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Controlling complex nonlinear networks is largely an unsolved problem at the present. Existing works
focus either on open-loop control strategies and their energy consumptions or on closed-loop control
schemes with an infinite-time duration. We articulate a finite-time, closed-loop controller with an eye
toward the physical and mathematical underpinnings of the trade-off between the control time and energy
as well as their dependence on the network parameters and structure. The closed-loop controller is tested on
a large number of real systems including stem cell differentiation, food webs, random ecosystems, and
spiking neuronal networks. Our results represent a step forward in developing a rigorous and general
framework to control nonlinear dynamical networks with a complex topology.
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Recent years have witnessed a growth of interest in
controlling complex networks.Avastmajority of the existing
works in this area dealt with the controllability and control of
linear dynamical networks [1–27]. Controlling complex
networks with nonlinear dynamics has been limited to brute
force strategies such as local pinning [28–31] or to specific
systems exhibiting a simple kind of multistability [32–36].
Most existing methods of controlling nonlinear networks
were of the open-loop type; i.e., one selects a suitable subset
of nodes and applies predefined control signals or parameter
perturbations, which are state independent, to drive the
system from an initial state to a desired target. It is, however,
difficult to formulate a general and robust open-loop control
framework. It is thus of interest to investigate closed-loop
control for complex nonlinear dynamical networks, in which
a predesigned feedback loop generates control signals
according to the instantaneous state of the system. Closed-
loop control thus provides a theoretically relevant and
significant alternative to controlling complex nonlinear
networks.
In controlling chaos in low-dimensional dynamical

systems, both open- and closed-loop controls were exten-
sively investigated. The Ott-Grebogi-Yorke [37] principle,
in which small, deliberate, and time-dependent perturba-
tions calculated from measured time series are applied to a
parameter or a dynamical variable to keep the system in the
vicinity of a target periodic orbit, belongs to the open-loop
category. Because of the hallmark of chaos, i.e., sensitive
dependence on initial conditions, the control perturbation
can be small, and there is great flexibility to switch the
target orbit. However, real-time observations of the system
are needed, and control can be fragile to external

disturbances. The method of Pyragas [38,39] is a closed-
loop type of control in which a delayed feedback term is
added to the system equations. It does not require real-time
observation and analysis of the system, so experimental
implementation is greatly facilitated and control can be
robust against noise, but the time for control realization is
infinite and control flexibility is limited. The developmen-
tal history of the field of chaos control provides another
motivation for us to consider frameworks as an alternative
to open-loop methods for nonlinear network control.
In this Letter, we articulate and analyze a global, finite-

time, and closed-loop control framework for complex non-
linear dynamical networks. To ensure that our framework is
physically significant, we focus on the control energy and the
time required to achieve control and investigate their trade-
off. We study how network parameters and structure affect
the control time and energy and test the control framework
using a variety of real biophysical systems including stem
cell differentiation, food webs, random ecosystems, and
neuronal networks. Analytically, we derive rigorous upper
bounds for both the control energy and time. These results
suggest that to develop closed-loop control with optimized
control time and energy not only is fundamental to the
network control field but also has applied values.
We consider nonlinear dynamical networks described by

_xi¼fðxiÞþ
PN

i¼1cijΓxjðtÞþu½xðtÞ&Bi, 1 ≤ i ≤ N, whereN
is the network size, xi ¼ ½xi1;…; xid&⊤ ∈ Rd denotes the d-
dimensional state variable of the ith node, x represents the
state variables of the whole network, f∶Rd → Rd is a
nonlinear velocity field governing the nodal dynamics and
satisfying ∥fðxÞ∥ ≤ l∥x∥ or jx⊤fðxÞj ≤ l∥x∥2 (∀x ∈ Rd)
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with a positive constant l, C ¼ ðcijÞ ∈ RN×N is the coupling
matrix determined by the network structure, Γ ∈ Rd×d

describes the internal coupling configuration at each node,
u½xðtÞ& ¼ ½uiðtÞ&1≤i≤M ∈ Rd×M (M ≤ N) is the closed-loop
control protocol to be designed, and Bi ¼ ½bi1;…; biM&⊤ ∈
RM (bim ¼ 0, 1) characterizes the driving by the controller u
to the ith node. Going beyond the existing works on open-
loop control of complex networks, where the goal is to drive
the system to an instantaneous state, we set the control target
to be an unstable steady state, which, for mathematical
convenience, is assumed to be xi ¼ 0 for all i. For any
nontrivial target state, a direct translation can be used to
transfer the state to xi ¼ 0.
For a general nonlinear dynamical system, a straightfor-

ward approach to realizing closed-loop control [40–42] is to
set each component of u as ui¼−kxi≜uLi (1≤i≤M≤N). In
principle, this linear feedback controller of strength k is able
to steer the dynamics to converge to the target xi ¼ 0, but the
time required for convergence is infinite. We thus seek
alternative methods [43–46] to achieve a finite control time
and robustness against disturbances. A typical form of the
feedback controller is ui ¼ −ksigðxiÞα≜uFi , which can drive
the system to xi ¼ 0 for all t ≥ TF

f with TF
f < ∞, where

sigðxiÞα ¼ ½sgnðxi1Þjxi1jα;…; sgnðxidÞjxidjα&⊤, sgnð·Þ is a
sign function, k is the control strength, and α ∈ ð0; 1Þ is the
steepness exponent. The mathematical underpinning of the
controller uFi lies in that the non-Lipschitzian j · jα at xi ¼ 0
violates the solution uniqueness of the system of coupled
differential equations.
To gain physical insights into the control process, we

consider the potential function EL;F
p ðxiÞ ¼

R xi
0 uL;Fi dxi,

which can be determined from the closed-loop feedback
controller. We find that uLi is located higher than uFi for
jxij > 1, while the opposite occurs for jxij < 1, as shown in
Fig. 1(a). On the potential landscape, the controlled system
trajectory can be regarded as a particle moving along some
optimal path towards the target xi ¼ 0, the minimum of the
potential. The particle experiences a stronger potential force
along a path determined by uLi (uFi ) for jxij > 1 (jxij < 1).
The maximum force occurs for jxij < 1 and α → 0. In this
case, uFi jα¼0 corresponds to a double-valued and closed-loop
controller, similar to the classical bang-bang control [47].
The basic principle is then to design two controllers in
complementary regions of the phase space. This consider-
ation leads us to propose the following global, compound
controller: ui ¼ uFi IU þ uLi IUc≜uSi , where 1 ≤ i ≤ M, the
unit ball is defined by U ¼ f∥x∥ < 1g, x ¼ ½x⊤1 ;…; x⊤N &⊤,
∥ · ∥ denotes an appropriate norm of the underlying vector,
Uc is the complement of U, and I is the indication function
for a given subscript set. The norm can be taken as the Lp or
L∞. To be representative and without the loss of generality,
we study theL2 norms. As shown in Fig. 1(b), the compound
controller uSi switches from uLi to uFi when the system enters
the unit sphere.

We now prove that the controller uS ¼ ½uSi &1≤i≤M enables
finite-time control and provide an estimate of TS

f, the time
required to achieve control. To be concrete, we setM ¼ N,
bii ¼ 1, and bim ¼ 0 for i ≠ m. As shown in Fig. 1(b), for
xð0Þ ∉ U, the control protocol is set as uSi ¼ uLi . A direct
calculation gives d∥xðtÞ∥2=dt ≤ −2ðk − l − ηmaxÞ∥xðtÞ∥2,
where ηmax is the maximal eigenvalue of the matrix H ≡
½ðC ⊗ ΓÞ⊤ þ C ⊗ Γ&=2 and ⊗ represents the Kronecker
product for matrices. Setting k > lþ ηmax when the net-
worked system is outside of the ball U, we get the time
instant t' such that xðtÞjt¼t' hits the sphere of U with t' ≤
½ln ∥xð0Þ∥&=ρ and ρ≜k − l − ηmax > 0. Once the orbit xðtÞ
enters U after t', because of the dissipation inside U (see
Supplemental Material [48]), the system will never leave it,
so that uSi becomes uFi with the corresponding value k for
t > t', as shown in Fig. 1(b). The dynamical systems theory
[48] stipulates that d∥xðtÞ∥2=dt ≤ −2ρ∥xðtÞ∥1þα for t ≥ t'

and that xðtÞ≡ 0 for all t ≥ t' þ 1=ρð1 − αÞ. An analogous
analysis applies to the case xð0Þ ∈ U with uSi ¼ uFi . The
upper bound for TS

f is then given by

TSup
f ¼

8
<

:

1
ρ

!
ln ∥xð0Þ∥þ 1

1−α

"
; xð0Þ ∉ U;

∥xð0Þ∥1−α 1
ρð1−αÞ ; xð0Þ ∈ U;

ð1Þ

with the condition ρ > 0. We see that, for given values of α
and xð0Þ as well as specific network dynamics with l, C,
and Γ, the estimation (1) is on the order of Oð1=kÞ, where
Oð1Þ is a positive and bounded quantity. Accordingly, uS

with a larger value of k can expedite control.
For our controller uS, the required energy cost is [7]

ES
c ¼

R TS
f

0

PN
i¼1 ∥uSi ðtÞ∥2dt. A lengthy calculation [48]

leads to the following upper bound for the energy cost:

-1 10

ui
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FIG. 1. Physical underpinning of our closed-loop feedback
controller. (a) System moving according to the potential function
EL;F
p (dashed curves) underlying closed-loop feedback controllers

uL;Fi , where uLi specifies a linear feedback controller that acts
outside of the unit sphere and uFi denotes a general feedback
controller that is activated once the system is inside the unit
sphere. (b) Controlled system trajectory in the phase space by uSi ,
where a control switch occurs when the system crosses the unit
sphere ∥x∥ ¼ 1.
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ESup
c ¼

(
k2 1

2ρ

!
1 − ∥xð0Þ∥−2 þ 2ζ

1þα

"
; xð0Þ ∉ U;

k2 ζ
ρð1þαÞ ∥xð0Þ∥

1þα; xð0Þ ∈ U;
ð2Þ

where ζ ¼ ðNdÞ1−α. Since ρ ∼ k, ES
c is bounded from above

by a quantity on the order ofOðkÞ. This indicates that, for a
given network and given values of α and xð0Þ, increasing k
will raise the energy cost. In addition, for fixed values of α
and xð0Þ, if k is sufficiently large, increasing l or ηmax will
lead to larger upper bounds for both the control time and
energy. For example, for an unweighed and undirected
network with Γ being an identity matrix, the quantity ηmax
becomes λmaxðCÞ, so increasing the maximum eigenvalue
would demand more time and energy for the uS-driven
control to be successful.
Using ∂αðlnT

Sup
f Þ¼ ln∥xð0Þ∥−1þ1=ð1−αÞ, ∥xð0Þ∥≤1,

and α ∈ ð0; 1Þ, we can prove that TSup
f is an increasing

function of α, i.e., ∂αðT
Sup
f Þ > 0, implying that control can be

expedited by using a smaller value of the steepness exponent
α. In addition, the condition ∂αðE

Sup
c Þ < 0 implies that

smaller values of α lead to higher energy costs. The
dependence of the energy onα is consistentwith the intuitive,
potential-landscape-based physical scenario of control.
These results reveal a trade-off between the control time
and energy cost for our controller uS with respect to
variations in α or k. For example, consider the index
J γ;βðkÞ ¼ γ⌊TS

f⌋þ β⌊ES
c⌋, where γ and β are adjustable

weights determined by the specific system and ⌊ · ⌋ is a
normalization function. Since J γ;βðkÞ ∼Oð1=kÞ þOðkÞ,
theremust exist a number kc ≳ lþ ηmax atwhich the quantity
J γ;β reaches its minimum. The optimal control strength is
thus given by k ¼ kc in the sense that control can be achieved
in less time with a lower energy cost in terms of the
index J γ;β.
We demonstrate the working of our optimal closed-loop

controller uS, its superior performance as compared with
the conventional controllers uL ¼ ½uLi &1≤i≤M, and the cor-
responding analytic bounds of the control time and energy,
using a number of representative real-world complex
nonlinear dynamical networks.
Controlling stem cell fate.—We demonstrate that our

closed-loop controller can drive two different cell fates to
the critical expression level to enable stem cells to remaster
their cell fate for cellular differentiation. Specifically, we
consider the following network model for hematopoietic
stem cells [56], which describes the interaction between two
suppressors during cellular differentiation for neutrophil and
macrophage cell fate choices [57,58]: _x1 ¼ 0.5 − x1, _x2¼
5x1=½ð1þx1Þð1þx43Þ&−x2, _x3¼5x4=ð1þx4Þð1þx42Þ−x3,
_x4¼0.5=ð1þx42Þ−x4, _x5¼½x1x4=ð1þx1x4Þþ4x3=ð1þx3Þ&=
ð1þx42Þ−x5, and _x6¼½x1x4=ð1þx1x4Þþ4x2=ð1þx2Þ&=
ð1þx43Þ−x6, where x2;3 are the expression levels of two
lineage-specific counteracting suppressors Gfi-1 and

Egr(1,2), which are activated by their transcription factors
x1;4 and simultaneously regulate the downstream genes x5;6,
respectively. As specified in Fig. 2, the system has three
steady states: U1;2;3, where U1;3 correspond to different cell
fates and are stable and U2 represents a critical expression
level connecting the two fates and is unstable. Figure 2(a)
shows that initially x2 of the uncontrolled system
converges to the stable steady state U1 or U3. From
t ¼ 30, we apply the finite-time controller uS ¼ uFIU þ
uLIUC withU ¼ f∥x −U2∥ < 1g,uL ¼ −kðx2 −U22Þ, and
uF ¼ −ksgnðx2 −U22Þjx2 −U22jα to x2, which is the only
variable experimentally accessible [56]. Here, U22 is the
second component ofU2. The controlled system in either of
the stable states is driven rapidly to the critical state U2,
indicating that a finite-time, closed-loop intervention can
make the stem cells remaster their cell fate for cellular
differentiation. Furthermore, for sufficiently strong control
strength k, the converging time with the controller uS is
shorter than that with uL, as shown in Fig. 2(b). Figure 2(c)
shows that, for a fixed value of k, the required control energy
decreases with the steepness exponent α, as predicted by our
analysis.
Controlling nonlinear ecosystems on food-web

networks.—The nonlinear ecological model is described
by _xi ¼ xið1 − xi=KiÞðxi=Ai − 1Þ≜fðxiÞ, where xi is the
species abundance, f characterizes the logistic growth, and
the carrying capacity is Ki. The model includes the Allee
effect, where the species is destined for extinction if its
abundance is lower than a threshold value (xi < Ai) [59–
61]. We demonstrate that our control method can success-
fully restore the system out of extinction to a sustainable
state. In particular, for each i, the model has two stable
steady states (xi ¼ 0, Ki, corresponding to species extinc-
tion and capacity overload, respectively) and one unstable
steady state (xi ¼ Ai). To prevent the system from evolving
into one of the stable steady states, we choose the control
target to be xi ¼ Ai for all i that represents restoration or
sustainment of species to a state with moderate abundance.
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FIG. 2. Controlling a cellular differentiation network model
from the steady state U1 ¼ ð0.5; 1.66; 0.03; 0.06; 0.02; 2.53Þ or
U3 ¼ ð0.5; 0.19; 1.66; 0.50; 2.69; 0.10Þ to the steady state
U2 ¼ ð0.5; 0.75; 1.05; 0.38; 1.69; 0.83Þ. (a) Uncontrolled dynam-
ics [for t ∈ ½0; 30Þ] and controlled dynamics (for t ≥ 30) for the
expression levels of suppressor x2, where k ¼ 10 and α ¼ 0.5
when uS is switched on. (b) For α ¼ 0.5, the control time versus k
for the two controllers uS;L. (c) For k ¼ 10, the control energy
versus α for controller uS.
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The coupling matrices C are constructed from a large
number of real food-web networks [48]. For the
three controllers uS;F;L, we calculate the respective control
time TS;F;L

f required to drive the system into the neighbor-
hood of the target: jxiðtÞ − Aij ≤ 10−4, 1 ≤ i ≤ N.
The controller uS results in the least control time (see
Table S1 in [48] for detailed values from all 22 food-web
networks).
To verify our analytic prediction of optimal control

through the control indices J γ;β, we use the Florida food
web [48] and calculate the indices as a function of k or α.
Figure 3 shows that the optimal values of kc and αc depend
on the combination of the preferential weights ðγ; βÞ, which
agree well with the respective analytic results. Simulations
further reveal that the optimal value kc is more sensitive to
the choice of the preferential weights than αc, which is
reasonable as decreasing the control time tends to make the
value of kc larger.
Controlling complex random ecosystems.—Consider a

general ecosystem described by _x ¼ Cx, where each
species xi is one-dimensional, C ¼ ðcijÞN×N describes
the random mutual interactions with cii ¼ −r, and N is
the population size. Three types of random matrices C were
studied extensively, which correspond to three typical
ecosystems: (a) May’s classic ecosystem [62], where, with
probability P, the off-diagonal elements cij are set as
mutually independent Gaussian random variables
N ð0; σ20Þ and the probability for the elements to be zero
is (1 − P); (b) a mixed ecosystem of competition and
mutualism [63], where the off-diagonal elements cij and cji
have the same sign, which are drawn from the distribution
((jYj, (jYj) with probability P and are zero with prob-
ability (1 − P); and (c) the predator-prey (PP) ecosystem
[63], where cij and cji have the opposite signs and are from
the distribution ((jYj, ∓ jYj). As either N or the variance
of C’s elements increases, all three ecosystems eventually
become unstable, reflecting the instability of a certain
steady state in the original ecosystem from which the
linear random system was derived [62,63].
We employ uS to control the ecosystems, which becomes

a particular case of our general nonlinear network control

frameworkwith l ¼ 0,Γ ¼ 1, bii ¼ 1, and all other bim ¼ 0.
To achieve finite-time control, we estimate the maximal
eigenvalue ηmax of H ¼ ðC⊤ þ CÞ=2 (see Supplemental
Material). For May’s classic ecosystem, the well-known
semicircle law for random matrices stipulates that H’s
eigenvalues are located in [−

ffiffiffiffiffiffiffiffiffiffi
2NP

p
σ0 − r,

ffiffiffiffiffiffiffiffiffiffi
2NP

p
σ0 − r]

asN → ∞ (SupplementalMaterial). According to Eq. (1), to
realize finite-time control requires k > ηmax ¼

ffiffiffiffiffiffiffiffiffiffi
2NP

p
σ0 − r

(condition A). As shown in Fig. 4(a), successful control is
achieved for sufficiently large values of k. However, from the
estimates of the control time and energy [Eqs. (1) and (2),
respectively], we see that, for a fixed large value of k, an
increase in either N or σ0 slows down the control and
consumesmore energy, eventually violating conditionA and
causing the control to fail, as shown in Figs. 4(b) and 4(c).
While the controller uS requires the least control time among
the three available controllers, for a large system size the
corresponding energy cost is not necessarily minimum.
For the mixed ecosystem with Y ∼N ð0; σ20Þ, from H’s

eigenvalue distribution obtained in Ref. [48], we have k >ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NPð1þ 2=πÞ

p
σ0 − r (condition B) that ensures finite-

time control in the probabilistic sense. Similarly for the PP
system, we require k >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NPð1 − 2=πÞ

p
σ0 − r (condition

C). Overall, conditions A–C reveal a hierarchy where the
PP, May’s classic, and mixed ecosystems require the
weakest, intermediate, and strongest control strength k,
respectively. The control time for the three systems can be
made finite and identical, because the respective choices of
the k value can result in the same value of ρ in Eq. (1). In
spite of this, the ordering of the control energy for the three
types of ecosystems cannot be altered, because k appears
still in Eq. (2) in addition to ρ.
Akin to the previous example of controlling stem cell

fate via only one suppressor, we apply our finite-time
controller to different numbers of species in the ecosystem
with an undirected scale-free coupling matrix C, which
reveals a high flexibility of our controller (see [48]).
In summary, we develop a closed-loop control frame-

work for nonlinear dynamical networks to drive the system
to a desired unstable steady state in a finite time and with a
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FIG. 3. Dependence of the optimal control strength or steepness
exponent on preferential weights. For the Florida food web,
optimal locations of the control indices J γ;βðkÞjα¼0.1 and
J γ;βðαÞjk¼10 versus the weights, as indicated by the markers
along the horizontal axis.
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FIG. 4. For May’s classic ecosystems, the probability of
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predictable energy. Because of the closed-loop nature and
high flexibility of the controller, it is suitable for the
experimental control of nonlinear networks. We obtain
physical and mathematical understandings of the trade-off
between the control time and energy. Our closed-loop
controller is also effective for realizing synchronization in
nonlinear neuronal networks (see [48]). While the issue of
optimal energy associated with closed-loop control and
single- or two-layer structure has been investigated [64,65],
prior to our work a closed-loop control scheme for non-
linear dynamical networks with both optimal time and
energy had not been achieved. Our work provides a base for
developing a general, physically realizable closed-loop
control scheme for complex nonlinear networks with
completely unknown steady states.
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I. UPPER BOUNDS FOR CONTROL TIME AND ENERGY COST

We provide mathematical estimates of the upper bounds for control time and the associated
energy cost with the proposed closed-loop controller uS .

A. Preliminaries

We list two Lemmas that will be used in our analysis.

Lemma S1.1 ([1]). Let ⇠

1

, ⇠

2

, . . . , ⇠

n

� 0 and 0 < p < 1. The following inequality holds:

n

X

i=1

⇠

p

i

�
 

n

X

i=1

⇠

i

!

p

.

Lemma S1.2 ([2]). For any 0 < q  p, there exist two positive numbers ⇣

1,2

such that

⇣

1

k · k
p

 k · k
q

 ⇣

2

k · k
p

,

where k · k
h

(h = p, q) is the L

h

-norm for the n-dimensional space Rn

. Specifically, ⇣

1

= 1 and

⇣

2

= n

1

q�
1

p
.

B. Estimate of control time

For the general closed-loop controlled network dynamics in the main text, we introduce the
following Lyapunov function:

V (x) =
N

X

i=1

x

>
i

x

i

=

N

X

i=1

kx
i

k2 = kxk2, (S1.1)

where x =

⇥

x

>
1

, · · · , x>
N

⇤> 2 RNd and k · k represents the L

2

-norm of the given vector. We
assume x(0) /2 U =

�

kx(0)k < 1

 

. Differentiating the function V along a typical trajectory
of the system, we obtain

dV

dt

= 2

N

X

i=1

x

>
i

f(x

i

) + 2

N

X

i=1

x

>
i

N

X

j=1

c

ij

�x

j

� 2k

N

X

i=1

x

>
i

x

i

(S1.2)

 2(l � k)

N

X

i=1

x

>
i

x

i

� 2x>Hx  �2(k � l � ⌘

max

)V (t),

where H ⌘ 1

2

⇥

(C ⌦ �)> +C ⌦ �
⇤

is a matrix and ⌘

max

is its maximum eigenvalue. The
global Lipschitz condition on f can be relaxed to the one-sided uniform Lipschitz condition (a
function f is said to be one-sided uniformly Lipschitzian if for some l > 0, we have |x>

f(x)| 
lkxk2 for all x 2 Rn). Choosing k > l + ⌘

max

and integrating the differential inequality (S1.2)
from 0 to t, we get V [(x(t)] = kx(t)k2, which is circumscribed by an exponentially decreasing
quantity. We thus have V (x(t⇤)) = 1 and

kx(t⇤)k = 1 with t

⇤  ln kx(0)k
⇢

> 0, (S1.3)
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where ⇢ = k � l � ⌘

max

(as defined in the main text).
We next prove that kx(t)k < 1 for all t 2 (t

⇤
,+1). Intuitively, this is a result of system

dissipation. The proof is carried out by contradiction. Specifically, assume this is not the case.
We can then obtain the first time instant at which the trajectory x(t), after entering the unit ball
U , hits the ball again. Denote this time by

t

0
= inf

n

t 2 [

ˆ

t, t

1

)

�

�

�

kx(t)k = 1

o

,

where the time instants ˆt and t

1

satisfy kx(t)k < 1 with t

⇤
< t <

ˆ

t < t

0
< t

1

< +1. All the
time instants can be found because of the continuity of the trajectory x(t) and the assumption
that x(t) can hit the unit ball. For t 2 [

ˆ

t, t

0
), taking the derivative of V (t) with respect to t yields

dV

dt

= 2

N

X

i=1

x

>
i

f(x

i

) + 2

N

X

i=1

x

>
i

N

X

j=1

c

ij

�x

j

� 2k

N

X

i=1

x

>
i

sig(x

i

)

↵

 2(l + ⌘

max

)x>x� 2k

N

X

i=1

x

>
i

sig(x

i

)

↵

.

(S1.4)

From Lemma S1.1, we have

N

X

i=1

x

>
i

sig(x

i

)

↵

=

N

X

i=1

d

X

j=1

|x
ij

|↵+1 �
 

N

X

i=1

d

X

j=1

|x
ij

|2
!

↵+1

2

,

which gives a further estimation for dV/dt:

dV

dt

 2(l + ⌘

max

)V (t)� 2k [V (t)]

↵+1

2

. (S1.5)

Since V (t) = kx(t)k2  1 for all t 2 [

ˆ

t, t

0
), we have V (t)  V

↵+1

2

(t) for all t 2 [

ˆ

t, t

0
). Hence,

the estimation in (S1.5) can be refined as:

dV

dt

 �2⇢V

↵+1

2

(t), for all t 2 [

ˆ

t, t

0
). (S1.6)

This implies dV /dt  0 for all t 2 [

ˆ

t, t

0
), so we have

1 > kx(ˆt)k2 = V [x(ˆt)] � V [x(t)]

for all t 2 [

ˆ

t, t

0
). In the limit t ! t

0, we have 1 > V (x(ˆt)) � V (x(t0)) = 1. This is a
contradiction, which implies that for all t 2 (t

⇤
, t

1

), x(t) 2 U holds, where t

1

can be extended
to +1.

We can now prove that the trajectory x(t) of the general nonlinear network system in the
main text approaches the desired target within a finite-time duration in (t

⇤
,+1). In particular,

from the estimation in (S1.6) and the theory of differential inequalities [3], we have V (t) 
W (t), where t 2 (t

⇤
,+1) and W (t) satisfies the following equation:

dW

dt

= �2⇢W

↵+1

2

(t), for all t > t

⇤
, (S1.7)
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with the initial condition W (t

⇤
) = V (t

⇤
) = 1. From (S1.7), we have

1

1� ↵

W

1�↵
2

(t) = �⇢t+ c

0

, for all t > t

⇤
, (S1.8)

where c

0

= ⇢t

⇤
+

1

1�↵

V

1�↵
2

(t

⇤
) and t

⇤ is defined in (S1.3). From (S1.8), we have

V (t)  W (t) = [(1� ↵)(�⇢t+ c

0

)]

2

1�↵
. (S1.9)

Letting W (t) = 0, we obtain the upper bound for the time T

S

f

to achieve control:

T

S

f

 t

⇤
+

kx(t⇤)k1�↵

⇢(1� ↵)

= t

⇤
+

1

⇢(1� ↵)

.

For the case of x(0) 2 U , a similar argument leads to the upper bound for T S

f

as

T

S

f

 kx(0)k1�↵

⇢(1� ↵)

.

The estimated upper bound for T S

f

can thus be summarized as

T

S

up

f

=

(

1

⇢

ln kx(0)k+ 1

⇢(1�↵)

, x(0) /2 U ,
1

⇢(1�↵)

kx(0)k1�↵

, x(0) 2 U . (S1.10)

For the special case of controlled linear network dynamics ẋ = Cx+

⇥

uS

⇤>, we set l = 0,
� = 1, b

ii

= 1, and all other b
im

= 0. The upper bound of the required control time can be
estimated as

T

S

up

f

=

(

1

⇢

ln kx(0)k+ 1

(k�µ

max

)(1�↵)

, x(0) /2 U ,
1

(k�µ

max

)(1�↵)

kx(0)k1�↵

, x(0) 2 U ,

where µ

max

is the maximal eigenvalue of the matrix 1

2

⇥

C +C>⇤.

C. Estimate of control energy cost

Case 1: x(0) /2 U . From the definition in the main text, the energy cost is given by

ES

c

=

Z

Tf

0

N

X

i=1

�

�

u

S

i

(t)

�

�

2

dt =

Z

t

⇤

0

N

X

i=1

�

�

u

L

i

(t)

�

�

2

dt+

Z

Tf

t

⇤

N

X

i=1

�

�

u

F

i

(t)

�

�

2

dt.

Outside the unit ball U , the energy cost can be estimated as
Z

t

⇤

0

N

X

i=1

�

�

u

L

i

(t)

�

�

2

dt = k

2

Z

t

⇤

0

�

�x(t)
�

�

2

dt = k

2

Z

t

⇤

0

V (t)dt.

From the estimate (S1.2), we get

k

2

Z

t

⇤

0

V (t)dt  k

2

V (0)

Z

t

⇤

0

e

�2⇢t

dt

= k

2

V (0)

✓

� 1

2⇢

e

�2⇢t

⇤
+

1

2⇢

◆

k

2



1

2⇢

� 1

2⇢kx(0)k2

�

. (S1.11)
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Note that

N

X

i=1

�

�

u

F

i

(t)

�

�

2

= k

2

N

X

i=1

d

X

j=1

|x
ij

(t)|2↵ = k

2

�

�x(t)
�

�

2↵

2↵

 ⇣k

2

�

�x(t)
�

�

2↵

= ⇣k

2

V

↵

(t),

where the inequality follows from Lemma S1.2 and ⇣ = (⇣

2

)

2↵

=

h

(Nd)

1

2↵� 1

2

i

2↵

= (Nd)

1�↵.
This, with (S1.9), gives an estimate of the energy cost inside U :

Z

Tf

t

⇤

N

X

i=1

�

�

u

F

i

(t)

�

�

2

dt  ⇣k

2

Z

Tf

t

⇤
V

↵

(t)dt  ⇣k

2

Z

Tf

t

⇤
(1� ↵)

2

1�↵
(�⇢t+ c

0

)

2↵
1�↵

dt

= ⇣k

2

1

⇢(1 + ↵)

(1� ↵)

1+↵
1�↵

h

(�⇢t

⇤
+ c

0

)

1+↵
1�↵ � (�⇢T

f

+ c

0

)

1+↵
1�↵

i

, (S1.12)

where c

0

= 1/(1� ↵). Substituting the estimation of T
f

into (S1.12), we get

Z

Tf

t

⇤

N

X

i=1

�

�

u

F

i

(t)

�

�

2

dt  ⇣k

2

1

⇢(1 + ↵)

. (S1.13)

Finally, from (S1.11) and (S1.13), we obtain the upper bound estimate of the energy-cost as

ES

up

c

= k

2

1

2⇢



1� kx(0)k�2

+

2⇣

1 + ↵

�

.

Case 2: x(0) 2 U . The energy cost is

E
c

=

Z

Tf

0

N

X

i=1

�

�

u

F

i

(t)

�

�

2

dt  ⇣k

2

Z

Tf

0

V

↵

(t)dt.

Following the argument for Case 1, we get

E
c

 ⇣k

2

Z

Tf

0

(1� ↵)

2

1�↵
(�⇢t+ c̃

0

)

2↵
1�↵

dt

= ⇣k

2

1

⇢(1 + ↵)

(1� ↵)

1+↵
1�↵

h

(c̃

0

)

1+↵
1�↵ � (�⇢T

f

+ c̃

0

)

1+↵
1�↵

i

,

where c̃

0

=

1

1�↵

kx(0)k1�↵. From the estimated T

f

in (S1.10), we get

ES

up

c

=

⇣k

2

⇢(1 + ↵)

kx(0)k1+↵

.

To summarize, the analytical estimate for the upper bound of the energy cost is given by

ES

up

c

=

(

k

2

1

2⇢

⇥

1� kx(0)k�2

+

2⇣

1+↵

⇤

, x(0) /2 U ;
k

2

⇣

⇢(1+↵)

kx(0)k1+↵

, x(0) 2 U ,

where ⇣ = (Nd)

1�↵.
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TABLE S1. Results of controlling 22 nonlinear food-web networks with the controllers uS,F,L, where
K

i

= 5, A
i

= 1, k = 2, and ↵ = 1

2

. The dynamical variables in the initial state are chosen randomly
from the interval [0, 5]. Each data point is the result of averaging 100 control realizations.

Food-web name # of nodes # of edges TS

f

TF

f

TL

f

Chesapeake 39 177 2.88 5.45 7.32
ChesLower 37 166 2.84 5.37 7.05
ChesMiddle 37 203 2.85 5.34 6.96
ChesUpper 37 206 2.90 5.43 7.30
CrystalC 24 125 2.91 5.49 7.34
CrystalD 24 100 2.91 5.48 7.15
Everglades 69 916 2.92 5.50 7.35
Florida 128 2106 2.92 5.50 7.25
Maspalomas 24 82 2.80 5.27 7.48
Michigan 39 221 2.91 5.49 7.18
Mondego 46 400 2.90 5.44 7.18
Narragan 35 220 2.94 5.52 7.50
Rhode 20 53 2.90 5.46 7.22
St. Marks 54 356 2.87 5.37 7.28
baydry 128 2137 2.92 5.50 7.36
baywet 128 2106 2.92 5.49 7.06
cypdry 71 640 2.90 5.47 7.16
cypwet 71 631 2.90 5.48 7.05
gramdry 69 915 2.92 5.50 7.28
gramwet 69 916 2.93 5.52 7.30
Mangrove Dry 97 1491 2.92 5.50 7.28
Mangrove Wet 97 1492 2.93 5.52 7.31

II. CONTROLLING FOOD-WEB NETWORKS: DATA AND ANALYSES

All the results on control time for controlling the 22 food-web networks are shown in Tab. S1.
The food-web data are from the website:
http://vlado.fmf.uni-lj.si/pub/networks/data/bio/foodweb/foodweb.htm

As shown in Fig. S1, the required control time and energy cost for controlling the Florida
food-web network exhibit exactly the opposite trends with increasing k and ↵. This, together
with Fig. 2 in the main text, reveals a control trade-off between the time and the energy cost
inherent to the controller uS .

III. EIGENVALUE DISTRIBUTIONS OF ECOLOGICAL NETWORKS

Here we prove that, for May’s classic ecosystem, H’s eigenvalues are distributed in the
interval

h

�r �
p
2NP�

0

,�r +

p
2NP�

0

i

in a probabilistic sense as N ! 1. Thus, to realize
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control requires
k > ⌘

max

=

p
2NP�

0

� r (Condition-A).
For the mixed ecosystem, H’s eigenvalues are distributed in the interval

⇥

�
p

2NP [D(Y) + E2

(|Y|)]� r,

p

2NP [D(Y) + E2

(|Y|)]� r

⇤

as N ! 1. Particularly, for Y ⇠ N (0, �

2

0

), this interval becomes
⇥

�
p

2NP (1 + 2/⇡)�

0

�
r,

p

2NP (1 + 2/⇡)�

0

� r

⇤

, yielding

k >

p

2NP (1 + 2/⇡)�

0

� r (Condition-B)

which ensures finite-time control in the probabilistic sense. For the PP system, we have

k >

p

2NP (1� 2/⇡)�

0

� r (Condition-C)

for realizing control in the probabilistic sense.

A. Wigner semicircle law

Lemma S3.1 (Semicircle Law [4, 5]). Let {Z
i,j

}
1i<j

and {Y
i

}
1i

be two independent families

of i.i.d., zero mean, and real-valued random variables with E(Z2

1,2

) = 1. Further, assume that

for all integers k � 1,

r

k

, max

n

E|Z
1,2

|k,E|Y
1

|k
o

< 1.

Set the elements of the symmetric N ⇥N matrix X
N

as:

X
N

(i, j) = X
N

(j, i) =

⇢

Z

i,j

/

p
N, i < j,

Y

i

/

p
N, i = j.

Let the empirical measure be L

N

=

1

N

P

N

i=1

�

�i , where �

i

(1  i  N) are the real eigenvalues

of X
N

. Let the standard semicircle distribution be the probability distribution �(x)dx on R
with the density

�(x) =

1

2⇡

p
4� x

2I|x|<2

,

where I is the indication function of a given set. Then, L

N

converges weakly probabilistically

to the standard semicircle distribution as N ! 1.

B. Eigenvalue distributions of ecological networks

May’s classic ecosystem. For this system, we have c

ii

= �r and the off-diagonal ele-
ments c

ij

are mutually independent random variables that obey the Gaussian normal distri-
bution N (0, �

2

0

) with probability P and are zero with probability 1 � P . Denote each ele-
ment of the symmetric matrix H =

1

2

⇥

C +C>⇤ by ⇠

ij

=

1

2

(c

ij

+ c

ji

). The expectation is
E(⇠

ij

) =

1

2

[E(c
ij

) + E(c
ji

)] = 0 and the variance is given by

D(⇠
ij

) =

1

4

D(c
ij

+ c

ji

) =

1

2

D(c
ij

) =

1

2

E(c2
ij

)� 1

2

E2

(c

ij

) =

1

2

P�

2

0

.

From the semicircle law for random matrices (Lemma S3.1), the eigenvalues of H =

1

2

(C>
+

C) are located in
h

�r �
p
2NP�

0

,�r +

p
2NP�

0

i

in a probabilistic sense as N ! 1. Thus,

to realize control requires k > ⌘

max

=

p
2NP�

0

� r (Condition-A).
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Mixed ecosystem. In a mixed network with competition and mutualistic interactions, we
have c

ii

= �r and the off-diagonal elements (c
ij

, c

ji

) have the same sign, which with probability
P are drawn from the distribution (±|Y|,±|Y|) and are zero with probability (1�P ). We then
have

D(⇠
ij

) =

1

4

D
�

c

ij

+ c

ji

) =

1

4

[D(c
ij

) + D(c
ji

) + 2Cov(c

ij

, c

ji

)]

=

1

4

[2PD(Y) + 2E(c
ij

c

ji

)� 2E(c
ij

)E(c
ji

)]

=

1

2

[PD(Y) + E(c
ij

c

ji

)] =

1

2

P

⇥

D(Y) + E2

(|Y|)
⇤

.

The semicircle law implies that the eigenvalues of 1

2

(C>
+C) are located in

h

� r �
p

2NP [D(Y) + E2

(|Y|)],�r +

p

2NP [D(Y) + E2

(|Y|)]
i

in the probabilistic sense as N ! 1. In particular, for Y ⇠ N (0, �

2

0

), we have D(Y) = �

2

0

and

E(|Y|) =
Z

+1

�1
|y| 1p

2⇡�

0

e

� y2

2�2

0

dy =

r

2

⇡

�

0

.

In this case, the eigenvalues of 1

2

(C>
+C) are located in

"

�r �

s

2NP

✓

1 +

2

⇡

◆

�

0

,�r +

s

2NP

✓

1 +

2

⇡

◆

�

0

#

in the probabilistic sense as N ! 1. Figure S2 shows the accuracy of the control criterion
k > k

⇤
=

q

2NP

�

1 +

2

⇡

�

�

0

� r (Condition-B) obtained from the above estimated interval
for the eigenvalue distributions. Figure S2 also shows how the growth of population size N

affects the required control time and energy cost. These results agree well with the analytical
estimates.

Predator-prey ecosystem. In this system, we have c

ii

= �r and the off-diagonal elements
(c

ij

, c

ji

) have the opposite sign, which with probability P are drawn from the distribution
(±|Y|,⌥|Y|), and are zero with probability (1� P ). We have

D(⇠
ij

) =

1

2

[PD(Y) + E(c
ij

c

ji

)] =

1

2

P

⇥

D(Y)� E2

(|Y|)
⇤

.

Applying the semicircle law, we have that the eigenvalues of H =

1

2

(C>
+C) are located in

h

� r �
p

2NP [D(Y)� E2

(|Y|)],�r +

p

2NP [D(Y)� E2

(|Y|)]
i

in the probabilistic sense as N ! 1. Especially, for Y ⇠ N (0, �

2

0

), the eigenvalues of H =

1

2

(C>
+C) are located in
"

�r �

s

2NP

✓

1� 2

⇡

◆

�

0

,�r +

s

2NP

✓

1� 2

⇡

◆

�

0

#

in the probabilistic sense as N ! 1. The control criterion in the probabilistic sense becomes
k >

p

2NP (1� 2/⇡)�

0

� r (Condition-C).
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IV. FLEXIBILITY OF CONTROL

We demonstrate the flexibility of control with different configurations of C and B

i

using
the ecosystems. In particular, the off-diagonal elements c

ij

(j 6= i) are constructed from an
undirected scale-free network (SFN) [6] while the diagonal elements are chosen to be c

ii

=

⇠�
P

N

j=1,j 6=i

c

ij

with ⇠ > 0. We have �
max

(C) = ⇠ > 0, so the uncontrolled system is unstable.
With our controller uS , setting k > ⇠ is sufficient for achieving control if we set b

ii

= 1 for
all i. In applications, it is desired to reduce the number of controlled nodes. We thus randomly
select N

D

nodes for control (i.e., b
ijij = 1 for 1  j  N

D

) and define n

D

⌘ N

D

/N .
We find that the energy cost decreases as n

D

is increased (a result consistent with that in
linear network control [7, 8]), as controlling more nodes can significantly reduce the control
time, and increasing the mean degree m of the network can reduce both the control time and
energy (for a given n

D

value), as shown in Fig. S3(a). We also find that controlling high-degree
nodes can reduce the time and energy for n

D

. 0.2. However, if many nodes are accessible to
control, controlling low-degree nodes can yield better performance, as shown in Fig. S3(b).

V. HINDMARSH-ROSE NEURONAL MODEL

We consider a small-world network of Hindmash-Rose (HR) neurons y

i

with the coupling
scheme

P

N

j=1

c

ij

�h
ij

(y

i

, y

j

), where � = diag[1, 0, 0] and h

S

ij

= u

S

i

|
xi=yj�yi . In the network,

the i-th neuron y

i

(1  i  N) is described of the HR type [9]:
8

<

:

ẏ

i1

= y

i2

� y

i3

+ 3y

2

i1

� y

3

i1

+ I,

ẏ

i2

= 1� y

i2

� 5y

2

i1

,

ẏ

i3

= �ry

i3

+ 4⌫(y

i1

+ 1.6),

where y
i1

is the membrane potential, y
i2

stands for the recovery variable associated with the fast
current, y

i3

is a slowly changing adaptation current, I = 3.281 is the external current input, and
⌫ = 0.0012 is the damping rate of the slow ion channel. Figure S4(a) shows that synchronization
can be achieved rapidly through control. Comparing with the linear coupling scheme h

L

ij

=

u

L

i

|
xi=yj�yi , our controller hS

ij

leads to a faster transition, regardless of the network size N , as
shown in Fig. S4(b).
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FIG. S1. Trade-off between required control time and energy cost. Effects of increasing k and ↵ on
control time and energy cost for the Florida food-web network: (a) energy cost versus k, (b) control time
versus k, (c) energy cost versus ↵, and (d) control time versus ↵. The initial state values are randomly
taken from the interval [0, 5].
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FIG. S2. Eigenvalue distribution and estimates of the required control time and energy cost for
mixed ecosystems. (a) The probability of successfully controlling a mixed ecosystem when feedback
control strength k passes through the critical value k⇤ =

q

2NP
�

1 + 2

⇡

�

�
0

�r (indicated by the vertical
dashed line). The probability is calculated by simulating 100 random matrices with N = 250, P = 0.25,
�
0

= 1, and r = 1. (b,c) Required control time and energy cost, respectively, for the controlled mixed
ecosystem subject to controllers uS (circles), uF (squares) and uL (diamonds). The parameters are
P = 0.25, �

0

= 1, k = 1.1k⇤, ↵ = 0.8, and N 2 [50, 1000]. All the initial state values of the networked
system are randomly chosen from the interval [�5, 5].
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FIG. S3. Flexibility performance with different control configurations. For scale-free networks,
control time and energy versus the density n

D

of driver nodes for (a) mean degrees m = 4, 6, 8 and (b)
m = 6 and driver nodes of high, medium, and low degrees. The network size is N = 500 and controller
parameters are ⇠ = 1 and k = 30. Other parameters are the same as those in Fig. 4 in the main text.
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FIG. S4. Controlled generation synchronization of spiking HR neuronal networks. (a) Time course
(upper) and color map (lower) of all potentials y

i1

of a HR neuronal network, where ↵ = 1/2, k = 0.15,
hS
ij

is activated at t = 200, and the rewiring probability 0.1 and N = 200 are used for generating the
small-world network. (b) Synchronization transition time for different values of N .
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