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Measurement of synchrony in networks of complex or high-dimensional, nonstationary, and noisy
systems such as the mammalian brain is technically difficult. We present a general method to analyze
synchrony from multichannel time series. The idea is to calculate the phase-synchronization times and to
construct a matrix. We develop a random-matrix-based criterion for proper choosing of the diagonal
matrix elements. Monitoring of the eigenvalues and the determinant provides an effective way to assess
changes in synchrony. The method is tested using a prototype nonstationary dynamical system, electro-
encephalogram (scalp) data from absence seizures for which enhanced synchrony is presumed, and
electrocorticogram (intracranial) data from subjects having partial seizures with secondary generalization.
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Epileptic seizures affect about 1% of the population in
industrialized countries. Seizure prediction is one of the
most important but challenging problems in biomedical
sciences [1]. It is believed that neuronal hypersynchrony
is a necessary condition for the generation of seizures [2].
A direct consequence of this assumption is that, during the
seizure, the number of degrees of freedom of the under-
lying brain dynamical system may be reduced. Interest-
ingly, a recent experimental study of synchronization be-
tween CA1 pyramidal neurons reveals that seizurelike
events are associated with desynchronization [3]. To re-
solve the controversy may be challenging. Considering that
multichannel electroencephalogram (EEG) or electrocorti-
cogram (ECoG) recordings are now readily available from
laboratory or clinical studies of epilepsy, a method sensi-
tive to variations of synchrony is desirable. Since multi-
channel data are also common in many other disciplines of
science and engineering, such a method may find much
broader usages beyond epilepsy.

In this Letter, we develop a general, data-driven method
to probe synchrony from multichannel data. Because of
parameter mismatch and noise, complete synchronization
among data from different channels, in the sense that they
approach each other asymptotically, cannot be expected.
Thus it is necessary to explore weaker forms of synchro-
nization, such as phase synchronization [4–7]. A basic
assumption that one can make about any reasonable multi-
channel time series is that they be oscillatory [8]. For an
oscillatory time series, in principle a phase variable can be
defined. Denote the phase variable of data from channel i
and j by �i�t� and �j�t�, respectively. There is phase
synchronization between the two channels if j�i�t� �
�j�t�j< 2� [4]. Because of nonstationarity and noise,
the phase-synchronization state so defined can last for
only a finite amount of time. Thus a practically useful
quantity to characterize the degree of phase synchroniza-
tion is the average phase-synchronization time [9,10],

which can be calculated by using a large time interval of
observation during which a reasonable number of 2�
changes in the phase difference occurs. In a moving-
window analysis of nonstationary data, this time interval
is the size of the window. As the system evolves, i.e., as the
‘‘window moves,’’ the average phase-synchronization time
can change. Let �ij�t� be this average time between chan-
nels i and j at time t, where t is the time at the end of a
window. Suppose there are N channels in total. To take full
advantage of available data, we can define an N � N
matrix of average phase-synchronization time for all pairs
of channels. The matrix, by construction, is symmetric, but
the choice of the diagonal elements becomes a critical
issue. In principle, the diagonal elements are infinite, and
for a moving-window application they are the size of the
window. A difficulty with this simple choice is that the
window size is often much larger than the average syn-
chronization time. As a result, the matrix can become quite
singular, hampering further analysis and the matrix’s abil-
ity to discern system changes.

In a general sense, since our task is to probe system
changes through the synchronization-time matrix con-
structed from noisy time series, the ‘‘condition’’ of the
matrix should not depend too sensitively on the variations
of matrix elements. However, the condition should not be
totally insensitive to the variations either, as required by the
task. Thus, a criterion is needed for properly choosing the
diagonal elements. Here, we use random matrices to ad-
dress this issue. To validate the method, we use a control
model of a network of coupled chaotic oscillators under
noise and also apply the method to EEG data from subjects
with absence seizures (3 Hz spike wave discharges), for
which there is clinical indication of enhanced synchrony
during seizures. Finally, we apply the method to multi-
channel ECoG data from subjects with intracranial gener-
alized seizures. One interesting finding is that, at a systems
level, whether epileptic seizures are accompanied by en-
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hanced or reduced synchrony is highly case dependent.
While there are cases where the overall degree of synchro-
nization tends to increase during the seizure, there are
relatively more cases where synchronization decreases
during the seizure, a finding consistent with the result in
Ref. [3]. This means that future monitoring and possibly
therapeutic techniques for epileptic seizures based on syn-
chronization are likely to be highly individualized.

It is proper at this point to clarify the relation between
our approach and several previous matrix-based methods
to detect global changes in synchronization [11–14]. An
early proposal [11] examines the Shannon information
entropy of the spectrum of eigenvalues of the cross-
correlation matrix. The method in [12] is based on a matrix
whose elements are statistics of various phase differences,
which is capable of detecting clusters of phase synchroni-
zation. The idea of a phase-coherence matrix was recently
proposed and applied to EEG recordings from epilepsy
patients [13]. A more recent method [14] centers around
computing the largest and smallest eigenvalues of the zero-
lag correlation matrix, and the method has been demon-
strated to be able to detect, for instance, statistically sig-
nificant changes of the correlation structure of focal onset
seizures. In all these methods, the matrix elements are
quantities derived from some types of correlation measures
that typically assume values between zero and one. We use
the average phase-synchronization time because it is sig-
nificantly more sensitive to changes in the degree of syn-
chronization than correlations. In particular, as the system
becomes more phase coherent, the time is capable of
exhibiting extremely fast increase, typically over many
orders of magnitude for noisy dynamical systems [9].

We first develop a criterion for properly choosing the
diagonal elements of the synchronization-time matrix �.
Assume that multichannel data are stochastic as they are
usually corrupted by both internal (e.g., dynamic) and
external (e.g., measurement) noise. The average phase-
synchronization time between any pair of channels can
thus be regarded as a random variable, and � is effectively
a random matrix. To gain insight we generate an ensemble
of random matrices, with nondiagonal elements drawn
from a Gaussian distribution. The diagonal element a is
varied systematically. The condition of the matrix can be
quantified by the condition number C of the matrix, which
is the ratio between the largest and the smallest eigenval-
ues. For a fixed value of a, we can calculate the average
value hCi and the standard deviation �C. A large standard
deviation relative to hCi is undesirable, as the underlying
matrix would be highly sensitive to fluctuations of its
elements. We are thus led to examine, analytically, the
ratio RC � �C=hCi as a function of a.

For an N � N random matrix, let �1 � �2 � . . . � �N
be the eigenvalue spectrum. A general result from random-
matrix theory [15] is that the distribution of �i’s for i �
1; . . . ; N � 1 falls on a semicircle while �N is outside the
semicircle. Without loss of generality we consider the
situation where all diagonal elements are zero (a nonzero

value a � 0 merely shifts all eigenvalues by the same
amount). In this case, we have 0 �
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This yields RC 	 ��1

=ja� ��1j. We see that RC diverges
for a � � ��1 � 2��

����
N
p
� h�iji. A representative example

of numerically obtained behavior of RC�a� is shown in
Fig. 1 (open circles), where N � 100, �ij � N�1; 0:2�
(rather arbitrarily), and 106 matrix realizations are used.
The solid curve is from the theoretical prediction. We
observe a very good agreement.

We thus see that, when choosing a proper value a for the
diagomal elements, the singular region about a �
2��

����
N
p
� h�iji should be avoided. For instance, if

��

����
N
p
� h�iji, one can choose a several times larger

than h�iji, the average value of all off-diagonal elements.
In this way the variance of the condition of the matrix is
small so that the effect of fluctuations of the matrix ele-
ments due to noise can be suppressed but, the variance is
still appreciable so that the matrix may capture character-
istic changes in the underlying system.

We have validated our synchronization-time matrix ap-
proach using a ‘‘controlled’’ model system whose phase-
synchronization dynamics is known. The model is a net-
work of coupled chaotic Rössler oscillators [10,16,17] with
time varying coupling parameter in the presence of noise.
Extensive numerical computations reveal that, for rela-
tively low levels of noise, the individual matrix elements,
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FIG. 1 (color online). For an ensemble of 106, 100� 100
random matrices, the ratio RC � �C=hCi versus a. Open circles
are results from direct numerical computation, and the solid
curve is from our theoretical prediction RC 	 ��1

=ja� ��1j.
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the eigenvalues, and the determinant all are sensitive to
phase synchronization, although the determinant exhibits
among those measures the highest degree of sensitivity. For
larger noise amplitude, the determinant still stands out as a
suitable measure capable of quantitatively assessing the
system’s evolution toward phase synchronization.

We can now apply the synchronization-time matrix to
epileptic EEG and ECoG time series. The data are col-
lected from patients with pharmacoresistant seizures who
underwent evaluation for epilepsy surgery at the University
of Kansas Comprehensive Epilepsy Center. The EEG data
are collected using the standard methodology (10–20 sys-
tem) [2], and the ECoG data are recorded using multiple
contact depth electrodes (Ad-Tech). The correctness of the
placement is assessed with MRI. The signal is sampled at a
rate of 240 Hz, amplified to a dynamic range of�300 �V,
and digitized to 10 bits precision with 0:59 �V=bit using
commercially available devices (Nicolet, Madison WI).
The recordings are deemed of good technical quality and
suitable for analysis. To minimize noise, we use differen-
tial signals from pairs of channels with no common refer-
ence (i.e., the difference between channels i and j, where i
and j are used only once). The data analyzed in this Letter
consists of multichannel brain signal recordings from six
subjects. In each of the first four subjects, we analyzed 5
ten-minute segments of ECoG, each containing a seizure (5
seizures per subject) and recorded using multiple intra-
cranial (depth) needle electrodes in the amygdala-
hypocampal regions and frontal regions. All seizures for
these subjects were of mesial temporal origin. In the fifth
subject, we analyzed 3 ten-minute scalp EEG recordings,
each containing several absence seizure events separated
by background EEG. For the sixth subject, intracranial
ECoG was obtained in a 10 min segment containing a
secondarily generalized seizure. Twenty-one contacts in
the case of scalp data and between 48 and 52 contacts in
the cases of intracranial data were recorded and used in the
analysis. Both raw data and low-pass filtered data (in the
frequency band [0,60] Hz) were tested, but the results from
the synchronization-time matrices are essentially the same
(the representative results shown below were from unfil-
tered data). The Hilbert transform is used for phase calcu-
lation. A moving window is chosen to contain between 210

and 215 data points (corresponding to 4.3 and 136.5 s,
respectively). The time interval between two adjacent
moving windows is a half second.

Absence seizures [18] are regarded as one of the best
examples of enhanced neuronal synchrony. They can thus
be used as more realistic, clinical controls to validate our
method. Figure 2 shows a representative example, where
(a) is the raw EEG differential signal from two channels
(Nos. 7 and 8 [2]) showing 3 absence seizures identified by
3 pairs of vertical lines, (b) and (c) are the time evolutions
of the determinant of the phase-synchronization time ma-
trix on a linear and semilogarithmic scale, respectively. We
see that the determinant (Det) shows large increases with
each seizure, indicating a high degree of sensitivity to

increases in synchrony. The variation of the degree of
synchrony can be better seen from the time evolution of
ln�Det�, as shown in Fig. 3(c). These results demonstrate
that the matrix is capable of detecting and characterizing
changes in synchronization during seizures.

Partial seizures with secondary generalization usually
start in a brain region and eventually spread to the entire
brain. Figure 3 shows one representative example, where
(a) is a differential ECoG derivation with seizure onset
around t � 300 s, (b) and (c) are the evolutions of Det and
ln�Det� over a 10 min period. A large increase in synchrony
is seen in this seizure, mainly when it becomes secondarily
generalized. Figure 3(c) also shows an interesting phe-
nomenon: the degree of synchronization decreases dra-
matically before the termination of the seizure, fall
markedly below baseline and recovers slowly to preseizure
levels (not shown). The changes in the degree and direction
of the synchronization measure in this seizure were not
uniformly found in other seizures from different subjects.
There are cases where we would observe a continuous
tendency for ln�Det� to decrease toward the ictal phase,
indicating a global decrease of the degree of phase syn-
chronization [the minimal value of ln�Det� is usually
achieved in the ictal phase]. While an overall decrease of
the synchronization level during seizure appears to be
common, there are also cases where the opposite occurs.
These mixed results indicate that, at a systems level,
whether epileptic seizures are associated with enhanced
or reduced synchrony can be highly case dependent.

In summary, we have developed a method to character-
ize the degree of phase synchronization from multichannel
data and applied it to EEG and ECoG data from subjects

 

0 100 200 300 400 500 600
−200

0

200

x 8 −
 x

7

(a)

0 100 200 300 400 500 600
0

2

4
x 10

4

(b)

D
et

0 100 200 300 400 500 600
−5

0

5

10 (c)

t (s)

ln
(D

et
)

FIG. 2 (color online). For absence seizure EEG data, (a) a
differential data segment containing three occurrences of sei-
zure, (b),(c) time evolutions of Det (determinant of the phase-
synchronization time matrix), and ln�Det�, respectively. The size
of the moving time window is approximately 8.5 s and the
montage consists of 9 pairs of differential channels (2–3, 4–5,
1–11, 12–13, 7–8, 9–10, 6–14, 15–16, 17–19).
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with epileptic seizures. Comparing with previous methods
[11–14], our synchronization-time matrix is more sensitive
to characteristic changes of the system. For absence seiz-
ures where there is clinical evidence of enhanced syn-
chrony, our method yields a result that is not only
consistent with the evidence, but also able to capture the
evolution of the degree of synchrony in a quantitative
manner. For intracranial secondarily generalized seizures,
our finding that synchrony can be either reduced or en-
hanced emphasizes the necessity of probing and analyzing
this brain disease from a more individualized aspect. Our
synchronization-time matrix-based method is general and
applicable to multichannel, noisy, and nonstationary time
series from other fields.
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FIG. 3 (color online). (a) ECoG signal from a secondarily
generalized seizure event. (b),(c) Time evolutions of Det and
ln�Det�, respectively.
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