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Recent works have considered the situation of riddling where, when a chaotic attractor lying in
an invariant subspace istransversely stable,the basin of the attractor can be riddled with holes that
belong to the basin of another attractor. We show that riddling can be induced by arbitrarily smal
random noiseeven if the attractor is transversely unstable,and we obtain universal scaling laws for
noise-induced riddling. Our results imply that the phenomenon of riddling can be more prevalent tha
expected before, as noise is practically inevitable in dynamical systems. [S0031-9007(96)01791-7]
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The discovery of the phenomenon of riddled basins [1
brings another important study area to the forefront of
research in chaotic dynamics. Riddling usually occ
in chaotic systems with symmetric invariant subspac
When there is a chaotic attractor in the invariant subsp
and another attractor (say, nonchaotic) off the invari
subspace, if the chaotic attractor is stable with respec
transverse perturbations, the basin of the chaotic attra
can be riddled with holes belonging to the basin of t
attractor that is off the invariant subspace [1]. Recent w
demonstrated that the onset of riddling is typically induc
by the loss of the transverse stability of some low-per
periodic orbit embedded in the chaotic attractor [3]. As
system parameter changes further, blowout bifurcation
occur in which typical trajectories on thewhole chaotic
attractor becomes transversely unstable [2,4]. After
blowout bifurcation, riddling of the chaotic attractor in th
invariant subspace disappears.

In this paper, we present analysis and numerical res
which demonstrate that even when the chaotic attra
in the invariant subspace is transversely unstable
there are coexisting attractors symmetrically located
the invariant subspace, riddling in the basins of th
attractors can still occur when there is small-amplitu
random noise present. We call this type of riddling t
noise-induced riddling. In particular, letp be a system
parameter,pc be the blowout bifurcation point, andS
denote the invariant subspace. Assume there are
attractors, denoted byA and B, one above and anothe
belowS. When noise is absent, forp & pc there are two
Cantor-like sets (closed) of positive Lebesgue measur
the phase space, one above and another belowS, that
are transversely stable. Points in the sets are attra
towards S and, hence, they belong to the basin of t
chaotic attractor inS. Since the Cantor-like sets ar
closed and have positive measure, the basin of the cha
attractor inS is riddled. The complement of these tw
closed sets are two open sets that belong to the ba
of the attractorsA and B, respectively. This situation is
shown schematically in Fig. 1. Forp * pc, the Cantor-
0031-9007y96y77(25)y5047(4)$10.00
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like sets are still stable, but they have now Lebesg
measure zero and, hence,S is transversely unstable. In
this case, the chaotic attractor inS becomes a repeller in
the transverse direction, and trajectories above (belowS
are repelled away fromS and are eventually attracted t
A (B). The entire phase-space regions above and be
S are the basins of attraction for typical trajectories to t
attractorsA and B, respectively, and there is no riddlin
in this case. When small noise is present, the Can
like sets become “fattened” in the phase space. For b
p below pc and p abovepc, trajectories can come clos
to S due to the transversely stable Cantor-like sets, a
there is a nonzero probability that trajectories aboveS
can be kicked acrossS and be attracted below toward
B due to noise, as shown in Fig. 1. The initial conditio
in the fattened Cantor-like set aboveS are thus in the
basin of B (the noise-induced basin ofB) and form a
riddled structure. By symmetry, the basin ofA below
S is also riddled. We emphasize that riddling of th
attractors offS occurs on both sides ofpc, but riddling is
observable only at scales larger than the noise amplitu

FIG. 1. A chematic illustration of two invariant sets in th
phase space forp around the blowout bifurcation pointpc. One
is open dense and transversely unstable; another is transve
stable but closed. The two symmetric closed sets above
below S correspond to the noise-induced basins.
© 1996 The American Physical Society 5047
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In the following, we first present numerical eviden
illustrating the phenomenon of noise-induced riddlin
We then consider an analyzable model which can
solved by employing the diffusion approximation. W
derive universal scaling laws associated with the no
induced riddling. The main implication of our result is
that the phenomenon of riddling may be more preval
than expected before, as noise is inevitable in practi
situations.

We consider the following general class of dynamic
systems,

xn11 ­ fsxnd 1 high order termsof yn ,

yn11 ­ gsxn, pdyn 1 high order odd termsof yn ,
(1)

where x [ RNS sNS $ 1d, y [ RNT sNT $ 1d, fsxnd is
a map that has a chaotic attractor,gsxn, pd is a scalar
function, andp is the bifurcation parameter. The in
variant subspace is defined byy ­ 0 because for ini-
tial y0 ­ 0, trajectories haveyn ­ 0 for all times. The
largest transverse Lyapunov exponent is given byL' ­
limM!`s1yMd

PM
n­1 lnj≠yn11y≠ynjyn­0 ? uj, whereu is a

random unit vector in the transverse subspace. Sincepc

is the blowout bifurcation point, we haveL' . 0 for
p . pc. Our main goal is to understand how noise c
induce riddling. To illustrate our findings, we consid
the following two-dimensional version of Eq. (1),

xn11 ­ fsxnd 1 qy2
n ,

yn11 ­ pxnyn 1 y3
n 1 esn ,

(2)

where sn [ f21, 1g is a random number,e ø 1 is
the noise amplitude,p . 0, and q is another parame
ter. In Eq. (2), both the invariant subspaces y ­ 0d and
the transverse subspace are one-dimensional. Note
noise only affects the dynamics in the vicinity of th
invariant subspacey ­ 0, as the noise term in Eq. (2) i
negligible whenjyj is large. We choosefsxnd to be the
doubling transformation2x mods1d that produces a chaoti
attractor with uniform invariant density forx [ f0, 1g.
In this case, the transverse Lyapunov exponent is gi
by L' ­

R
lnjpxjrsxd dx ­

R1
0 lnjpxj dx ­ ln p 2 1.

The blowout bifurcation point ispc ­ e ­ 2.71 828 . . . .
From the second equation in Eq. (2), we see that
p . 0, if jynj . 1, then jyn11j . jynj. Thus y ­ 6`

are the two attractors located symmetrically with resp
to y ­ 0. Fore ­ 0 andp & pc, the chaotic attractor o
the doubling transformation aty ­ 0 is also an attractor
of the full phase space, the basin of which is riddl
with holes belonging to the basins of they ­ 6`. For
p * pc, they ­ 0 chaotic attractor is no longer a glob
attractor. In this case,y ­ 6` are the only global
attractors of the system. Ife ­ 0, yn cannot change
sign, and, consequently, the basins of they ­ 1` and
y ­ 2` attractors arey . 0 and y , 0, respectively,
and the basin boundary is the one-dimensional liney ­ 0
for p * pc.
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We now argue that forp * pc, noise can induce
riddling between the basins of they ­ 1` and y ­
2` attractors. We first note that sinceL' is only
slightly positive, there is a set of Lebesgue measu
zero points embedded in they ­ 0 chaotic attractor
that are transversely stable. Although typical trajector
asymptote toy ­ 6` eventually, usually they can spen
a long time in the vicinity ofy ­ 0 before doing so.
Imagine we turn on the noise now. Because of noise,
infinite number of channels open at the set of transvers
stable points, allowing trajectories to pass throughy ­
0. There is now a nonzero probability that trajectori
coming close toy ­ 0 from the positive side can tunne
through y ­ 0 to the negative side and asymptote
the y ­ 2` attractor, and vice versa. Thus, as lon
as there is noise, no matter how small, there are po
with y . 0 s y , 0d that belong to the basin of they ­
2` s y ­ 1`d attractor. Since the noise-induced basi
correspond to the transversely stable closed sets ab
and belowy ­ 0, these basins must be riddled. Th
is, for any point withy . 0 s y , 0d that goes to the
y ­ 2` s y ­ 1`d attractor, there are points arbitraril
nearby (down to the noise scale) that go to they ­
1` s y ­ 2`d attractor. Figure 2 shows the basin o
the y ­ 2` attractor iny . 0 (black dots), where the
parameter setting isp ­ 2.8 . pc, q ­ 0.1, and e ­
10212. To produce this figure, a grid of2048 3 2048 of
initial conditions is chosen in the region0 # x # 1 and
0 , y , 1. If an initial condition hasy , 2103 within
107 iterations, a black dot is plotted at the location of th
initial condition. Otherwise we leave it blank. The figur
exhibits typical features of a riddled basin [1,2].

FIG. 2. For Eq. (2), the noise-induced basin of they ­ 2`
attractor in they . 0 half plane. The parameter setting i
a ­ 0.1, p ­ 2.8 . pc sL' ø 0.0296d, and e ­ 10212 (the
noise amplitude). Without noise, at this parameter setting
y . 0 half plane is the basin of they ­ 1` attractor except a
set of Lebesgue measure zero.
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To characterize noise-induced riddling, we first co
pute the fraction of pointsf2se, y0d on a fixed liney0 * 0
that belong to the basin of they ­ 2` attractor ase

changes. Figure 3(a) shows log10f2se, y0d versus log10e

for p ­ 2.8, q ­ 0.1, and 10212 , e # 1026, where
106 initial conditions are chosen on the liney ­ 0.01
to compute f2se, y0d. We see that the plot can b
roughly fitted by a straight line, indicating an algebra
scaling relation betweenf2se, y0d and e: f2se, y0d ,
ea , wherea . 0 is the algebraic scaling exponent.
Fig. 3(a), the exponent isa ø 0.050. Next, we com-
pute, for a fixed noise amplitudee, a fraction of ini-
tial conditionsf2se, y0d that asymptote to they ­ 2`

attractor change asy0 s y0 * 0d increases. Figure 3(b
shows log10f2se, y0d versus log10y0 for 10212 , y0 #

FIG. 3. (a) At y0 ­ 0.01, on a logarithmic scale, the proba
bility f2se, y0d that a randomx0 asymptotes to they ­ 2`
attractor versus the noise amplitudee. The plot indicates that
roughly, f2se, y0d , e0.05. Other parameters area ­ 0.1 and
p ­ 2.8. (b) At e ­ 10212, f2se, y0d versusy0 on a logarith-
mic scale. Roughly, we havef2se, y0d , y20.065

0 .
-

c

1026, wheree ­ 10212 is fixed, and 106 initial conditions
are used to computef2se, y0d for eachy0. We also ob-
tain an algebraic scaling relation,f2se, y0d , y

2b
0 , where

b . 0 is the scaling exponent. In Fig. 3(b), the expone
is b ø 0.065. We see thata andb have similar values.

To understand the scaling of the noise-induced riddli
we consider an analyzable model with additive noise. T
model is a two-dimensional map defined in the regi
0 # x # 1 and2` , y , `, as follows:

xn11 ­

Ω
s1yadxn, for xn , a ,
s1ybd sxn 2 ad , for xn . a ,

yn11 ­

Ω
cyn 1 esn , for xn , a ,
dyn 1 esn , for xn . a ,

(3)

where 0 , a , 1, b ­ 1 2 a, c . 1, 0 , d , 1, and
esn is the small noise term similar to that in Eq. (2). Th
invariant subspace isy ­ 0 in which there is a chaotic
attractor with the Lyapunov exponentLx ­ a lns1yad 1

b lns1ybd . 0. They dynamics involves both expansio
and contraction, and there are two attractors located
y ­ 6`, respectively. The transverse Lyapunov exp
nent is L' ­ a ln c 1 b ln d. Thus, L' $ 0 for a $

ac and L' , 0 for a , ac, where ac ­ jln djysln c 1

jln djd. For a . ac ande ­ 0, except for a set of mea
sure zero, the upper half planes y . 0d and the lower half
planes y , 0d are the basins of they ­ 1` andy ­ 2`

attractors, respectively. Concentrating on they . 0 half
plane and definingYn ; 2ln yn, in the noise-free case w
obtain a random walk in terms ofYn for the y dynam-
ics, Yn11 ­ gn 1 Yn, wheregn ­ c ; 2ln c , 0 with
probability a and gn ­ d ; 2ln d . 0 with probability
b ­ 1 2 a. We are interested in the case wherea * ac

so thatL' * 0. In this case, on average the trajecto
moves slowly in they direction, and, hence, the rando
walk can be solved by using the diffusion approximatio
Let PsY , Y0, nd be the probability distribution function for
Y (given thatx0 is chosen randomly on the horizontal lin
segmenty ­ y0, 0 # x0 # 1), and we obtain the follow-
ing diffusion equation forPsY , Y0, nd [5]:

≠P
≠n

1 n
≠P
≠Y

­ D
≠2P
≠Y 2

, (4)

where n ­ ac 1 bd ­ 2L' is the average drift, and
D ; 1

2 ksdY 2 kdYld2l ­
1
2 absc 2 dd2 is the diffusion

coefficient (the averagek· · ·l is with respect to initial
random values ofx0). For a * ac we see thatn & 0,
indicating thatY gradually approaches2` (or y ! `).
Assuming that all initial conditions start fromy0, where
0 , y0 , 1 (or Y0 . 0), we have the following ini-
tial condition for Eq. (4):PsY , Y0, 0d ­ dsY 2 Y0d. To
model the effect of noise, we note that once a t
jectory falls within distancee of y ­ 0, it can tunnel
through y ­ 0 and asymptotes toy ­ 2`. Roughly
speaking, there is an absorbing boundary for the rand
walker ate ; lns1yed . 0. As a crude approximation
5049
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we have the following boundary condition:Pse, Y , nd ­ 0.
The diffusion equation (4), together with the above i
tial and boundary conditions, can be solved by us
the standard Laplace-transformation method [5]. Lett
PsY , Y0, sd ;

R`

0 PsY , Y0, nde2sn dn be the Laplace trans
form of PsY , Y0, nd, we obtain

D
d2PsY , Y0, sd

dY 2 1 L'
dPsY , Y0, sd

dY
2

sPsY , Y0, sd ­ 2dsY 2 Y0d .
With the boundary conditionPse, Y0, sd ­ 0, we ob-
tain the solution PsY , Y0, sd ­ C1el1Y 1 C2el2Y for
Y . Y0, andPsY , Y0, sd ­ C3el1Y for Y , Y0 wherel1 ­
1
2 hsD 2 1d, l2 ­

1
2 hsD 1 1d, h ; L'yD . 0, and D ;q

1 1 4DsysL2
'd. The coefficients are,C2 ­ f1yDsl1 2

l2dg exps2l2Y0d, C1 ­ 2C2 expfsl2 2 l1deg, and C3 ­
C2hexpfsl2 2 l1dY0g 2 expfsl2 2 l1degj.

We can now calculate the scaling. LetF1snd be the
probability that the walker has not reached withine of
y ­ 0 at timen. The Laplace transform ofF1snd is given
by F1ssd ­

Re

2` PsY , Y0, sd dY . Thus, we haveF1ssd ­
1ys 2 s1ysd expf2l2sY0 2 edg. Performing the inverse
Laplace transform by noting that there are a pole ats ­ 0
and a branch singularity ats ­ sp ; L

2
'y4D . 0, we

obtain
F1snd ­ 1 2 expf2l2ss ­ 0d sY0 2 edg

2
1
sp

expf2l2ss ­ spd sY0 2 edg

3 exps2spnd . (5)
In the limit n ! `, F1snd is the probability that the
random walker has never reachedY $ es y # ed and,
hence,F1s`d is the fraction of they ­ 1` basin in the
upper half plane. Therefore, the noise-induced fract
of points aty0 . 0 that belong to they ­ 2` basin is
given by f2se, y0d ­ 1 2 limn!`F1snd ­ expfhsY0 2

edg. Finally, we obtain the following algebraic scalin
relation:

f2se, y0d , eay
2b
0 , (6)

where the scaling exponents are given by [6]a ­ b ­
h ­ L'yD. Because of symmetry, the same scali
holds for the fraction of they ­ 1` basin in the lower
half plane y , 0. Since the scaling exponentsa and
b only depend onL' ­ 2n and D, which are the
two fundamental parameters in the diffusion equati
we expect the scaling Eq. (6) to holduniversally for
noise-induced riddling in the parameter regime where
diffusion approximation is valid, regardless of the deta
of the system.

To check the universality of the scaling relation Eq. (
we note that in our numerical model Eq. (2), the tran
5050
i-
g
g

n

g

n,

he
ls

),
s-

verse Lyapunov exponent and the diffusion coefficient
given by L' ­ ln p 2 1 and D ­

1
2

R
flns pxd 2 L'g2 3

rsxd dx ­
1
2 , respectively. Thus we haveh ­ 2sln p 2 1d

for p * pc. For p ­ 2.8, we haveh ø 0.059. This
agrees fairly well with the numerical values ofa ø 0.050
andb ø 0.065 in Figs. 3(a)–3(b).

Chaotic dynamical systems with invariant symmet
subspaces are quite common. The coexistence of v
ous attractors is also common. When there is a cha
attractor in the invariant subspace, previous works h
firmly established the phenomenon of riddling for p
rameter regimesonly below the blowout bifurcation poin
where the chaotic attractor is transversely stable. The
sults of this paper show that even beyond the blowout
furcation, riddling can still occur when there is arbitrari
small noise present. Thus, in different forms, riddling c
occur in wide parameter regimes about the blowout bif
cation point. The universal scaling behaviors associa
with the noise-induced riddling have been obtained in t
paper. Since noise is inevitable in real dynamical s
tems, we expect riddling to occur commonly in dynamic
systems with symmetry.
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