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I. BASICS

The starting point of our analysis is the effective low-energy Hamiltonian of graphene or
graphene-like systems with Dirac cones:

H = vFs0⊗σ ·p+ s0⊗σ0Vgate(r)− sz⊗σ0M (r), (S1.1)

where the identity matrix s0 and the Pauli matrix sz act on the real electron spin space while
the Pauli matrices σ = (σx,σy) and the identity matrix σ0 define the sublattice pseudospin. The
first term in Eq. (S1.1) characterizes the pristine Dirac cone band dispersion with a four-fold
degeneracy at a Dirac point: two for the sublattice pseudospin and two for the real electron spin.
Since [sz⊗σ0,H] = 0, it is equivalent to two copies of Dirac-like Hamiltonian indexed by the spin
quantum number s =±:

Hs = H0 +Vgate(r)− sM (r), (S1.2)
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where H0 = vFσ ·p is effectively the fundamental Dirac-Weyl Hamiltonian describing the two-
dimensional free-space massless Dirac fermions. The Hamiltonian Hs acts on two-component
pseudospinor waves for the massless Dirac quasiparticles belonging to the real spin state s in
graphene or similar materials. The last two terms in Eq. (S1.1) represent the applied gate and
exchange potential, respectively.

In the main text, the calculations are for the scattering of such quasiparticles from the step
potential that can lead to spin-resolved ray-path defined classical dynamics in the short wave-
length limit. The scattering process is of the relativistic type for massless Dirac fermions. In the
following Secs. II-V, we develop an S-matrix based scheme to solve the relativistic quantum scat-
tering problem, which is validated computationally in Sec. VI. In Sec. VII, we provide a detailed
demonstration of the phenomenon of enhanced spin polarization as shown in Fig. 2(c) in the main
text.

II. MULTICHANNEL ELASTIC SCATTERING THEORY FOR TWO-DIMENSIONAL MASS-
LESS DIRAC FERMIONS - S-MATRIX APPROACH

The main theoretical tool that we employ to investigate the role of chaos in Dirac electron optics
is the formalism of stationary quantum scattering for two-dimensional massless Dirac fermions,
where the scatterer has an irregular shape and a finite range. The scattering process is assumed
to be elastic. The fundamental quantity of interest is the scattering (S-) matrix, from which all
physically relevant quantities characterizing the scattering process can be deduced.

In the free space, the system is governed by the stationary Dirac-Weyl equation

H0χ = h̄vFσ ·kχ = Eχ, (S2.3)

for which the plane-wave solutions for energy E = αh̄vFk is given by

χk(r) =
1√
2

(
1

αeiθk

)
eik·r, (S2.4)

where k =
√

k2
x + k2

y , α = sgn(E) and θk = arctan(ky/kx) characterize the propagating direction
parallel to the wavevector k for E > 0. For E < 0, the two directions are anti-parallel with each
other. In the polar coordinates r = r(cosθ,sinθ), the corresponding spinor cylindrical waves with
given angular momentum and energy are

khm(r,θ) =
(

Zm(kr)
iαZm+1(kr)eiθ

)
eimθ, (S2.5)

where Zm is the m-th order Bessel or Hankel function of the physically relevant kind. In particular,
under the time convention e−iE/h̄t and for positive energy E > 0, we have

kh(−)m =

(
H(2)

m (kr)
iH(2)

m+1(kr)eiθ

)
eimθ, (S2.6a)

as the cylindrical wave basis of the spinor waves of the incoming type, and

kh(+)
m =

(
H(1)

m (kr)
iH(1)

m+1(kr)eiθ

)
eimθ, (S2.6b)
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as the outgoing type, where H(1)
m and H(2)

m denote the Hankel functions of the first and second kind,
respectively.

For the scattering problem illustrated in Fig. 1 in the main text, the stationary wavefunction
outside the scatterer generally can be decomposed into two parts - incoming and outgoing waves:

Ψ = Ψin +Ψout . (S2.7)

In the spinor cylindrical wave basis for massless Dirac fermions with positive energy, the incoming
wave can be written as

Ψin = ∑
m

am
kh(−)m , (S2.8)

and the outgoing wave can be expressed as

Ψout = ∑
m

am ∑
m′

Smm′
kh(+)

m′ , (S2.9)

where the coefficients am are determined to yield a desired kind of incoming test wave, Smm′

denotes the transition amplitude for an incoming cylindrical wave kh(−)m scattered into an outgoing
one kh(+)

m′ . This defines the S-matrix with m and m′ covering all possible angular momentum
channels. We thus have

Ψ(r,θ) = ∑
m

am

[(
H(2)

m (kr)
iH(2)

m+1(kr)eiθ

)
eimθ +∑

m′
Smm′

(
H(1)

m′ (kr)
iH(1)

m′+1(kr)eiθ

)
eim′θ

]
,

= ∑
m

2am

(
Jm(kr)

iJm+1(kr)eiθ

)
eimθ +∑

m
am ∑

m′
(Smm′−δmm′)

(
H(1)

m′ (kr)
iH(1)

m′+1(kr)eiθ

)
eim′θ.

(S2.10)

To be concrete, we assume the incident wave to be a plane wave given by

χkin(r,θ) =
1√
2

(
1

eiθkin

)
eikin·r =

1√
2

(
1

eiθ′

)
eikr cos(θ−θ′),

for massless Dirac fermions with positive energy E = h̄vFk and incident wavevector kin =
k(cosθ′,sinθ′) that makes an angle θ′ with the x axis. This defines the incident propagating
direction as shown in Fig. 1 in the main text. We have

χkin = ∑
m

ime−imθ′

√
2

(
Jm(kr)

iJm+1(kr)eiθ

)
eimθ, (S2.11)

where the Jacobi-Anger expansion eizcosθ = ∑m imJm(z)eimθ has been used. Given the coefficients

am = am(θ
′) =

ime−imθ′

2
√

2
, (S2.12)

and with the definition Tmm′ ≡ Smm′−δmm′ , we get

Ψ(r,θ) = χkin +∑
m

am ∑
m′

Tmm′

(
H(1)

m′ (kr)
iH(1)

m′+1(kr)eiθ

)
eim′θ. (S2.13)
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Far away from the scatterer center, i.e. kr� 1, the asymptotic wavefunction can be written as

lim
kr�1

Ψ = χkin +
f (θ,θ′)√
−ir

(
1

eiθ

)
eikr, (S2.14)

where f is the scattering amplitude for two-dimensional massless Dirac fermions, which is related
to the differential cross section through

dσ

dθ
≡ σ(θ,θ′) = | f (θ,θ′)|2, (S2.15a)

the total cross section through

σt(θ
′) =

∮
dθ| f (θ,θ′)|2, (S2.15b)

the transport cross section through

σtr(θ
′) =

∮
dθ(1− cosθ)| f (θ,θ′)|2, (S2.15c)

and the skew cross section through

σsk(θ
′) =

∮
dθsinθ| f (θ,θ′)|2. (S2.15d)

It follows from Eqs. (S2.13) and (S2.14) that

f (θ,θ′)√
−ir

(
1

eiθ

)
eikr = lim

kr�1
∑
m

am ∑
m′

Tmm′

(
H(1)

m′ (kr)
iH(1)

m′+1(kr)eiθ

)
eim′θ.

Finally, we obtain

f (θ,θ′) = i

√
2

πk ∑
m′

∑
m

am(θ
′)Tmm′(−i)m′eim′θ. (S2.16)

Defining
fl(θ

′) = ∑
m

am(θ
′)Tml(−i)l = ∑

m
am(θ

′)(Sml−δml)(−i)l, (S2.17)

we rewrite the scattering amplitude as

f (θ,θ′) = i

√
2

πk ∑
l

fl(θ
′)eilθ,

which, when substituted into Eqs. (S2.15a)-(S2.15d), leads to convenient summation forms of the
various cross sections in terms of fl(θ

′) (and eventually the scattering matrix elements Sml) as

σ(θ,θ′) =
2

πk

∣∣∣∣∣∑l
fl(θ

′)eilθ

∣∣∣∣∣
2

=
2

πk ∑
l,l′

∑
m,m′

ama∗m′(Sml−δml)(S∗m′l′−δm′l′)(−i)(l−l′)ei(l−l′)θ,

(S2.18a)

σt(θ
′) =

4
k ∑

l

∣∣ fl(θ
′)
∣∣2 = 4

k ∑
m,m′

am(T T †)mm′a
∗
m′, (S2.18b)

4



σtr(θ
′) = σt(θ

′)− 4
k ∑

l
ℜ[ fl f ∗l+1] = σt(θ

′)− 4
k ∑

m,m′
ℜ

[
iam
(
T T̊ †)

mm′a
∗
m′

]
, (S2.18c)

and

σsk(θ
′) =

4
k ∑

l
ℑ[ fl f ∗l+1] =

4
k ∑

m,m′
ℑ

[
iam
(
T T̊ †)

mm′a
∗
m′

]
, (S2.18d)

where (T̊ †)lm′ ≡ (T †)l+1,m′ = T ∗m′,l+1. All the scattering cross sections are functions of θ′ that
defines the direction of the incident wave with respect to the x axis. Averaging over all the incident
directions (θ′), we obtain the cross sections that are independent of the angle θ′ as

σt =
1

2π

∮
dθ
′
σt(θ

′) =
4
k ∑

m,m′

1
2π

∮
dθ
′am(θ

′)(T T †)mm′a
∗
m′(θ

′) =
1
2k ∑

m,l

∣∣Tml
∣∣2, (S2.19a)

σtr = σt−
4
k ∑

m,m′
ℜ

[
i

2π

∮
dθ
′am(θ

′)(T T̊ †)mm′a
∗
m′(θ

′)

]
=

1
2k ∑

m,l

{
|Tml|2−ℜ

[
iTmlT ∗m,l+1

]}
,

(S2.19b)
and

σsk =
1
2k ∑

l
∑

m,m′
ℑ

[
iTml(T̊ †)lm′δmm′

]
=

1
2k ∑

m,l
ℑ
[
iTmlT ∗m,l+1

]
. (S2.19c)

From the definition
Tml = Sml−δml, (i.e. T = S− I ),

we can calculate the characteristic cross sections once the scattering (S)-matrix is obtained.
In addition to the cross sections, associated with the S-matrix, another quantity of interest is the

Wigner-Smith delay time [1, 2] defined as

τ(E) =−ih̄Tr
[

S† ∂S
∂E

]
, (S2.20)

which characterizes the temporal aspects of the scattering process. The delay time is related to the
density of states [3] through ρ(E) = τ(E)/(2πh̄).

By definition, the transport cross section most appropriately characterizes the transport prop-
erty, which determines the transport relaxation time τtr according to the Fermi’s golden rule with
its reciprocal given by

1
τtr

= ncvFσtr, (S2.21)

where nc is the concentration of identical scatterers that are assumed to be sufficiently dilute so that
multiple scattering effects can be neglected. If the system dimension is larger than the mean-free
path L = vFτtr, from the semiclassical Boltzmann transport theory, we obtain the conductivity of
the system as

G
G0

= kFvFτtr =
k

ncσtr
, (S2.22)

where G0 = 2e2/h is the conductance quantum.
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III. S-MATRIX FOR ECCENTRIC ANNULAR SHAPED (RING) SCATTERER

We perform an explicit calculation of the S-matrix for the scatterer of annular shape defined by
two disks of different radii (R1,R2 < R1) with a finite relative displacement ξ of the disk centers,
as shown in Fig. 1(a) in the main text. For convenience, we adopt the convention that the unprimed
coordinates are defined by choosing the origin as the center of the larger disk O while the primed
ones have their origin at the small disk center O′. Applying the standard S-matrix formalism, we
obtain the wavefunction outside the eccentric annular scatterer, i.e., |r|>R1, in the unprimed polar
coordinates r = (r,θ) as

Ψ
I(r) =

∞

∑
m=−∞

a0
m

[
k0h(2)m +

∞

∑
m′=−∞

Smm′
k0h(1)m′

]
, (S3.23)

where Smm′ denotes the S-matrix elements in terms of the two given channels indexed by m and
m′, respectively, and the coefficients a0

m are chosen to yield a desired kind of incident test wave.
Let k0h(2)m ≡ a0

m
k0h(2)m and Smm′ ≡ a0

mSmm′ , and so

Ψ
I(r) =

∞

∑
m=−∞

[
k0h(2)m +

∞

∑
m′=−∞

Smm′
k0h(1)m′

]
. (S3.24)

The wavefunction in the annular region (|r′|> R2 and |r|< R1) can be expressed in the unprimed
coordinates as

Ψ
II(r) =

∞

∑
m=−∞

∞

∑
l=−∞

ma1
l

[
k1h(2)l +

∞

∑
l′=−∞

Sod
ll′

k1h(1)l′

]
, (S3.25)

where the resulting matrix Sod ≡ [Sod
ll′ ] characterizes the scattering from the off-centered small

inner disk and is non-diagonal. Making use of the addition property of the Bessel functions, we
obtain the following relation

Sod =U−1ScdU, (S3.26)

where the transformation matrices U = [Ulµ] = [Jµ−l(k1ξ)] and U−1 = [U−1
ml ] = [Jm−l(k1ξ)] are re-

sponsible for the eccentric displacement/deformation, and Scd = [Scd
l δll′] is the diagonal scattering

matrix for the centered inner disk scatterer in the primed coordinates with its elements Scd
l given

by

Scd
l =−

α1H(2)
l+1(k1R2)Jl(k2R2)−α2H(2)

l (k1R2)Jl+1(k2R2)

α1H(1)
l+1(k1R2)Jl(k2R2)−α2H(1)

l (k1R2)Jl+1(k2R2)
. (S3.27)

The S-matrix of the whole scatterer can thus be determined by the matching conditions at the
outer boundary |r| = R1. In Eqs. (S3.23) and (S3.25), k0,1h(1,2)m denote the basic spinor waves
consisting of the expanding basis indexed by the angular momentum in the polar coordinates and
are explicitly given in Eq. (S5.44a). In particular, for a given incident spinor wave with angular
momentum m, wavefunction matching for each momentum value j yields

a0
mH(2)

m (k0R1)δm j +a0
mSm jH

(1)
j (k0R1) =

ma1
jH

(2)
j (k1R1)+∑

l

ma1
l Sod

l j H(1)
j (k1R1), (S3.28a)
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iα0

[
a0

mH(2)
m+1(k0R1)δm j +a0

mSm jH
(1)
j+1(k0R1)

]
= iα1

[
ma1

jH
(2)
j+1(k1R1)+∑

l

ma1
l Sod

l j H(1)
j+1(k1R1)

]
.

(S3.28b)
Defining matrices

X(1,2) = [H(1,2)
m (k0R1)δm j], Y(1,2) = [H(1,2)

m+1 (k0R1)δm j], (S3.29a)

and
x(1,2) = [H(1,2)

m (k1R1)δm j], y(1,2) = [H(1,2)
m+1 (k1R1)δm j], (S3.29b)

we can rewrite the above equations in the following compact form

A0X(2)+A0SX(1) = Ax(2)+ASodx(1), (S3.30a)

α0

[
A0Y(2)+A0SY(1)

]
= α1

[
Ay(2)+ASody(1)

]
, (S3.30b)

with the coefficient matrices A0 = [a0
mδm j] and A= [ ma1

j ]. Solving the above equations, we arrive
at

S =−Y(2)−α0α1X(2)T
Y(1)−α0α1X(1)T

, (S3.31)

where T = F−1G with the conventions F = x(2)+ Sodx(1),G = y(2)+ Sody(1) and band indices
α0,1 = ±1. Substituting the S-matrix given in Eq. (S3.31) into Eq. (S3.30a), we obtain matrix A
consisting of the expansion coefficients ma1

l in the annular region as

A=
A0X(2)+A0SX(1)

x(2)+Sodx(1)
. (S3.32)

IV. CALCULATION OF WAVEFUNCTIONS

Inside the inner disk region, i.e., |r′| < R2, the wavefunction in the primed polar coordinates
r′ = (r′,θ′) (with origin at the small disk center O′) is

Ψ̃
III(r′,θ′) = ∑

m
∑

l

mb̃l

(
Jl(k2r′)

is2Jl+1(k2r′)eiθ′

)
eilθ′. (S4.33)

The expansion coefficients mb̃l can be determined by the matching condition at the inner boundary
r′ = |r−ξ|= R2 between Ψ(2)(r′,θ′) and Ψ(1)(r,θ). To do so, it is convenient to reformulate the
wavefunction inside the annular region in the primed coordinates. Using the relations

Sod
ll′ = ∑

j
Jl− jScd

j j Jl′− j, (S4.34a)

δll′ = ∑
j

Jl− jJl′− j, (S4.34b)
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and assuming l′ = j+n, we have

k1h(2)l +
∞

∑
l′=−∞

Sod
ll′

k1h(1)l′ ≡
∞

∑
l′=−∞

[
δll′

k1h(2)l′ +∑
j

Jl− jScd
j j Jl′− j

k1h(1)l′

]
,

= ∑
l′

∑
j

Jl− j

[
Jl′− j

k1h(2)l′ +Scd
j j Jl′− j

k1h(1)l′

]
,

= ∑
j

Jl− j

[
∑
n

Jn
k1h(2)j+n +Scd

j j ∑
n

Jn
k1h(1)j+n

]
.

(S4.35)

Making use of the Graf’s addition theorem [4] for the Bessel functions Z j ∈
{

J j,H
(1,2)
j

}
:

Z j(kr′)ei jθ′ = ∑
n

Jn(kξ)Z j+n(kr)ei( j+n)θ,

we can rewrite the Eq. (S4.35) in the primed coordinates as

k1h(2)l +
∞

∑
l′=−∞

Sod
ll′

k1h(1)l′ = ∑
j

Jl− j

[
k1 h̃(2)j +Scd

j j
k1 h̃(1)j

]
, (S4.36)

where
k1 h̃(1,2)j =

(
H(1,2)

j (k1r′)

iα1H(1,2)
j+1 (k1r′)eiθ′

)
ei jθ′. (S4.37)

Substituting this expression into Eq. (S3.25), we obtain the wavefunction for the annular region in
the primed coordinates as

Ψ̃
II(r′,θ′) = ∑

m
∑

l
∑

j

ma1
l Jl− j

[
k1 h̃(2)j +Scd

j j
k1 h̃(1)j

]
= ∑

m
∑

l

mã1
l

[
k1 h̃(2)l +Scd

ll
k1 h̃(1)l

]
, (S4.38)

where
mã1

l = ∑
j

ma1
jJ j−l(k1ξ). (S4.39)

Imposing the continuity of the wavefunction at r′ = R2, we get

mb̃l =
mã1

l
H(2)

l (k1R2)+Scd
ll H(1)

l (k1R2)

Jl(k2R2)
. (S4.40)

With the expansion coefficients ma1
l , mã1

l , and mb̃l so determined and the scattering matrices
S,Sod,Scd obtained in the relevant regions via Eqs. (S3.32, S4.39, S4.40) and Eqs. (S3.31, S3.26,
S3.27), respectively, we can calculate the wavefunctions accordingly, which together give the full
wavefunction in the entire space.

V. IDEAL CENTRIC CASE: ANALYTIC RESULTS

For the centric case, i.e., ξ= 0, we can obtain the analytic solutions of the scattering problem via
the standard technique of partial wave decomposition. In particular, due to the circular rotational
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symmetry and hence conservation of the total angular momentum, the partial waves outside the
annular scatterer (r > R2) can be written as

ψ
I
m = k0h(2)m +Sm

k0h(1)m . (S5.41)

Inside the annular region R1 < r < R2, the waves are

ψ
II
m = Am

[
k1h(2)m +Scd

m
k1h(1)m

]
(S5.42)

and
ψ

III
m = Bm

k2χm, (S5.43)

in the inner disk region r < R2, where [k0,k1,k2] = [|E0|, |E0−V1|, |E0−V2|]/h̄v,

k0,1h(1,2)m =

(
H(1,2)

m (k0,1r)
iα0,1H(1,2)

m+1 (k0,1r)eiθ

)
eimθ, (S5.44a)

and

χm =

(
Jm(k2r)

iα2Jm+1(k2r)eiθ

)
eimθ, (S5.44b)

with α0,1,2 = ±1 being the band index defined as the signs of E0,(E0−V1,2), respectively, and
m = 0,±1,±2, · · · denote the orbital angular momentum. The scattering amplitudes Sm,Scd

m and
the expansion coefficients Am,Bm can be determined from the boundary conditions ψI

m(R1,θ) =
ψII

m(R1,θ);ψII
m(R2,θ) = ψIII

m (R2,θ), leading to the following linear matrix equation
H(2)

m (k1R2) −Jm(k2R2) H(1)
m (k1R2) 0

α1H(2)
m+1(k1R2) −α2Jm+1(k2R2) α1H(1)

m+1(k1R2) 0
H(2)

m (k1R1) 0 H(1)
m (k1R1) −H(1)

m (k0R1)

α1H(2)
m+1(k1R1) 0 α1H(1)

m+1(k1R1) −α0H(1)
m+1(k0R1)




Am
Bm
Cm
Sm

=


0
0

H(2)
m (k0R1)

α0H(2)
m+1(k0R1)

 ,

(S5.45)
where Cm ≡ AmScd

m . From the standard quantum scattering theory, we have that Sm is an element
of the S-matrix for the concentric circular scatterer, which is diagonal in the basis of angular
momentum states m. Solving Eq. (S5.45), we obtain the coefficients as

Am =
H(2)

m (k0R1)+H(1)
m (k0R1)Sm

H(2)
m (k1R1)+H(1)

m (k1R1)Scd
m

; Bm = Am
H(2)

m (k1R2)+H(1)
m (k1R2)Scd

m
Jm(k2R2)

, (S5.46a)

while the scattering amplitudes for the whole scatterer are given by

Sm =−
α0xmH(2)

m+1(k0R1)−α1ymH(2)
m (k0R1)

α0xmH(1)
m+1(k0R1)−α1ymH(1)

m (k0R1)
, (S5.46b)

where xm = H(2)
m (k1R1)+H(1)

m (k1R1)Scd
m and ym = H(2)

m+1(k1R1)+H(1)
m+1(k1R1)Scd

m with Scd
m given

by Eq. (S3.27).
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FIG. S1. Validation of the S-matrix approach through the closed-form analytic constrains imposed by
the symmetry of the system. (a) Plot of the diagonal elements S−(l+1),−(l+1) versus Sll , where the thick
black line is the theoretical prediction of Eq. (S6.49), (b) real and imaginary parts of Sll , (c) false color-
coded map of the magnitudes of the full scattering matrix elements with a proper cut-off at l = ±102 (the
scale bar shows the fourth root of magnitudes |Sll′ |); (d) the skew cross section σsk (purple line) and the
total cross section σt (light blue curve) as a function of the energy for incident waves propagating parallel
to the symmetry axis, where the vanishing skew (asymmetric) scattering, i.e., σsk ≡ 0, is consistent with the
prediction of Eq. (S6.51). Parameters adopted for (a)-(c) are E = 70, R2/R1 = 0.6, ξ = 0.3, v1 =−140, and
v2 = 0. For (d), the parameters are R2/R1 = 0.6, ξ = 0.3, v1 =−10 and v2 = 40.

VI. VALIDATION OF THE S-MATRIX APPROACH

A. Symmetry constraints

In spite of the lack of circular rotational symmetry, the system possesses a mirror (parity) sym-
metry, which imposes certain constrains on the S-matrix and leads to vanishing of skew (asym-
metric) scattering provided that the incident wave propagates along the axis of the symmetry. In
particular, for the configuration shown in Fig. 1(a) in the main text, for spinor scattering we can
explicitly write the representation of the parity symmetry operation as Px = σxRy with Ry, which
is the reflection operator that acts in the physical (position) space with respect to the x axis via the
operations x→ x(kx→ kx) and y→−y(ky→−ky,θ→−θ). As such, the system is invariant under
parity, stipulating the relation PxHP−1

x = H so that PxΨ is still a state of the system with the same
energy. Under the operation of Px, the spinor cylindrical wave kh(1,2)m of given orbital angular
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momentum m (corresponding to total angular momentum L = m+1/2) can be transformed as

Px
kh(1,2)m = iσxRy

(
H(1,2)

m (kr)
iαH(1,2)

m+1 (kr)eiθ

)
eimθ = (−)m+1iα

(
H(1,2)
−(m+1)(kr)

iαH(1,2)
−m (kr)eiθ

)
e−i(m+1)θ,

= (−)m+1iα kh(1,2)−(m+1).

(S6.47)

Applying this relation to the resulting state Ψ(0) given in Eq. (S3.23), we obtain

PxΨ
I = ∑

m
Pxa0

mP−1
x Pxψm =

∞

∑
m=−∞

Pxa0
mP−1

x Px

[
k0h(2)m +

∞

∑
m′=−∞

Smm′
k0h(1)m′

]
,

=
∞

∑
m=−∞

a0
m(−)m+1iα0

[
k0h(2)−(m+1)+

∞

∑
m′=−∞

PxSmm′P−1
x (−)m′−m k0h(1)−(m′+1)

]
,

≡∑
n

c0
nψn =

∞

∑
n=−∞

c0
n

[
k0h(2)n +

∞

∑
n′=−∞

Snn′
k0h(1)n′

]
,

(S6.48)

with deduced identities n≡−(m+1), n′ ≡−(m′+1), c0
n ≡ a0

m(−)m+1iα0 = Pxa0
mP−1

x (−)m+1iα0.
We thus have

Snn′ ≡ S−(m+1),−(m′+1) = PxSmm′P−1
x (−)m′−m = (−)m′−mSmm′. (S6.49)

In particular, for m = m′, i.e., the diagonal elements, we have Smm = S−(m+1),−(m+1). Under such
constrains and using the definition of fl(θ

′) given in Eq. (S2.17), we have

fl(θ
′) = ∑

m
am(θ

′)(Sml−δml)(−i)l,

= ∑
m

ime−imθ′

2
√

2

[
(−)m−lS−(m+1),−(l+1)−δ−(m+1),−(l+1)

]
(−i)2l+1(−i)−(l+1),

= eiθ′
∑
m

i−(m+1)e−i(m+1)θ′

2
√

2

[
S−(m+1),−(l+1)−δ−(m+1),−(l+1)

]
(−i)−(l+1),

= eiθ′
∑
m′

am′(−θ
′)
[
Sm′,−(l+1)−δm′,−(l+1)

]
(−i)−(l+1) ≡ eiθ′ f−(l+1)(−θ

′).

(S6.50)

For θ′ = 0 (π), i.e., when the incident wave propagates parallel (anti-parallel) to the axis of the
mirror symmetry, we obtain fl =± f−(l+1), based on which we can rewrite the skew cross section
in Eq. (S2.18d) as

σsk|θ′=0(π) =
4
k ∑

l
ℑ[ fl f ∗l+1] =

4
k

ℑ

{
| f0|2 +

∞

∑
l=0

[
fl f ∗l+1 + f−(l+1+1) f ∗−(l+1)

]}
,

=
4
k

ℑ

[
| f0|2 +

∞

∑
l=0

2ℜ( fl f ∗l+1)

]
≡ 0.

(S6.51)

These basic symmetry induced, exact constrains given by the closed forms in Eqs. (S6.49) and
(S6.51) can serve as benchmarks for validating the S-matrix approach. Note that, while theoreti-
cally the dimension of the S-matrix is infinite, in practice a finite truncation is needed for a given

11



10 10.1 10.2 10.3 10.4 10.5

E

1.9

2

2.1

2.2

2.3
σ

t

    0.030

    0.025

    0.020

    0.015

    0.010

    0.008

    0.005

     ξ = 0

Ideal centric case

decreasing ξ

FIG. S2. Validate the S matrix approach by showing the convergence to the integrable case. For the
case of classically integrable dynamics, the agreement between the theoretically predicted cross section
values [the black curve calculated from Eqs. (S5.46b)] and the numerical results as ξ approaches zero.
Parameters are R2/R1 = 0.6, v1 =−10, and v2 = 40.

energy E since channels with higher angular momenta l � ER/h̄v cannot be excited effectively
and thus have negligible contribution to the scattering process. Representative results are shown in
Fig. S1. We obtain a good agreement between the theoretical prediction and the simulation results
from properly truncated S-matrices.

B. The case of ξ→ 0

Numerically, it is straightforward to validate the S-matrix approach indirectly by evaluating the
convergence of the value of the cross section to the theoretical value for the limiting case of ξ→ 0
at which the classical dynamics are integrable. As shown in Fig. S2, a good agreement is achieved
for ξ < 0.01.

VII. FULL DATA SET FOR THE PLOT FIG. 2(C) IN THE MAIN TEXT

Figure S3(a) shows the spin polarization versus ξ and the Fermi energy E, where the deep sky-
blue regions in the energy domain indicating higher values of spin polarization become extended
as ξ is increased and exceeds the value of 0.2. Figure S3(b) shows the average spin conductivities
versus ξ, where the conductivity for the spin up population is a deceasing function of ξ but that for
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the spin down state is essentially constant. Thus, on average the spin up particles undergo signifi-
cantly stronger backward scattering as compared with the spin down particles, generating a severe
spin imbalance (e.g., for ξ = 0.3) and consequently, significantly enhanced spin polarization. To
appreciate the role of deformation played in generating a strong Dirac quantum chimera state, we
calculate the average differential cross section ∆σdi f f ≡ (E2−E1)

−1 ∫ E2
E1

(σ↑di f f −σ
↓
di f f )dE versus

the backward scattering angle θ for two cases: ξ = 0 and ξ = 0.3, as shown in Fig. S3(c). A
schematic illustration of the generation of spin polarization is shown in Fig. S3(d).

FIG. S3. Spin polarization enhancement as a result of Dirac quantum chimera. (a) Color-coded map
of spin polarization Pz as a function of energy E and eccentricity ξ, (b) spin conductivities averaged over a
given Fermi energy range versus ξ, where the red curve is vertically shifted by an arbitrary amount for better
visualization, (c) illustration of a chaos rendered spin rheostat tuned by ξ, and (d) a schematic illustration
of the generation of spin polarization.

VIII. FEASIBILITY OF EXPERIMENTAL IMPLEMENTATION

In general, the emergence of a Dirac chimera relies on the optical like behavior of Dirac elec-
trons and Dirac cone splitting, which can be realized in current experimental systems of graphene.
In particular, given the graphene lattice constant and typical values of the Fermi wavelength (e.g.,
λF ∼ 20nm), a Dirac description of the step potential requires the length scale characterizing the
junction sharpness to be d ∼ 1nm, which has been recently achieved experimentally for a circular
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junction geometry [5]. The size of the junction can be tuned to the micrometer scale (� λF ),
validating the short wavelength approximation [6]. Furthermore, the experimentally achievable
strength of the exchange potential for graphene is strong enough to enable Dirac cone splitting
at the room temperature [7], providing a base for experimentally observing the predicted Dirac
quantum chimera.
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