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Identifying hidden states in nonlinear physical systems that evade direct experimental detection is
important as disturbances and noises can place the system in a hidden state with detrimental consequences.
We study a cavity magnonic system whose main physics is photon and magnon Kerr effects. Sweeping a
bifurcation parameter in numerical experiments (as would be done in actual experiments) leads to a
hysteresis loop with two distinct stable steady states, but analytic calculation gives a third folded steady
state “hidden” in the loop, which gives rise to the phenomenon of hidden multistability. We propose an
experimentally feasible control method to drive the system into the folded hidden state. We demonstrate,
through a ternary cavity magnonic system and a gene regulatory network, that such hidden multistability is
in fact quite common. Our findings shed light on hidden dynamical states in nonlinear physical systems
which are not directly observable but can present challenges and opportunities in applications.
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Bistability is referred to as the coexistence of two
distinct steady states in the system. As a bifurcation
parameter sweeps forward and backward through a range,
different steady states appear, leading to a hysteresis loop.
Bistability or even multistability is ubiquitous in nonlinear
dynamical systems [1–3]. For example, in physics and
engineering, bistability and multistability have applica-
tions in computing and information processing devices
such as switches, memories, and logic gates [4–9]. In
systems and synthetic biology, the dynamics of gene
regulatory networks are typically bistable with a healthy
state and a cancerous state [10–12]. In neuroscience,
multistability is fundamental to the functioning of the
brain network [13,14]. In ecological networks, bistable
dynamics leading to a tipping point transition from a
survival to an extinction state is of great concern [15–18].
When investigating bistability for applications, a tacit
assumption is that the system has only two steady states,
on which experimental designs and observations depend.
What if, in the bistable regime, there is a third, “hidden”

steady state in the system that cannot be experimentally
revealed by sweeping some parameter forward and back-
ward? The existence of such a hidden state can be concern-
ing. For example, if a device is designed and experimentally
tested in the laboratory to operate based on the known two
coexisting steady states (e.g., as a physical memory or other
binary devices), then significant errors can arise when the
device is deployed to real-world applications where noise
“kicks” the system into the basin of attraction of the hidden
state. Can such a scenario arise in natural systems? If yes, it

will be essential to conduct experimental tests to assess the
possible existence of the hidden state.
In this Letter, we present a class of systems that indeed

host a hidden state folding in the hysteresis loop in the
regime of bistability. For convenience, we use term “hidden
multistability” to describe the associated phenomenon
caused by the folded hidden state (FHS). Our prototypical
model is a cavity magnonic system with photon and
magnon Kerr effects. Analytic solutions are obtained,
revealing an FHS. However, numerical simulations with
continuous parameter sweeping (as in a standard exper-
imental test) absolutely fail to reveal the FHS inside the
hysteresis loop. We propose an experimentally feasible
scheme based on rectangular-pulse control signals to detect
the FHS. We also report two additional systems that exhibit
hidden multistability: a ternary cavity magnonic system and
a gene regulatory network. As bistability and hysteresis
loops are ubiquitous in physical and biological systems
with applications in information storage and processing,
our Letter highlights the importance of ascertaining the
existence (or nonexistence) of FHS that can potentially
cause the system to produce unanticipated and undesired
behaviors.
Cavity magnonic systems [19–52] are a class of hybrid

light-matter interacting systems in which a ferromagne-
tic insulator such as yttrium iron garnet (YIG) crystal
embedded in a microwave cavity coherently [20–23] or
dissipatively [29–32] couples to photons. Experimental and
theoretical studies [33–52] provided the foundation for this
class of systems to be exploited for information processing

PHYSICAL REVIEW LETTERS 132, 137201 (2024)

0031-9007=24=132(13)=137201(7) 137201-1 © 2024 American Physical Society

https://orcid.org/0000-0003-4448-6615
https://orcid.org/0000-0001-7703-0185
https://orcid.org/0000-0002-0723-733X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.132.137201&domain=pdf&date_stamp=2024-03-25
https://doi.org/10.1103/PhysRevLett.132.137201
https://doi.org/10.1103/PhysRevLett.132.137201
https://doi.org/10.1103/PhysRevLett.132.137201
https://doi.org/10.1103/PhysRevLett.132.137201


and storage applications. In addition, strong driving can
amplify the magnetocrystalline anisotropy of the YIG
crystal, generating the magnon Kerr effect [53] and making
the hybrid system a nonlinear system with bistability and a
hysteresis loop [54–56]. Depending on the direction of the
external magnetic field along the crystal axis, the induced
magnon Kerr effect can be either positive or negative,
affecting the orientation of the hysteresis loop. If the system
has two cavities [57,58], is non-Hermitian [59–63], or is
subject to mechanical vibrations [64], rich phenomena such
as nonreciprocal transmission, ultralow threshold bistability,
enhancement of high-order sidebands and detection sensi-
tivity, and mechanical bistability can arise. When multiple
YIG crystals or alternative nonlinear effects are present, the
hybrid system can exhibit multistability [65–67]. These
previous studies established the nonlinear cavity magnonic
systems as a promising platform for switches, memories,
logic gates, and detectors.
Figure 1(a) illustrates the system configuration: a micro-

wave cavity contains a YIG sphere with magnetocrystalline

anisotropy and a Kerr medium with third-order nonlinear
susceptibility χð3Þ. A microwave probe field generated by a
vector network analyzer (VNA) is injected into the cavity
from port 1 and comes out from port 2 for microwave
transmission to be measured. A microwave pump field
generated by a microwave source (MV) provides strong
driving to the cavity photons via port 1. In addition, a
uniformly biased magnetic field H along the z direction is
applied to the YIG sphere to align its magnetization and
tune the frequency of the magnon mode. Here we focus on
the typical Kittel mode in which all spins uniformly precess
in phase under the uniformly biased magnetic field.
The Hamiltonian taking into account the photon and

magnon Kerr effects is (see Sec. I in Supplemental
Material [68]) H ¼ ωca†a þ ωmm†m þ Kaa†aa†aþ
Kmm†mm†m þ gða†m þ am†Þ þ Ωdða†e−iωdt þ aeiωdtÞ þ
ηða†e−iωpt þ aeiωptÞ, where a† and a (m† and m), respec-
tively, are the photon (magnon) creation and annihilation
operators with frequency ωc (ωm), KaðmÞ is the photon
(magnon) Kerr coefficient, g is the interaction strength
between photon and magnon, Ωd (η) and ωd (ωp) are the
driving field (probe field) strength and frequency, respec-
tively. The driving power Pd is chosen to be the bifurcation
parameter, which is related to Ωd as Ωd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pdκc1=ðℏωdÞ
p

,
where ℏ is the Planck constant, and κc1 is the external
photon dissipation rate through port 1 in Fig. 1(a).
Employing the quantum Langevin method [69] to the
Hamiltonian and expressing the operators a and m each as
a sum of the expectation values and fluctuations: a ¼
hai þ δa and m ¼ hmi þ δm, we obtain the equations of
motion in terms of the amplitudes Ad and Md of the
expectation values resulting from the driving field (Sec. II
in Supplemental Material [68]):

Ȧd ¼ −i
��

δc þ Δa − i
κc
2

�

Ad þ gMd þ Ωd

�

;

Ṁd ¼ −i
��

δm þ Δm − i
γm
2

�

Md þ gAd

�

; ð1Þ

where δcðmÞ ≡ ωcðmÞ − ωd is the photon (magnon) fre-
quency detuning relative to the driving-field frequency,
κc (γm) is the dissipation rate of the photon (magnon),
Δa ¼ 2KajAdj2 and Δm ¼ 2KmjMdj2 are the respective
frequency shifts due to the photon and magnon Kerr
effects. The steady states can be obtained by setting
Ȧd ¼ 0 and Ṁd ¼ 0, resulting in a higher-order nonlinear
equation for Δm:

�

δc þ
KaΓmΔm

Kmg2
−
g2ðδm þ ΔmÞ

Γm

�

2

ΓmΔm

þ
�

κc
2
þ g2γm=2

Γm

�

2

ΓmΔm − 2KmΩ2
dg

2 ¼ 0; ð2Þ

FIG. 1. Schematic illustration of the cavity magnonic system
and nonlinear steady-state dynamic behaviors of the system. (a) A
YIG sphere and a Kerr medium are embedded in a microwave
cavity. The microwave transmission is measured by a VNA via
ports 1 and 2, and the cavity photons are strongly driven by an
MV via port 1. The YIG sphere is placed in a uniformly biased
magnetic field H that aligns the magnetization and tunes the
magnon frequency. (b) Theoretically predicted and numerically
calculated magnon frequency shift Δm=2π versus the driving
power Pd for ωd=2π ¼ 10.038 GHz. The black and red triangle
curves, respectively, correspond to the forward and backward
sweeps of the driving power Pd. The blue solid and dashed
curves, respectively, denote the analytically obtained stable and
unstable steady states.
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where Γm ≡ ðδm þ ΔmÞ2 þ γ2m=4. Note that Eq. (2) con-
tains both the magnon and photon Kerr effects. A method
for determining the stability of the solutions Δm in Eq. (2)
can be found in Sec. II of Supplemental Material [68].
Typical parameter values are ωc=2π ¼ 10.08 GHz,
ωm=2π ¼ 10.047 GHz, g=2π ¼ 40 MHz, Km=2π ¼
9.8 nHz, Ka=2π¼−0.98 nHz, κc=2π¼1.5MHz, κc1=2π¼
1.0MHz, and γm=2π ¼ 16.5 MHz.
As the driving power Pd increases from zero, the photon

and magnon Kerr nonlinearities are turned on and dominate
the dynamics. Figure 1(b) shows the numerical and
analytical magnon frequency shift Δm=2π versus Pd for
ωd=2π ¼ 10.038 GHz, where the numerical experiments
are conducted by slowly sweeping forward (black triangles)
and backward (red triangles) the bifurcation parameter Pd
at the step size δPd ¼ 0.1 mW. The numerical results
reveal bistability with a counterclockwise hysteresis loop.
Surprisingly, the analysis of Eq. (2) gives different results:
in addition to the hysteresis loop that agrees well with the
numerics, there is a third, FHS, as indicated by the blue
solid curve inside the loop.

The dynamical mechanism for the emergence of a
hysteresis loop can be described, as follows. Let DS
(US) denote the down (up) steady state that exists for Pd <
Pd2 (Pd > Pd1), as shown in Fig. 1(b). Since Pd1 < Pd2,
the DS and US coexist in the parameter interval ½Pd1; Pd2�,
each with its own basin of attraction. As Pd increases from
a value less than Pd1 at which the DS is the only steady state
in the system, what is observed is the DS, until Pd reaches
Pd2 where the DS disappears and its basin of attraction is
absorbed into that of the US. There is then a sudden switch
from the DS to the US at Pd2. For Pd > Pd2, the US is the
experimentally observed steady state. Likewise, when Pd
decreases from a value greater than Pd2, the observed
steady state is the US until Pd1 is reached, at which the US
is destroyed, leaving the DS the only steady state in the
system. The observable steady state switches from the US
to the DS as Pd decreases through Pd1. A hysteresis loop
then arises in the parameter interval ½Pd1; Pd2�, in which the
DS and US coexist.
The question is whether an FHS, if it indeed exists,

can be observed by sweeping a bifurcation parameter
forward and backward. The answer is negative. As shown
in Fig. 1(b), in both sweeping directions, the observed
steady state is either the DS or US, but never the FHS. That
is, in spite of having a nonzero basin of attraction (Fig. S2
in Supplemental Material [68]), the third folded steady state
remains hidden, regardless of the direction of parameter
sweeping. The phenomenon in Fig. 1(b) caused by FHS can
be called hidden multistability.
To study the formation process of the hidden multi-

stability, four switching points, A–D, are specified in
Fig. 1(b), at which the magnon frequency changes abruptly.
Figure 2(a) shows the driving power PA−D

d of the switching
points versus the driving frequency ωd=2π, leading to five
distinct regions: I-V from right to left. In each region, there
are more than one steady state, but not every one of them
can be revealed by numerically or experimentally sweeping
a parameter forward and backward. In region I, PA

d (black
curve) and PB

d (blue curve, PB
d > 300 mW—beyond the

scale of the plot) exist with PA
d < PB

d , so there is bistability.
As the driving frequency ωd=2π decreases, PC

d (orange
curve) and PD

d (red curve) emerge at the point M. As the
driving power Pd is swept, the observed states are PA

d and
PB
d , respectively, forming a hysteresis loop, inside which

PC
d and PD

d are hidden (½PC
d ; P

D
d � ⊂ ½PA

d ; P
B
d �). There is then

hidden multistability in region II. As PD
d increases, at point

N, it becomes equal to PB
d—the beginning of region III,

where the inequality PA
d < PC

d < PB
d < PD

d holds. In this
case, for forward parameter sweeping, the US, middle
stable state, and the DS can be observed but for backward
sweeping, only the US and DS come out [Fig. S3(a) in
Supplemental Material [68] ], signifying multistability.
As ωd=2π continues to decrease to the point O, the
inequality PC

d < PA
d < PB

d < PD
d emerges and there is again

FIG. 2. Distinct dynamical regimes and hysteresis loops.
(a) Driving powers PA−D

d at the switching points versus the
driving frequency ωd=2π. Regions I–V correspond to bistability,
hidden multistability, multistability, two bistability, and again
bistability, respectively. The four vertical downward black arrows
from left to right denote the frequency values ωd=2π ¼ 10.039,
10.040, 10.041, and 10.042 GHz, respectively. (b)–(e) Hysteresis
loops with or without an FHS for these four frequency values.
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multistability [Fig. S3(b) inSupplementalMaterial [68] ].At
point P, the system enters into region IV where PC

d < PB
d <

PA
d < PD

d holds and there is two bistability. In this case, two
independent bistable loops arise [Fig. S3(c) in Supplemental
Material [68] ]. At pointQ,PB

d , andP
C
d merge and disappear,

and the system enters into region V withPA
d < PD

d (note that
the latter is out of the scale of the figure), producing again
bistability [Fig. S3(d) in SupplementalMaterial [68] ].While
an FHS cannot be directly accessed due to its hidden nature,
Fig. 2(a) suggests a general approach to predicting and
understanding hidden multistability in nonlinear systems by
monitoring the variational trend of the hysteresis loop
associated with the switching point.
From region I to region II, there is a continuous transition

from bistability to hidden multistability with similar numeri-
cal results. To better understand this transition, we choose
four values of the driving frequency ωd=2π, as indicated by
the downward arrows in Fig. 2(a), and calculate both numeri-
cally and analytically the magnon frequency shift Δm=2π
versus the driving power Pd, as shown in Figs. 2(b)–2(e),
respectively. For ωd=2π ¼ 10.042 GHz, the system is in
region I and exhibits bistability in both numerical and
analytical results in Fig. 2(b). As the system moves into
region II, numerical calculations still reveal bistability, but the
analytic results show that another new stable state (i.e., FHS)
is generated in the hysteresis loop, leading to hidden multi-
stability, as shown in Figs. 2(c)–2(e). This continuous
transition without any indicators in numerical simulations
(or experimental test) inevitably may lead to the erroneous
conclusion that the system exhibits bistability (not hidden
multistability).
To reveal the FHS inside the hysteresis loop in Fig. 1(b)

requires the application of some control strategy [75]. It is
desired to have an efficient, experimentally readily imple-
mentable method with low cost. Here we exploit a
rectangular pulse control method [76,77] for detecting
the FHS. In particular, we consider the following rectan-
gular-pulse driving field: Pd ¼ P0 � Pl½uðt − t0Þ−
uðt − t0 − ΔtÞ�, where “�” corresponds to the forward
and reverse pulses, respectively, P0 is the initial power, Pl is
the height (depth) of the forward (reverse) pulse, uðt − τÞ
(τ ¼ t0 or t0 þ Δt) is the Heaviside function: uðt − τÞ ¼ 0
for t < τ and uðt − τÞ ¼ 1 for t ≥ τ, and Δt is the duration
of the pulse. Figure 3(a) shows an example of the forward
pulse for P0 ¼ 175 mW, Pl ¼ 125 mW, t0 ¼ 1 μs, and
Δt ¼ 1 μs. Figure 3(b) shows the time evolution of the
magnon frequency shift Δm=2π under the forward pulse.
Initially, the system is in the DS corresponding to point E in
Fig. 1(b). During the time when the pulse is applied,Δm=2π
increases. When the pulse is removed at t ¼ 2 μs, Δm=2π
begins to decrease slightly and then stabilizes at a constant
value associated with the FHS [corresponding to point F in
Fig. 1(b)] after t≳ 3 μs. Similarly, for the reverse pulse
shown in Fig. 3(c) where P0 ¼ 175 mW, Pl ¼ 75 mW,
t0 ¼ 1 μs, and Δt ¼ 1 μs, the system is initially in the US

[pointG in Fig. 1(b)] andΔm=2π decreaseswhen the control
pulse starts. To make the system evolve into the FHS, we
terminate the pulse at t ¼ 2 μs. After a short transient, the
system stabilizes at the FHS [pointF in Fig. 1(b)], as shown
in Fig. 3(d). (See Fig. S4 in Supplemental Material [68]
for more details.) If the system is initialized at point F in
Fig. 1(b), a continuous forward or backward sweeping of the
driving can reveal the entire FHSbetween pointsC andD, as
shown in Fig. 3(e). Through control, the FHS can effectively
serve as a rapid transition platform between the DS and US.
Theoretically, the control method to “force” the system into
the FHS can be also justified through the transmission
coefficient (Sec. VI in Supplemental Material [68]).
To summarize, through analytic derivation and numeri-

cal experiments, we have uncovered the phenomenon of
hidden multistability in a nonlinear cavity magnonic
system, whereby the system possesses multistability but
one state is hidden in the sense that the system is unable to
land on it through continuous sweeping of a bifurcation
parameter, so a routine numerical or experimental study
would conclude, erroneously, that the system is bistable.
We have identified the route from bistability to hidden
multistability based on the variational trend of the hyste-
resis loop associated with the switching point, and articu-
lated an experimentally feasible strategy to reveal the FHS
by driving the system into it through a suitable control
pulse. (See Sec. VII in Supplemental Material [68] for a full
treatment of the effects of noise on FHS and control.)
Moreover, the hidden multistability has been verified in
other nonlinear physical and biological systems such as a
ternary cavity magnonic system and a gene regulatory
network (Sec. VIII in Supplemental Material [68]). In
addition, the hidden state within the hysteresis loop can be a

FIG. 3. Detecting FHS numerically (or experimentally) through
application of a suitable control driving pulse. (a) Forward control
pulse with parameters P0 ¼ 175 mW, Pl ¼ 125 mW, t0 ¼ 1 μs,
and Δt ¼ 1 μs. (b) Time evolution of the system into the FHS.
(c),(d) Similar to (a),(b) but for reversed-pulse control with
parameters P0 ¼ 175 mW, Pl ¼ 75 mW, t0 ¼ 1 μs, and
Δt ¼ 1 μs. (e) Sweep of the FHS for system initiated at point
F in Fig. 1(b).
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chaotic attractor in some parameter regime of the ternary
cavity magnonic system (exemplified in Fig. S8 and treated
in Supplemental Material [68]).
The FHS uncovered here has significant real-world

implications and applications. For example, it has been
known that bistability and hysteresis loops are fundamental
to information storage and processing in physical and
biological systems. For an information system designed
based on bistability, the occurrence of an FHS can
potentially lead to failures, rendering important to ensure
that such a hidden state does not arise in the parameter
regime of operation for the intended applications. From a
different perspective, the hidden nature of an FHS makes it
a potential candidate for information encryption, especially
because switching to the FHS containing the desired
information can be fast at a low energy cost.
The FHS reported in this Letter is different from a hidden

attractor [78] whose basin of attraction has no intersection
with the unstable manifold of an unstable fixed point [78].
In our Letter, the FHS is related to the operation of cavity
magnonic system experiment and is responsible for a
continuous transition from bistability to hidden multi-
stability. The lack of any indicator in numerical simulation
or experimental test associated with this transition was the
main reason that the FHS had been overlooked in previous
works on bistability and hysteresis loops.
While we have uncovered and characterized hidden

multistability in a cavity magnonic system, a theory that
is generally applicable to diverse nonlinear systems for
identifying and understanding FHS is needed. Realizing
experimental control to drive the system into an FHS
remains to be seen. Exploiting hidden multistability for
information processing is also worthy.
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