.
Our question is whether the chimera states can sustain such a
long lifetime when the 2D system is perturbed into a higher-
dimensional one.

To detect possible chimera states in 3D, we calculate the
discrete Laplacian Di at node i as a measure of the spatial
coherence and derive the relative size g0 of the coherence
region in the space [48]. We then calculate the time evolution
of g0 and the instantaneous distributions of Di. A finite time
interval in which g0 is approximately constant while the
distribution of Di has two peaks signifies the existence of a
transient chimera state (see Appendix). Figure 1(b) shows a
typical behavior of the time evolution of g0, where its value
increases from zero initially and reaches a plateau at t ≈ 120.
For 120 � t � 460, g0 is constant. For t � 460, the value
of g0 increases continuously, indicating a deterioration of
the chimera state and system’s approaching a global, loosely
synchronous state (see Sec. IV).

The transient nature of the observed chimera state can be
understood, as follows. Start from a random set of 2D initial
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FIG. 2. Visualization of system states from Fig. 1. (a1)–(a4)
Snapshots at t = 200 when the system is still in a 2D-like chimera
state. (b1)–(b4) Snapshots at t = 1500 when the system has left the
2D state. (a1), (b1) Longitudinal angles θi of all the oscillators at the
two time instants. (a2), (b2) The latitudinal angles γi. (a3), (b3) The
values log10 Di of all the oscillators, where Di is the spatial Laplacian
of σ and characterizes the instant local degree of distortion [48]. If Di

is below a threshold (e.g., 0.04), as shown by the red horizontal line,
oscillator i is within the coherence region (see Appendix for more
details). (a4), (b4) Histograms of log10 Di at the two time instants.
For t = 200, in (a4) there are two peaks: one at a high and another
at a low value of log10 Di, indicating coexistence of incoherent and
coherent regions. However, for t = 1500, as shown in (b4), only one
peak stands, signifying the disappearance of the chimera state.

conditions for the oscillators, i.e., γi(0) = 0. Without any
perturbation, the system dynamics remain 2D with γi(t ) = 0
for all t . In this case, chimera states of long duration can arise
insofar as the system size is not too small [13]. However,
with a small perturbation to the latitudinal angle of a single
oscillator in the initial condition, e.g., δ = 10−3 in Fig. 1(b),
the system will remain to be approximately 2D for only a
finite amount of time, which can be seen from the behaviors
of the space-averaged values of the variance of γi and of the
dimensionality measure 〈χi〉(t ), as shown in Figs. 1(c) and
1(d), respectively. These results demonstrate that, for t � 450,
the dynamics of the oscillators are effectively 2D but they
become 3D afterward.

Snapshots of the chimera state are presented in Figs. 2(a1)–
2(a4), while those after the state has disappeared are shown in
Figs. 2(b1)–2(b4). As shown in Fig. 2(a4), two peaks arise in
the distribution of Di, indicating a chimera state in the time

FIG. 3. Scaling of the average chimera lifetime with perturba-
tion. A fit of the data points gives the scaling between 〈τ 〉 and
the magnitude of the dimension altering perturbation δ as 〈τ 〉 ∼
− log10 δ. Error bars represent standard deviations of the distribu-
tions. Parameter values are N = 256, A = 0.995, and α = π/2 −
0.05.

interval 120 � t � 460. For t � 460, the coherence distribu-
tion has only one peak, signifying a globally synchronous
state, as shown in Fig. 2(b4). The remarkable phenomenon
is that the chimera state occurs essentially during the time
interval where the system is effectively 2D. As the dynamics
becomes 3D, the chimera state deteriorates and disappears
quickly. The behaviors illustrated in Figs. 1(b)–1(d) hold
regardless of the specific initial conditions. The message is
that chimera states cannot survive against perturbations that
alter the 2D nature of the oscillator dynamics.

For any transient phenomenon in nonlinear dynamics, a
fundamental issue is the scaling law of the average tran-
sient lifetime with some system parameter variation, noise
amplitude, or perturbation [65,66]. A transient behavior will
be physically equivalent to some attracting behavior if the
transient lifetime diverges exponentially, as speculated in the
case of turbulence [67] or superpersistent chaotic transients
[68–72]. Such scaling was also found for chimera states in
networks of Boolean phase oscillators [73]. In the present
context, how does the average chimera time scale with the
perturbation strength? A representative result is shown in
Fig. 3, where the average chimera time 〈τ 〉 (on a linear
scale) is plotted against the perturbation magnitude δ (on a
logarithmic scale). We have the scaling law 〈τ 〉 ∼ − ln δ, the
physical significance of which is that the transient lifetime
is extraordinarily short, in contrast to many transient scaling
laws in nonlinear dynamical systems [66]. In fact, a reduction
in the perturbation by many orders of magnitude results in
only an incremental increase in the average chimera time.
That is, an arbitrarily small perturbation that drives the os-
cillator dynamics away from 2D immediately destroys the
long-transient chimera state.

Why does a chimera state collapse when the oscillator
dynamics deviates away from 2D? The value of Riχi is the
key. In 3D, the dynamics of θ are governed by Eq. (8), where
the only difference with the 2D model is the extra factor χi.
While it appears that, in 3D, the value of Riχi may play a
similar rule to that of Ri in 2D, Riχi is affected not only by
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the coherence of the oscillators about the ith oscillator, but
also by the latitudinal angles of all the oscillators, especially
γi. Typically, the value of 	i is close to zero, but γi can be
away from zero. In 2D, since Ri is a measure of coherence,
its value for an oscillator in the incoherent region must be
smaller than that in the coherent region. However, in 3D,
incoherent oscillators can have larger Riχi values than those
of the coherent ones because the former are less coherent and
can diffuse away from the initial equator faster, resulting in
larger values of |γi|. Similar to the role of large values of Ri

in 2D, large values of Riχi in 3D will make the oscillators
more coherent. Simulations have revealed (Sec. IV) that Riχi

can be large for many oscillators in the incoherent region,
leading to the emergence of a new and wider coherent region
within the incoherent region. After that, an increasing number
of coherent regions form inside the remaining incoherent
regions, making the whole system closer to being globally
coherent.

The collapse of the 2D-like structure is then caused by the
diffusion of oscillators in their γ components. When the γi

values of some oscillators in the incoherent region are not
close to zero, a new coherent region is formed. How far away
from the initial equator the γi values collectively are can be
measured by the variance of γi, as shown in Fig. 1(c). We see
that Var(γ ) tends to increase exponentially during the 2D-like
chimera state, leading to the observed logarithmic dependence
of the average lifetime on the perturbation strength. In partic-
ular, let vmax be the threshold of Var(γ ) beyond which a new
coherent region emerges and let 〈te〉 be the average time that
the threshold is reached. We have δ exp (κ〈te〉) ∼ vmax. Since
〈τ 〉 ∼ 〈te〉, we get 〈τ 〉 ∼ − ln δ.

In the 2D system, the chimera states typically coexist with
the complete synchronization state. This is the reason that we
choose the values of A and α to be close to one and π/2,
respectively. In this parameter regime, the basin of the chimera
states is relatively large, facilitating numerical observation of
a chimera state with random initial conditions. It is insightful
to compare the results with those for the case where the
initial conditions are chosen from the basin of the complete
synchronization state. In this case, we have that, after a short
transient, the system approaches an asymptotically global syn-
chronization state. The length of this transient is comparable
to that of the transient before the emergence of the chimera
states from initial condition in the chimera-state basin, which
is about t = 120 in Fig. 1(b). Upon a dimension-augmenting
perturbation, the synchronous state of the system remains
to be low dimensional. That is, the system will not become
3D. We thus see that the situation with the chimera state
is characteristically different: such a state becomes 3D but
only for a short transient period of time before its collapse.
This point can also be seen from Fig. 1(c) where, during
the transient chimera phase, the system rapidly moves out
of the equator, with an exponentially growing variance in the
latitudinal angle γ .

B. Dependence of transient lifetime of chimera states
on system size

In 2D, the average lifetime of a chimera state grows expo-
nentially with the system size, rendering infeasible numerical

FIG. 4. Average transient lifetime of chimera states versus sys-
tem size in 3D. Shown are numerical results (dots) and linear fit
(line). Error bars represent the standard deviations of the distribu-
tions. The system parameters are T33 = −1, θd = 0.01, A = 0.995
and α = π/2 − 0.05.

simulation [13] for large systems. However, we find that, in
higher dimensions, the average chimera time does not follow
such a rule, as the mechanism of the collapse of the chimera
state is quite different from that in 2D. Figure 4 shows that
the average chimera time scales with the system size only
logarithmically. The heuristic reason is that an increase in the
number of oscillators weakens, on average, the influence of
the perturbation applied to a single node on other nodes. Since
the average chimera time scales with the magnitude of the
perturbation only logarithmically, so should be its dependence
on the system size.

To assess the generality and reliability of the uncov-
ered scaling law of the average chimera lifetime versus the
dimension-augmenting perturbation, we have calculated the
scaling law for different values of the system size N . An ex-
ample is presented in Fig. 5, where the scaling law is obtained
for N = 1024. Comparing with the scaling law in Fig. 3 for

FIG. 5. Scaling of the average chimera lifetime with perturbation
for a larger system size. The system size is N = 1024. The scaling
law is essentially the same as that in Fig. 3 for N = 256, with only
about a 10% increase in the average transient lifetime. Other parame-
ter values are T33 = −1, θd = 0.01, A = 0.995, and α = π/2 − 0.05.
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FIG. 6. Average transient lifetime of chimera states and scaling law for different values of the coupling parameters A and β in 3D.
(a) Average chimera lifetime versus A for T33 = −1, θd = 0.0001, and β = π/2 − α = 0.05. (b) A representative scaling law of the average
chimera lifetime with perturbation for A = 0.7, where other parameter values are the same as those in (a). (c) Average chimera lifetime versus
β for T33 = −1, θd = 0.0001, and A = 0.995. (d) A representative scaling law for β = 0.15. Other parameters are the same as those in (c). In
all panels, the error bars represent the standard deviations of the probability distributions.

N = 256, we see that a fourfold increase in the system size
does not change the logarithmic scaling law. In fact, the only
noticeable change is a slight increase in the average lifetime
(about 10%), due to the logarithmic nature of the scaling law.
This provides further support for our finding of the fragility
of the chimera state because a dramatic increase in the system
size does not significantly prolong the transient. This should
be contrasted to the case of chaotic transients in spatiotempo-
ral dynamical systems, where the average transient lifetime
typically increases extremely rapidly with the system size,
often in a way that is faster than exponential growth [67].

C. Dependence of average transient lifetime of chimera states
on coupling parameters

We study how the average transient lifetime of the chimera
states depends on the coupling parameters A and α. For
convenience, we introduce β = π/2 − α to facilitate analysis
of the situation where the value of α is close to π/2 and that
of A close to one so as to obtain a relatively large basin of
the chimera states. In fact, as the values of β and A deviate
from zero and one, respectively, the basin of the globally
synchronized state will be enlarged, eventually making the
basin of the chimera states vanish [3].

Figure 6(a) shows that the average transient lifetime 〈τ 〉
of the chimera states increases with A, with a representative
scaling law for A = 0.7 shown in Fig. 6(b). Figure 6(c) shows
the dependence of 〈τ 〉 on β, with the scaling law for β = 0.15
shown in Fig. 6(d). In general, when the values of A and β

move closer to the boundary beyond which chimera states no
longer exist, the average transient lifetime decreases, due to
the system’s transition into 3D as characterized by a faster
growth of Var(γ ). In addition, not only will the proportion of
the initial states that go directly to the complete synchroniza-
tion state increase, but the final states after the collapse of a
transient chimera state will also be different (see the last para-
graph of Sec. IV for a further discussion of this phenomenon).
Despite these behaviors, the logarithmic scaling law between
the average transient time and perturbation remains invariant.
These results, together with the results in Sec. III B, attest to
the remarkable robustness of the scaling law.

IV. MECHANISM OF COLLAPSES OF CHIMERA STATES
IN HIGH DIMENSIONS

The general picture of the collapse of the chimera state can
be described in terms of five successive stages, as follows.
In the first stage, a 2D-like chimera state is formed with
the coexistence of a coherent and an incoherent region. In
this stage, the components of the state vectors σ of all the
oscillators in the third dimension σz are small. In the spherical
coordinates, all oscillators have their γ values close to zero, so
the corresponding χ values are all close to one. The incoherent
region has a lower R value due to its lack of coherence,
so the corresponding value of Rχ is also small, making the
oscillators there less affected by the collective behavior. In
our approach, the initial state is that all the oscillators have
γi = 0, except for one oscillator with a small perturbation
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FIG. 7. Snapshots of the 3D system. (a1)–(a3) The first stage
and (b1)–(b3) the second stage as discussed in Sec. IV. (a1), (b1)
Snapshots of the longitudinal angles θi of the oscillators. In both
stages, the system is in a chimera state in terms of component θ . (a2),
(b2) Snapshots of the latitudinal angles γi of the oscillators. In the
first stage (a2), all γi values are still close to zero, while in the second
stage (b2) many oscillators close to the center of the incoherent
region have γi values away from zero. (a3), (b3) Snapshots of the
instantaneous angular velocity in the (x, y) plane, ωxy,i (blue dots),
and ±Riχi (green traces) of all the oscillators. Equation (8) gives
that ωxy,i is bounded by ±Riχi, which agrees with the simulation
results. In the first stage (a3), the coherent region has the largest
and locked values of ωxy,i, similar to the regular 2D chimera state,
and the oscillators in the incoherent region cannot reach such a
value of ωxy,i since they are bounded by the smaller values of Riχi.
However, in the second stage (b3), ±Rχ exhibits irregular spikes for
a large number of oscillators close to the center of the incoherent
region, so these oscillators can have similar value of ωxy,i to that of
locked ωxy in the incoherent region, or even larger. This indicates
that the local dynamics of these oscillators have already deviated
significantly from the 2D-like structure.

γi = δ. During the system evolution, the values of γi in the
incoherent region gradually diffuse due to interactions, while
γ in the coherent region remains at near zero values.

In the second stage, while the θ components of the oscil-
lators are still in a chimera state, the γ components of some
oscillators are no longer close to zero and the average absolute
value of γ in the incoherent region becomes larger than that
in the coherent region, as shown in Fig. 7(b2). Such high
values of γ make the value of χ high as well. As a result,

in this stage many oscillators in the incoherent region have
a larger average Rχ value than those in the coherent region,
as shown in Fig. 7(b3), a behavior that is opposite to that
in the first stage. Moreover, from Eq. (8), we have that the
instantaneous phase or angular velocity dθ/dt in the (x, y)
plane, ωxy, is bounded by ±Rχ . A larger Rχ value in the
incoherent region can thus result in a larger absolute value
of the phase velocity |ωxy| than that in the coherent region,
as shown in Fig. 7(b3). Note that, in the first stage, similar
to the transient 2D chimera states with a long lifetime, the
oscillators in the coherent region have the largest possible
value of |ωxy|, as shown in Fig. 7(a3), making the oscillators in
the incoherent region unable to synchronize with the coherent
oscillators since the incoherent region does not have similarly
large Rχ values required for large values of |ωxy|. However, in
the second stage, this is no longer the case: oscillators in the
incoherent region can have |ωxy| values larger than those in
the coherent region, driving the system away from the 2D-like
structure.

As a consequence of large values of Rχ , in the third stage,
a new and even wider coherent region emerges within the
incoherent region, placing the whole system in a transient
multichimera state with two coherent regions: one is formed
at the beginning of the first stage and the other newly ap-
peared one emerging inside the incoherent region, as shown
in Fig. 8. In the third stage, the region used to be the most
incoherent becomes now the most coherent with the largest
value of R and a larger size than the original coherent region.
The R value of the original coherent region is now close to
its minimum value. These observations suggest a negative
feedback mechanism. In particular, incoherence in the first
stage results in small-Ri values and thus small-Riχi values
as well, making γi deviate away from zero, which in turn
results in a high value of Riχi that leads to incoherence.
As a result, coherence in the system has been undermined,
leading to near zero average value of γi, as the oscillators have
evenly distributed positive and negative γi values. This leads
to a small average value of Riχi, making it difficult for the
oscillators to remain coherent. While this mechanism does not
turn coherence into incoherence as effectively as a large value
of Riχi turns incoherence into coherence, a fraction of the
oscillators still have a large average γ value. The difference
drives the whole system toward global coherence.

In the fourth stage, a process similar to that in the third
stage occurs, where large coherent and incoherent regions
break into smaller subregions of coherence and incoherence.
An example is shown in Fig. 9. The system becomes frag-
mental without any recognizable pattern. There are two major
sources of randomness. First, oscillators in the same coherent
region are phase locked in the θ component, but the locked
phase velocities are different from region to region. Because
these coherent regions have different average values of R and
Rχ . Second, the positions of the newly formed regions are
sensitive to the random initial condition, rendering random
sizes of the regions.

In the final stage, the system is close to a globally coherent
state, but can never actually reach it. The global state is
dynamical, with the emergence and disappearance of many
fragmental coherent regions driven by the negative feedback
mechanism discussed above. Globally, g0 reaches a relatively
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FIG. 8. Snapshots of the same system in Fig. 7 in its third stage.
(a) Snapshot of the longitudinal angles θi of the oscillators. A new
coherent region is formed at roughly 600 < i < 800, which is larger
than the one in 300 < i < 400 formed during the first stage shown
in Figs. 7(a1) and 7(b1). The system is now in a multichimera state
with several coherent and incoherent regions. (b) Snapshot of the
latitudinal angles γi of the oscillators. After the appearance of the
new coherent region, the values of γi of these oscillators in this region
are close to zero, in contrast to the second stage. The angles γi of the
oscillators from the old coherent region deviate further away from
zero than in the first and second stages, but they are still smaller than
the angles of most oscillators in the incoherent regions. (c) Snapshot
of the order parameter R. The peak is now at the center of the new
coherent region. (d) Snapshots of the instantaneous angular velocity
in the (x, y) plane for all the oscillators: values of ωxy,i (blue dots)
and ±Riχi (green traces).

stable value with fluctuations, as shown in Fig. 1(b). Several
snapshots of this stage are shown in Figs. 2(b1)–2(b4).

Figures 10 and 11 present additional evidence to support
our understanding of the fragility of the chimera state. In
particular, Fig. 10(a) shows the location of the oscillators
with the largest value of the order parameter R among all
other oscillators at a time instant. Because of the choice of a
nonlocal/nonglobal coupling function G(i − j) and the order
parameter defined as ρi = N−1 ∑N

j=1 G(i − j)σ j , the position
at which R reaches the maximum value gives information
about the center of the nonlocal/nonglobal coherent region.
Prior to the collapse of the 2D-like chimera state, this position
remains at the center of the coherent region. However, after
the collapse, the position constantly rotates among different
oscillators. As shown in Fig. 11, the coherent regions with
a low value of log10 Di, denoted by the blue color, have
short lifetime in the stages after the collapse of the chimera
state. During those stages, the values of log10 Di of different
regions in the system oscillate. This also agrees with our
understanding that a high value of γ would decrease soon due
to the negative feedback mechanism.

The results studied so far are for the case where the
values of the coupling parameters A and α are away from the

FIG. 9. Snapshots of the same system in Figs. 7 and 8 in the
fourth stage. (a), (b) Snapshots of θi and γi. (c) Snapshot of the
order parameter R. The peak is now at a new location away from its
location in the third stage. (d) Snapshots of the instantaneous angular
velocity in the (x, y) plane of all the oscillators: ωxy,i (blue dots) and
±Riχi (green traces). The system is now more fragmental than in the
third stage: the extensive coherent region from the third stage has
now broken into several coherent and incoherent regions.

boundary of the basin where chimera states can exist. As this
boundary is approached, another type of final states after the
collapse of the transient chimera states appears, which is the
global synchronization state. The fraction of the initial states
leading to this synchronous state increases toward one. (Here,
we exclude the cases where no chimera state ever appears and
the system directly goes to global synchronization, and focus
on the cases where there was a chimera state.) The origin
of this alternative final state can be understood as follows:
near the basin boundary, the relative size of the coherent
region associated with the chimera state becomes larger. As
explained, in the third stage a second and even larger coherent
region will emerge in the middle of the incoherent region.
Since the first coherent region has already become relatively
large (e.g., about half the size of the whole system), the large
coherent region emerged in the third stage covers the whole
space, leading to global synchronization.

V. 3D SYSTEMS WITH T33 = +1 AND 4D SYSTEMS

We see from Sec. II that there is another possible case in
3D where T33 = +1. A difficulty is that, for T33 = +1, any
2D structure is physically or computationally not observable
because an infinitesimal perturbation (e.g., on the order of
the computer round off error) is sufficient to destroy the
2D structure even before the emergency of any transient
chimera state. To overcome this difficulty, we first generate
chimera states in a purely 2D system, and then perturb these
2D chimera configurations and use them as the initial states
for the T33 = +1 systems. The systems are then initially in
chimera states. With this initial chimera state, the oscillators
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FIG. 10. Spatial distribution of the order parameter of the os-
cillators. (a) Value of the order parameter R of all the oscillators.
(b) The location of the oscillator with the largest value of R among
all the oscillators versus time, which is constantly traveling across the
system after the collapse of the 2D-like chimera state at t = 540.9.

still quickly synchronize to the fixed points of the transfor-
mation T: (0, 0,±1) (in Cartesian coordinates), as shown
in Fig. 12. Since the longitudinal angles at the fixed points
are zero, the phase lag plays no role in the dynamics. In
the high-dimensional Kuramoto model with no phase lag, all

FIG. 11. Temporal evolution of log10 Di. The regions with
log10 Di < −2 are classified as coherent regions. Other regions are
classified as incoherent regions. Note that there is coexistence of
one coherent and another incoherent region in the system in the time
interval 150 � t � 400, indicating a transient chimera state.

the oscillators have the same natural frequency, making the
synchronized state stable [63].

Insights into this behavior can be gained by analyzing the
linearized approximation of Eq. (9), as the values of γi and 	i

are typically small before the collapse:

dγi

dt
= Ri × [−cos(θi − 
i + α)γi + 	i], (11)

where Ri is positive. The quantity (θi − 
i + α) exhibits rapid
oscillations in the interval [−π, π ) without an apparent pat-
tern, so the quantity − cos (θi − 
i + α) oscillates within the
interval [−1, 1] approximately randomly. The sign of the fac-
tor −Ri × cos (θi − 
i + α)γi thus changes rapidly, while the
sign of Ri remains positive. As a result, the Ri	i component
plays a major role in the dynamics, making the absolute value
of γi increase exponentially. This agrees with the simulation
result, as shown in Fig. 12(c), where we observe that the
average γ value indeed grows exponentially in time.

We see from Sec. II that four different forms of the matrix
T can arise in 4D. We encounter the similar difficulty in
all these four forms as in the T33 = +1 case in 3D: an
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FIG. 12. Transient chimera state in 3D systems with T33 = +1.
(a) Time evolution of g0 with initial perturbation δ = 10−3. The
transient time before the system collapses into a global synchronized
state (where g0 = 1) is one order of magnitude shorter than that for
the case of T33 = −1 for the same value of δ (cf. Fig. 3). (b) Time
evolution of the average z component (in Cartesian coordinates) of
all the oscillators, which converges rapidly to −1, indicating that
all phase vectors σi are concentrating at the “south pole” of the unit
sphere S2 after a short transient. (c) Logarithm of the time evolution
of the average latitudinal angle of all oscillators. The approximately
linear growth of the logarithm indicates an exponential growth of
the average latitudinal angle during the transient. System parameter
values are N = 400, θd = 0.001, α = π/2 − 0.05, and A = 0.995.

infinitesimal perturbation on the order of the computer round-
off error is sufficient to destroy the 2D structure before the
emergency of any transient chimera state. Thus, in all the
four different cases we let the system begin with 2D chimera
states as for the T33 = +1 case in 3D. Figure 13 shows the
representative results on the dynamical evolution of a 4D
system from the initial chimera state. In all cases, the chimera
state can last for a relatively short time only, indicating that, in
4D, chimera states (even of an appreciable transient lifetime)
are unlikely to occur.

FIG. 13. Transient chimera states in 4D. Shown is the time
evolution of g0 in four different types of 4D systems: (a) k = 2
and m = 0, (b) k = 1 and m = 2, (c) k = 1 and m = 1, (d) k = 1
and m = 0. In all four cases, the double-rotation matrix T has α1 =
π/2 − 0.05 and α2 = π/2 − 0.06. All four systems start from the
same 2D chimera state as the initial conditions, with a perturbation
of φ2,d = φ3,d = 0.001 in the second and third angular coordinates
in the 4D spherical coordinate system. The values of other system
parameters are N = 256 and A = 0.995. In all cases, the initial 2D
chimera state can last only for a short time before being destroyed.

VI. DISCUSSION

To summarize, our finding of an extreme type of fragility
of chimera states against dimension-augmenting perturbations
beyond 2D, quantitatively characterized by a logarithmic
scaling law, has implications with respect to observability.
We also note that, in 2D, when the number N of oscillators
is finite, chimera states are long transients [13] and their
average lifetime increases exponentially with N . However, in
our case, the transient lifetime increases logarithmically with
N . Indeed, we have never observed long transients in higher
dimensions, even when there are thousands of oscillators in
the system.

Aside from the characteristically distinct scaling laws of
the average transient lifetime, there are other differences
between the 2D and dimension-augmenting transient chimera
states. In 2D, the distribution of the transient lifetime from
random initial conditions is exponential. However, in our
model, the distribution is approximately Gaussian, with a
small standard deviation (less than 10% of the mean value,
as shown in Figs. 3–6). This means that the transient lifetime
is much more closely clustered near the mean value in our
model than in the 2D case. In general, when the system is
in a particular transient chimera state, it is difficult to predict
when it will collapse into 2D, as the transient states preceding
the collapse exhibit a similar pattern. However, in our model,
we can use a variable such as the spatial variance of γ [as in
Fig. 1(c)] as an indicator to predict any possible collapse, as
it tends to increase monotonously toward a threshold value.
In 2D, the transient chimera states are reported to belong to
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type-II supertransients [13] by the criterion in Ref. [67], which
have the following features: an exponential scaling law of the
transient lifetime with respect to system size, the exponen-
tial distribution of the transient lifetime, and stationarity of
the patterns. Transient chimera states in 2D have all these
features, but none can be found in our 3D or 4D systems.
This further indicates the characteristically different nature of
the transient chimera states in dimension-augmented systems
from those in 2D.

There were previous studies on transient chimera states
with respect to changes in the inertia of the oscillators [74,75]
where, in the model studied, a change in the inertia from a
nonzero value to zero can abruptly alter the dynamical behav-
ior of the system, making the chimera state more unstable. Our
results demonstrate that a dimension-augmenting perturbation
can also make the chimera state extremely unstable in the
sense of the scaling law uncovered. However, our model is
the first-order Kuramoto system with 3D phase oscillators and
the model previously studied [74,75] is a second-order phase
Kuramoto system with inertia. The system settings are thus
quite different. Further, the results are quite different as well:
our main result is the logarithmic scaling law of the average
transient lifetime of the chimera state with respect to both the
perturbation magnitude, which holds regardless of the system
size. In the previous studies [74,75], no such scaling law was
reported; instead, the scaling law of the intermittent chaotic
chimeras lifetime therein was found to be algebraic.

The chimera states can be long lasting when the dynamics
of the oscillators are strictly equivalent to those of 2D rotors.
Any deviation in the rotation dynamics from 2D will make a
chimera state transient, with an extraordinarily short lifetime
in the sense of the scaling law uncovered. However, there
are situations where chimera states with a short lifetime may
still be physically meaningful and observable. For example,
for a highly dynamic system whose state changes constantly
with time, the intrinsic timescale is short. In this case, if
the timescale is shorter than the average transient lifetime of
the chimera states, they are still physically meaningful and
observable.

A recent analysis of synchronization in high-dimensional
Kuramoto models [64] revealed the existence of an invariant
manifold of state distribution in the thermodynamic limit
N → ∞, which is an extension of the previous work on the
2D Kuramoto model [76,77]. This manifold is attracting in 2D
[77] and is likely to be attracting in high dimensions as well.
However, chimera states, even in 2D, do not live on the invari-
ant manifold. In higher dimensions, the manifold is circularly
symmetric about some axis and the density of the distribution
decreases monotonously from one axis pole to another. If the
manifold is attracting, a 2D chimera state would naturally
collapse and approach the attracting manifold, even when
the system size is large. In higher dimensions, the picture is
less clear as to whether the manifold is attracting. Identifying
the existence of some invariant manifold and determining its
stability may provide an avenue to study collective dynamics
in high-dimensional Kuramoto models.

We remark that global synchronization in the high-
dimensional Kuramoto model has been treated [63,64], where
it was shown that synchronization is stable under small pertur-
bations. Global and cluster synchronization states in the high-

dimensional Kuramoto model and their stability are different
from our problem of the effect of dimension-augmenting
perturbations on chimera states. In our setting, to generate
chimera states, there are phase lags among the oscillators but
their natural frequencies are identical. The common, natural
rotation of the oscillators can then be excluded from con-
sideration through the reference frame rotating at the same
frequency. This should be contrasted to the setting of global
and cluster synchronization, where the natural frequencies of
the oscillators are different and follow a certain distribution
and this heterogeneity plays an important role in synchroniza-
tion. For example, for even-dimensional models the criteria of
whether an oscillator belongs to the entrained population or
the drifting population depends on the value of the frequency
of the natural rotation of the oscillator.
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APPENDIX: MEASURE FOR DETECTING TRANSIENT
CHIMERA STATES AND DETERMINATION OF THEIR

LIFETIME

For all the simulations we use the fourth-order Runge-
Kutta method to integrate the coupled networked system with
time step dt = 0.005. In particular, we integrate the system
with the order parameter defined as ρi = N−1 ∑N

j=1 G(i −
j)σ j . When the local order parameter of oscillator i includes
a small self-coupling component, the average lifetime of the
chimera state is longer than that in systems without such self-
coupling. However, inclusion of the self-coupling term has
little effect on the scaling law between the average chimera
time and the magnitude of the perturbation.

To ascertain the existence of a transient chimera state, we
use the measure g0 introduced in Ref. [48], which is the
relative size of the coherent region. To calculate g0, another
quantity Di is needed, which is the spatial Laplacian of σ

at oscillator i that characterizes the instant local degree of
distortion of its dynamical variables:

Di = [(xi+1 − 2xi + xi−1)2 + (yi+1 − 2yi + yi−1)2

+ (zi+1 − zi + zi−1)2]1/2, (A1)

where xi, yi, and zi are the Cartesian coordinates of the 3D
state vector of oscillator i. If the value of Di is smaller than a
certain threshold, oscillator i is regarded as being within the
coherent region, otherwise, it is in an incoherent region. The
value of g0 at time t is calculated by counting the number
of oscillators with Di smaller than the threshold at this time,
normalized by the total number N of oscillators. In our study,
we choose the threshold value of Di to be 0.04, which is
approximately one hundredth of the upper bound of Di.

When the system exhibits a chimera state, coherent and
incoherent regions coexist, so we have 0 � g0 � 1. Further-
more, g0 will be plateaued at a certain value with small
fluctuations about it [48]. This provides a convenient and
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effective way to detect the transient chimera state. Especially,
when the value of g0 reaches a relatively flat plateau, the
chimera state begins. The transient chimera state ends when
the value of g0 begins to deviate from the plateaued value.

Our algorithm to find the exact starting time and ending
time of a transient chimera state can be described, as follows.

(1) Roughly choose an interval of the value of g0 which
includes the values of g0 in the transient chimera states. With
a certain set of system parameters, the values of g0 in the
chimera states are roughly similar. This interval does not need
to be very accurate.

(2) Determine the time interval in which the value of g0 is
in the interval chosen in step 1.

(3) Calculate the average g0 value in this time interval.
(4) Measure the starting time of chimera state as the first

time g0 reaches the average value minus a small threshold
value. We choose the threshold to be 0.05 in this paper.

(5) Determine the ending time of the chimera state as
the last time when the value of g0 is smaller than the same
average adding the threshold value, before the value of g0

ever grows beyond the average plus two times the threshold
value.

(6) The starting and ending times so determined can be
inaccurate because of the chosen initial time interval from step
2. To increase the accuracy, we set the period between the
starting and ending times as the new initial time interval.

(7) Repeat steps 3–6 for five times to make the results
converge.

We determine the ending point this way because g0 some-
times fluctuates in a chimera state. The fluctuations arise
even in purely 2D chimera states and can be relatively large.
We choose some appropriate threshold value (e.g., 0.05) to
distinguish the cases when the system is in a chimera state
and when it has left the state.
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