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Noise-Induced Riddling in Chaotic Systems
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Recent works have considered the situation of riddling where, when a chaotic attractor lying in
an invariant subspace tsansversely stablethe basin of the attractor can be riddled with holes that
belong to the basin of another attractor. We show that riddling can be induced by arbitrarily small
random noiseeven if the attractor is transversely unstabésd we obtain universal scaling laws for
noise-induced riddling. Our results imply that the phenomenon of riddling can be more prevalent than
expected before, as noise is practically inevitable in dynamical systems. [S0031-9007(96)01791-7]

PACS numbers: 05.45.+b, 05.40.+j

The discovery of the phenomenon of riddled basins [1,2]ike sets are still stable, but they have now Lebesgue
brings another important study area to the forefront of theneasure zero and, henc®,is transversely unstable. In
research in chaotic dynamics. Riddling usually occurghis case, the chaotic attractor $hbecomes a repeller in
in chaotic systems with symmetric invariant subspaceshe transverse direction, and trajectories above (befw)
When there is a chaotic attractor in the invariant subspacare repelled away frons and are eventually attracted to
and another attractor (say, nonchaotic) off the invarianA (B). The entire phase-space regions above and below
subspace, if the chaotic attractor is stable with respect t8 are the basins of attraction for typical trajectories to the
transverse perturbations, the basin of the chaotic attract@attractorsA and B, respectively, and there is no riddling
can be riddled with holes belonging to the basin of thein this case. When small noise is present, the Cantor-
attractor that is off the invariant subspace [1]. Recent workike sets become “fattened” in the phase space. For both
demonstrated that the onset of riddling is typically inducedb below p. and p abovep,, trajectories can come close
by the loss of the transverse stability of some low-periodo S due to the transversely stable Cantor-like sets, and
periodic orbit embedded in the chaotic attractor [3]. As athere is a nonzero probability that trajectories ab&e
system parameter changes further, blowout bifurcation cacan be kicked acrosS and be attracted below towards
occur in which typical trajectories on thehole chaotic B due to noise, as shown in Fig. 1. The initial conditions
attractor becomes transversely unstable [2,4]. After thén the fattened Cantor-like set abo&are thus in the
blowout bifurcation, riddling of the chaotic attractor in the basin of B (the noise-induced basin @) and form a
invariant subspace disappears. riddled structure. By symmetry, the basin Afbelow

In this paper, we present analysis and numerical resultS is also riddled. We emphasize that riddling of the
which demonstrate that even when the chaotic attractaattractors offS occurs on both sides gf., but riddling is
in the invariant subspace is transversely unstable, ibbservable only at scales larger than the noise amplitude.
there are coexisting attractors symmetrically located off

the invariant subspace, riddling in the basins of these ?lt)faf;gg;ssi;et ® A (attractor)
attractors can still occur when there is small-amplitude unstable ) -

random noise present. We call this type of riddling the \T T ¢ T
noise-induced riddling. In particular, letp be a system

parameter,p. be the blowout bifurcation point, ang§

denote the invariant subspace. Assume there are two : : ; ; i
attractors, denoted by and B, one above and another invariant ¥ Y Y vy Y
belowS. When noise is absent, for < p. there are two subspace A A A A A A
Cantor-like sets (closed) of positive Lebesgue measure in A ' ' C

the phase space, one above and another b&pthat Cantor-like set

are transversely stable. Points in the sets are attracted (tsrtiﬁé’?rsely i i ¢ ¢
towards S and, hence, they belong to the basin of the

chaotic attractor inS. Since the Cantor-like sets are e B (attractor)

closed and have positive measure, the basin of the chaotic
attractor inS is riddled. The complement of these two Fl A : .
losed sets are two open sets that belond to the basir%‘ase space fqraround the blowout bifurcation poipt.. One
c p g is’open dense and transversely unstable; another is transversely

of the attractorsA and B, respectively. This situation is stable but closed. The two symmetric closed sets above and
shown schematically in Fig. 1. Fgr = p., the Cantor- belowS correspond to the noise-induced basins.

G. 1. A chematic illustration of two invariant sets in the
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In the following, we first present numerical evidence We now argue that forp = p., noise can induce
illustrating the phenomenon of noise-induced riddling.riddling between the basins of the = +o and y =

We then consider an analyzable model which can be-o attractors. We first note that sincA, is only
solved by employing the diffusion approximation. We slightly positive, there is a set of Lebesgue measure
derive universal scaling laws associated with the noisezero points embedded in the = 0 chaotic attractor
induced riddling. The main implication of our result is that are transversely stable. Although typical trajectories
that the phenomenon of riddling may be more prevalenasymptote toy = *=o eventually, usually they can spend
than expected before, as noise is inevitable in practicah long time in the vicinity ofy = 0 before doing so.

situations. Imagine we turn on the noise now. Because of noise, an
We consider the following general class of dynamicalinfinite number of channels open at the set of transversely
systems, stable points, allowing trajectories to pass througkr

0. There is now a nonzero probability that trajectories
(1) coming close toy = 0 from the positive side can tunnel
Yo+1 = g(X,, p)y, + high order odd termaf y,, through y = 0 to the negative side and asymptote to
wherex € RYs (Ng = 1), y € RV (Ny = 1), £(x,) is the y = — aFtractor, and vice versa. Thus, as Ior_lg
a map that has a chaotic attractafx,, p) is a scalar as there is noise, no matter how small, t_here are points
function, andp is the bifurcation parameter. The in- with y >0 (y < 0) that belong to the basin of the =

variant subspace is defined kyy= 0 because for ini- — (y = +o) attractor. Since the noise-induced basins
tial yo = 0, trajectories hava, = 0 for all times. The correspond to the transversely stable closed sets above
] n .

largest transverse Lyapunov exponent is givenAoy = ;ndfo?ezlﬁlWy :in(?t' th?tise f%s;ns<m(l)1)sttht;e; ”gglse(tj(') t'rl;gat
limy—e(1/M) fozl IN|9y,+1/0Ynly, =0 - ul, whereu is a ' y'P Y Y 9

random unit vector in the transverse subspace. Since Y= b_ > (dy - Jt[oo)ﬂ?ttract.or, therle arti riomts tarbltrarlly
is the blowout bifurcation point, we hava, > 0 for rleo?r( y_( 2\2:')1 (t)t ? n0|ls:¢ scaze) h a g?h Obt)hiF f
p > p.. Our main goal is to understand how noise can, y:__oo tta r?c or. >'90ur%| i gV\;S eh aS|tnh N
induce riddling. To illustrate our findings, we consider €y attractor iny (black dots), where the

) o . ; parameter setting i = 2.8 > p., ¢ = 0.1, and e =
the following two-dimensional version of Eq. (1), 10-12. To produce this figure, a grid @48 X 2048 of

Xn+1 = fxn) + qy,zz, initial conditions is chosen in the regidh= x = 1 and
(2)  0<y < 1. Ifan initial condition hasy < —10? within
10 iterations, a black dot is plotted at the location of the
where o, € [—1,1] is a random numbere < 1 is initial condition. Otherwise we leave it blank. The figure
the noise amplitudep > 0, and q is another parame- exhibits typical features of a riddled basin [1,2].
ter. In Eq. (2), both the invariant subspace = 0) and
the transverse subspace are one-dimensional. Note that
noise only affects the dynamics in the vicinity of the 0.9 1
invariant subspace = 0, as the noise term in Eq. (2) is
negligible whenly| is large. We choosg(x,) to be the
doubling transformatio2x mod(1) that produces a chaotic
attractor with uniform invariant density fox € [0, 1].
In this case, the transverse Lyapunov exponent is given
by A, = [In|px|p(x)dx = f(l) Inlpx|dx =Inp — 1.
The blowout bifurcation point ip, = ¢ = 2.71828....
From the second equation in Eq. (2), we see that for
p > 0! If |yn| > 11 then |yn+1| > |yn|- ThUSy = *x
are the two attractors located symmetrically with respect
toy = 0. Fore = 0andp < p., the chaotic attractor of
the doubling transformation at = 0 is also an attractor
of the full phase space, the basin of which is riddled
with holes belonging to the basins of the= *c. For ~ :
p = p¢, they = 0 chaotic attractor is no longer a global 0 02 04
attractor. In this casey = *=o are the only global
attractors of the system. & =0, y, cannot change FIG.2. For Eq. (2), the noise-induced basin of the= —o
sign, and, consequently, the basins of the= +% and gttia(c)tclnr '”_th% i 0 h?K pf%e(')zgg‘eaﬂgri‘m_etﬁ;j‘ft(mg 1S
y= - attractors arey _> 0 and y < 0, r.espec_tlvely, noise a’mlpjmlitude). V{/)iLthoutL noise, at this parameter setting the
and the basin boundary is the one-dimensionaljinre 0y > ¢ half plane is the basin of the = + attractor except a
for p = p.. set of Lebesgue measure zero.

X,+1 = f(x,) + high order termsf y,,

Yo+l = PXpyn + Vi + €0,
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To characterize noise-induced riddling, we first com-10"%, wheree = 10~ !2 is fixed, and 18 initial conditions
pute the fraction of pointg_(e, yo) on afixed liney, = 0  are used to computgé_(e, yo) for eachy,. We also ob-
that belong to the basin of the = —c« attractor ase  tain an algebraic scaling relatiofi, (e, yo) ~ }’()_B, where
changes. Figure 3(a) shows lgg- (e, y0) versus logoe B > 0 is the scaling exponent. In Fig. 3(b), the exponent
for p =28, ¢ =0.1, and 1072 < e = 107%, where s g ~ 0.065. We see that and 3 have similar values.
10° initial conditions are chosen on the line= 0.01 To understand the scaling of the noise-induced riddling,
to compute f_(e,y0). We see that the plot can be we consider an analyzable model with additive noise. The
roughly fitted by a straight line, indicating an algebraicmodel is a two-dimensional map defined in the region

scaling relation betweerf_(e,yo) and €: f-(e,y0) ~ 0=x=1and—= <y < =, as follows:

e€*, wherea > 0 is the algebraic scaling exponent. In

Fig. 3(a), the exponent i& = 0.050. Next, we com- (1/a)xy, for x, <a,
pute, for a fixed noise amplitude, a fraction of ini- Xntl = {(l/b)(x,, —a), for x,>a,

tial conditions f— (e, yo) that asymptote to the = —
attractor change asgy (yo = 0) increases. Figure 3(b) Vnil = {
shows logof-(e,yo) versus logyy, for 10712 < y, =

3)

cy, + €o,, for x, <a,
dy, + €eo,, for x, >a,

where0<a <1, b=1—-a,c>10<d <1, and

eo, is the small noise term similar to that in Eq. (2). The
-0.95 ' ' ' ' ‘ invariant subspace is = 0 in which there is a chaotic
attractor with the Lyapunov exponent, = aIn(1/a) +
bIn(1/b) > 0. They dynamics involves both expansion
and contraction, and there are two attractors located at
y = *oo, respectively. The transverse Lyapunov expo-
nentisA, =alnc + bind. Thus,A, =0 for a =
a. and A, <0 for a < a., wherea. = |Ind|/(Inc +
[Ind|). Fora > a. ande = 0, except for a set of mea-
sure zero, the upper half plafg > 0) and the lower half

1}

-1.05}

0.01)

lng f"- (61 Y
L
()

plane(y < 0) are the basins of the = +o andy = —o
195 attractors, respectively. Concentrating on the- 0 half

plane and defining@,, = —Iny,, in the noise-free case we
-1.3} obtain a random walk in terms df, for the y dynam-

ics,Y,+1 = y, + Y,, wherey, = ¢ = —Inc < 0 with
1T a1 <10 o B = s  probabilitya andy, = d = —Ind > 0 with probability

b =1 — a. We are interested in the case where «,
035 IOgl?E . ' so thatA, = 0. In this case, on average the trajectory

moves slowly in they direction, and, hence, the random
walk can be solved by using the diffusion approximation.
Let P(Y, Yy, n) be the probability distribution function for

2 Y (given thatx, is chosen randomly on the horizontal line
~” segmenty = y,,0 < xo = 1), and we obtain the follow-
IS ing diffusion equation foP (Y, Yy, n) [5]:

aP aP 9*P
HJ — tv =D, 4
:I on aY Y
b% where v = ac + bd = —A | is the average drift, and
Q

D = 3((8Y — (8Y))?) = 3ab(c — d)* is the diffusion
coefficient (the averagé---) is with respect to initial
random values of). For a = a. we see thatr < 0,
indicating thatY gradually approaches (or y — o).
Assuming that all initial conditions start frompy, where
0<yy<1 (or Yo > 0), we have the following ini-
tial condition for Eq. (4):P(Y,Y,,0) = 6(Y — Yp). To
FIG. 3. (a) Aty, = 0.01, on a logarithmic scale, the proba- model the effect of noise, we note that once a tra-

bility f_(e,yy) that a randomx, asymptotes to thg = — . PSR —0 i
attractor versus the noise amplitude The plot indicates that jectory falls within distancee of y =0, it can tunnel

roughly, f— (e, yo) ~ 5005. Other parameters ae— 0.1 and  through y =0 and asymptotes tgy = —. Roughly
p=28. (b) Ate = 107"2, f_(€,y0) versusyo on a logarith- ~ speaking, there is an absorbing boundary for the random

mic scale. Roughly, we havﬁ(e yo) ~ yo 003, walker ate = In(1/e) > 0. As a crude approximation,

logy %o
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we have the following boundary conditioA{€, Y,n) =0.  verse Lyapunov exponent and the diffusion coefficient are
The diffusion equation (4), together with the above ini-given by A, =Inp —1 and D = % flIn(px) — AP X
tial and boundary conditions, can be solved by using,(y)gx = % respectively. Thus we have=2(Inp — 1)
the standard Laplace-transformation method [5]. Lettingor , = p.. For p = 2.8, we haven = 0.059. This

P(Y,Yo,5)= [q P(Y,Yo,n)e*" dn be the Laplace rans- agrees fairly well with the numerical values @f~ 0.050

form of P(Y, Yy, n), we obtain
d*P(Y, Yy, s) dP(Y,Yy,s)
D—2 2 A
dy? ) 4

sP(Y,Yo,s) = —8(Y — Y).
With the boundary conditionP (e, Y,,s) = 0, we ob-
tain the solution P(Y,Yy,s) = CieM' + Cre?Y for
Y > Yy, andP(Y, Yy, s) = CzeMY for Y <Y, whereA, =
In(A—1),=3n(A+1),n=A,/D>0, and A=

\/1+4Ds/(A%). The coefficients areC, =[1/D(A, —

A)]exp—A2Yp), €y = —Crexd(A2 — A€, and C3 =
Colexd (A2 — A)Yo] — exd (A2 — Ap€E]}

We can now calculate the scaling. LEt(n) be the
probability that the walker has not reached withdnof
y = O attimen. The Laplace transform df . (n) is given
by Fi(s) = [©.P(Y,Y,,s)dY. Thus, we have . (s) =
1/s — (1/s)exd—A,(Yy — €)]. Performing the inverse-
Laplace transform by noting that there are a pole &t 0
and a branch singularity at = s* = A% /4D > 0, we
obtain

Fi(n)=1—exd—X(s = 0) (Yo — €]

- Si*exp[—/\z(s =5 (Yo — @]

X exp(—s*n). (5)
In the limit n — «, F.(n) is the probability that the
random walker has never reach&d= €(y = €) and,
hence,F  (») is the fraction of they = +« basin in the

upper half plane. Therefore, the noise-induced fraction

of points aty, > 0 that belong to they = — basin is
given by f_(e,y0) = 1 — lim,—uF+(n) = exdn(Yy —
€)].
relation: -

f-(€.y0) ~ €3 ", (6)
where the scaling exponents are given by {6 8 =

n = A, /D. Because of symmetry, the same scaling

holds for the fraction of theg = + basin in the lower
half planey < 0. Since the scaling exponents and
B only depend onA; = —» and D, which are the

two fundamental parameters in the diffusion equation,

we expect the scaling Eqg. (6) to holdniversally for

noise-induced riddling in the parameter regime where the

Finally, we obtain the following algebraic scaling

and B = 0.065 in Figs. 3(a)—3(b).

Chaotic dynamical systems with invariant symmetric
subspaces are quite common. The coexistence of vari-
ous attractors is also common. When there is a chaotic
attractor in the invariant subspace, previous works have
firmly established the phenomenon of riddling for pa-
rameter regimesnly below the blowout bifurcation point
where the chaotic attractor is transversely stable. The re-
sults of this paper show that even beyond the blowout bi-
furcation, riddling can still occur when there is arbitrarily
small noise present. Thus, in different forms, riddling can
occur in wide parameter regimes about the blowout bifur-
cation point. The universal scaling behaviors associated
with the noise-induced riddling have been obtained in this
paper. Since noise is inevitable in real dynamical sys-
tems, we expect riddling to occur commonly in dynamical
systems with symmetry.
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diffusion approximation is valid, regardless of the details [g] The equality of the scaling exponents and 8 can also

of the system.

To check the universality of the scaling relation Eq. (5),
we note that in our numerical model Eg. (2), the trans-
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be seen via a dimension analysis. Sircand y, have
the same physical dimensions (distances), wfiilée, yo)
is just a number, one must hawe= B from Eq. (6).



